
Efficient Trace Signal Selection using Augmentation and
ILP Techniques ∗

Kamran Rahmani, Prabhat Mishra
Dept. of Computer and Information Sc. & Eng.

University of Florida, USA
{kamran, prabhat}@cise.ufl.edu

Sandip Ray
Strategic CAD Labs

Intel Corporation, USA
sandip.ray@intel.com

ABSTRACT
A key problem in post-silicon validation is to identify a small
set of traceable signals that are effective for debug dur-
ing silicon execution. Most signal selection techniques rely
on a metric based on circuit structure. Simulation-based
signal selection is promising but have major drawbacks in
computation overhead and restoration quality. In this pa-
per, we propose an efficient simulation-based signal selection
technique to address these bottlenecks. Our approach uses
(1) bounded mock simulations to determine state restoration
effectiveness, and (2) an ILP-based algorithm for refining se-
lected signals over different simulation runs. Experimental
results demonstrate that our algorithm can provide signifi-
cantly better restoration ratio (up to 515%, 51% on average)
compared to the state-of-the-art techniques.

1. INTRODUCTION
The goal of post-silicon validation of an Integrated Circuit

(IC) is to ensure that fabricated, pre-production silicon op-
erates correctly under actual operating conditions with real
application. It is a complex activity performed under ag-
gressive schedules, representing more than 50% of the overall
validation cost [10]. A fundamental challenge in post-silicon
validation is limited observability and controllability. Due to
limitations in the number of output pins and area and power
overheads of internal trace buffers, only a few hundreds of
the millions of internal signals in the design can be observed
during silicon execution. Furthermore, in order for a signal
to be observed, the design must be instrumented a priori
with appropriate control hardware that routes the signal to
an observation point. It is therefore crucial to identify trace
signals that maximize design visibility under the constraints
imposed by the observability restrictions.

Signal selection in current industrial practice is primarily
manual, guided by the designer’s experience and intuition:
e.g., more trace signals are selected from hardware blocks
that route high message traffic, exhibit more bugs during
pre-silicon validation, etc. In the absence of objective tech-
niques for qualifying observability value, inadequacy of se-
lected signals often manifest themselves only during silicon
debug, typically in the form of observability holes that make
it difficult to identify, diagnose, and root-cause an observed
failure. However, this stage is too late for redesign of the de-
bug infrastructure or selection of new trace signals (with as-
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sociated routing hardware). Inability to adequately observe,
validate, and debug at this stage results in costly escapes,
complex work-arounds, or silicon respins.

Research in post-silicon validation has attempted to ad-
dress this issue by developing algorithms to select trace sig-
nals through automatic analysis of RTL or gate-level designs.
The idea is to select a set of signals S that maximizes state
restorability, i.e., the set of states that can be reconstructed
based on the observation of the signals in S. Most existing
signal selection approaches [9, 2, 6, 14] involve defining a
metric based on the circuit structure, which is then used in
a (typically greedy) selection process to evaluate a candidate
signal set. More recently, Chatterjee et al. [4] have developed
a simulation-based selection approach that performs better
than pure structural analysis. However, their approach has
drawbacks in computation overhead and restoration quality.
Li et al. [8] proposed a hybrid approach combining metric-
based and simulation-based techniques. However, restora-
tion performance in this case depends on the input vector.
Consequently, in order to use it as a selection metric, eval-
uation of several input sequences is necessary, which is not
handled in any of the existing approaches [4, 8].

In this paper, we develop an approach that preserves the
quality of simulation-based signal selection while ameliorat-
ing the computational bottlenecks. We achieve restoration
quality better than simulation-based selection techniques
while significantly improving runtime performance. Our ex-
periments demonstrate improvement in restoration ratio as
high as 515% (51% on average) over existing techniques.

Our approach has two components: (1) an iterative ap-
proach to signal selection based on mock simulations, and
(2) a filtering scheme based on Integer-Linear Programming
(ILP) to refine the selected set. The use of ILP for con-
straining a selection function is, of course, a well-known
technique with applications to a number of applications in
constraint-based optimizations including verification. Our
key contributions in this paper are (1) the formulation of
ILP as a filter mechanism on mock simulations given the
objective of optimizing restoration ratio, and (2) a complete
overall framework for signal selection based on this formula-
tion. Our results demonstrate that the framework is viable
as a practical signal selection strategy; we know of no other
approach that achieves comparable restoration ratio under
similar run-time performance.

The remainder of the paper is organized as follows. Sec-
tion 2 provides the relevant background. Section 3 motivates
the need for our approach using illustrative examples. We



describe our approach in Section 4 followed by experimental
results in Section 5. We discuss related work in Section 6
and conclude the paper in Section 7.

2. BACKGROUND

2.1 Post-silicon Validation Overview
Figure 1 provides an overview of post-silicon validation

and debug process focusing on the role of signal selection.
A modern IC design includes debug mechanisms such as
embedded logic analyzers (ELA) to record values of internal
design signals during silicon execution. An ELA consists of
trigger and sampling units; trigger units are used to specify
events that trigger recording initiation, and sampling units
then record a small set of signals to the trace buffer for a
specified number of cycles. The sampled signals can then
be transferred from the trace buffer for off-chip analysis. In
particular, the off-chip analysis can apply restoration algo-
rithms on sampled signals to infer the values of other design
signals and reconstruct internal states. The traced and re-
stored signal values can be used together to detect design
errors. To make this possible, the set of signals to be sam-
pled is selected a priori by pre-silicon analysis of the design.
Note that the number of sampled signals is restricted by
the width of the trace buffer and typically represent a very
small fraction of the internal signals in the design. Thus ide-
ally one would like to choose the set of signals that permit
maximum reconstruction of design states. Unfortunately,
exhaustive exploration of all signal subsets to determine the
most profitable signals is computationally intractable; most
signal selection approaches [9, 2, 6, 4] involve developing
heuristics that are efficient in practice while still yielding
signals with good restoration.
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Figure 1: Simplified overview of post-silicon valida-
tion flow and role of trace signal selection. Signals
selected through pre-silicon analysis are funneled to
trace buffer from which silicon states are restored
offline to assist in debug.

2.2 Signal Restoration
Restoration entails inferring values of untraced signal states

from a sequence of traced signals sampled over a period of
time. This is achieved using forward and backward propaga-
tion of signal values of circuit elements (e.g., gates, latches,
etc.). Figure 2 illustrates forward and backward restoration
for common logical gates. Forward propagation involves re-
constructing the output of a circuit element from traced in-
puts. For example, if one of the inputs of the OR gate is ‘1’,
the output value would be ‘1’. If all the inputs are known,
the unknown output can be definitely determined. On the
other hand, backward propagation involves inferring input

values from the observed output. For example, if the out-
put of the OR gate is ‘0’, both of the inputs would be ‘0’.
Backward reconstruction might fail in certain scenarios. For
example, if the output of a 2-input OR gate is ‘1’ and one
of the input has a known value of ‘1’, the other input still
cannot be reconstructed. During signal value reconstruc-
tion, forward and backward restoration are repeated for all
the gates in the circuit until no more states can be restored.
Restoration Ratio (RR), defined below, is a popular metric
for measuring the quality of a set of selected trace signals.

Restoration Ratio =
No. of traced and restored signals

No. of traced signals
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Figure 2: Basic restoration rules for common logic
gates in a) forward restoration: knowledge of in-
puts can reconstruct the output; and b) backward
restoration: knowing the output can restore the un-
known inputs

Consider the simple circuit shown in Figure 3. Suppose
that the width of the trace buffer is 2 (i.e., only two signals
can be traced at any clock cycle), and the trace buffer depth
is 8 (i.e., selected signals are traced for 8 cycles). Suppose
that A and C are selected as trace signals. Table 1 shows
the signal states that can be restored: 32 signal values can
be restored while 16 are traced, yielding a restoration ratio
of (32 + 16)/16 = 3.
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Figure 3: A simple circuit to illustrate restorability.

2.3 Signal Selection
The notion of restorability is based on the execution of the

circuit on an input sequence; when the input sequence rep-
resents an on-field execution scenario for the circuit during
post-silicon validation. However, signals must be selected a
priori based on the circuit structure. Heuristics for selecting



Table 1: Illustration of restored signals for the sim-
ple circuit shown in Figure 3. The traced signals
A and C are shaded. An X indicates that the sig-
nal value cannot be restored at that cycle using the
known signal states.

Signal/Cycle 1 2 3 4 5 6 7 8

A 0 1 0 0 0 1 1 1

B 0 X 1 1 1 X X X

C 0 0 1 1 1 1 1 1

D X 0 0 0 0 0 1 1

E X 0 0 1 1 1 X X

F X X 0 0 1 1 1 1

G X 0 X 0 0 0 1 1

H X 0 X 0 0 1 X X

signals must take care to comprehend and encapsulate over-
laps and interactions between different signals, and antici-
pate how such interactions might affect restorability on-field
— an intrinsically difficult task.

Existing signal selection approaches can be classified in
two categories, structural and simulation-based. Approaches
in the first category use greedy heuristic to iteratively select
signals optimizing a metric based on the circuit structure [6,
9, 2]. They are relatively efficient in computation speed, but
have poor restoration quality compared to simulation-based
algorithms. Simulation-based algorithms are based on the
intuition that if a set of signals works well for some random
input vectors then it is also likely to provide high state recon-
struction on other inputs and therefore a high restorability
ratio. In particular, Chatterjee et al. [4] showed that mock
simulations are more effective in identifying trace signals
than metrics based on the circuit structure. Their approach
involves an iterative removal process. They start with a set
of candidate signals which is initialized with all flip-flops. In
each iteration, their algorithm attempts to remove one of the
signals which appears least important based on simulation
results. The process continues until the number of remain-
ing candidates equals to the trace buffer width. Figure 4
illustrates the approach for a sample circuit with a total of
4 flip-flops and a trace buffer of width 2.

There are three key problems with the above approach.
First, it may eliminate beneficial signals early. For example,
in the first iteration, elimination of any signal can lead to
the same outcome (100% restoration) since all the signals
are present except one; it is possible that a set of beneficial
signals may be eliminated in the first few iterations. Second,
as restoration quality depends on the input vector, multiple
simulation/restoration processes are needed to reduce the er-
ror variance in selection. Finally, their bottom-up approach
starts with all the flip-flops and eliminates one or multiple
flip-flops at each iteration. This increases the number of
simulation/restoration processes significantly which makes
their approach computationally expensive. In this paper,
we present a top-down simulation-based selection approach
to address these challenges.

3. ILLUSTRATION OF OUR APPROACH
Our approach is inspired by simulation-based signal selec-

tion techniques, but includes a refinement technique to ad-
dress the weaknesses of previous simulation-based approaches
described above. Before presenting the technical details of
our approach, we motivate it by comparing its results using
illustrative examples with state-of-the-art metric-based and
simulation-based approaches, viz., Basu et al. [2] and Chat-
terjee et al. [4]; these experiments expose some key features
of our approach which we then discuss.

For the circuit in Figure 3, Basu et al. select signals A
and C, thus yielding the restoration ratio of 3 as shown in
Table 1. On the other hand, both our approach and the
simulation-based approach of Chatterjee et al. selects sig-
nals A and B. The corresponding restorability calculations
are shown in Table 2. From the table, 40 states are restored
from tracing 16 states, yielding a restoration ratio of 3.5.

Table 2: Restored signals for circuits in Figure 3
when signals A and B are traced. The signals A
and B are selected by our signal selection algorithm
when applied to the circuit design.

Signal/Cycle 1 2 3 4 5 6 7 8

A 0 1 0 0 0 1 1 1

B 0 0 1 1 1 0 0 0

C X 0 1 1 1 1 1 1

D X 0 0 0 0 0 1 1

E X 0 0 1 1 1 0 0

F X X 0 0 1 1 1 1

G X 0 X 0 0 0 1 1

H X 0 0 0 0 1 0 0
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Figure 5: Example circuit to compare our approach
with Chatterjee et al. [4]

On the other hand, to illustrate the distinction between
our approach and Chatterjee et al. consider the circuit in
Figure 5. For a trace buffer width of 2, Chatterjee et al.
produce signals B and C. From Table 3, this leads to a
restoration of 13 states from a total of 16 traced states,
yielding a restoration ratio of 1.81. On the other hand, our
approach selects signals C and K. From Table 4, this allows
restoration of 18 states from 16 traced states, resulting in a
restoration ratio of 2.13.

It is illuminating to understand the source of the differ-
ences between the different approaches on these simple ex-
amples. The high restoration ratio achieved by both our



Figure 4: Trace signal selection of Chatterjee et al. [4] for a sample circuit with 4 flip-flops and a trace buffer
of width 2. Each row illustrates an iteration of the algorithm. In each step, a flip-flop whose elimination
results in minimum impact on restoration performance is removed. The black boxes show the eliminated
flip-flops in previous iterations, while the crosses illustrate the flip-flop being evaluated in current iteration.

Table 3: Restored signals from [4] for the circuit in
Figure 5.

Signal/Cycle 1 2 3 4 5 6 7 8

A X X X X X X X X

B 0 0 1 1 0 0 1 0

C 0 1 1 1 0 1 1 0

D X X 1 1 1 X 1 1

E X X X 0 0 1 X 0

F X X X X X X X X

K X X X X X X X X

L X 0 X X X 0 X X

M X X 0 X X X 0 X

Table 4: Restored signals using our method for the
circuit in Figure 5.

Signal/Cycle 1 2 3 4 5 6 7 8

A X X X X X X X X

B X X X X X X X X

C 0 1 1 1 0 1 1 0

D X X 1 1 1 X 1 1

E X X X X X X X X

F X X X X X X X X

K 0 0 0 0 0 0 1 1

L X 0 0 0 0 0 0 1

M X X 0 0 0 0 0 0

approach and that of Chatterjee et al. for the circuit in Fig-
ure 3 represents a general trend of superior signal quality
achieved by simulation-based selection techniques; our ob-
servations here match the conclusions of Chatterjee et al.
as well. The comparison with Chatterjee et al. for the cir-
cuit in Figure 5 is more interesting. Their approach is based
on greedy elimination: starting with the set of all signals,
they iteratively remove signals one at a time. In each it-
eration the objective is to select a candidate signal whose
elimination minimizes the number of states which become
unrestorable as a result; this signal is then eliminated and
the algorithm iterates. The problem with this approach is
that the candidate computation assumes that all the remain-
ing signals are available for state restoration, an assumption
that is flawed precisely by virtue of the iterative elimination

algorithm itself. Thus it is possible that a profitable signal
s is eliminated in an early iteration when the states recon-
structable from s can also be restored by other signals avail-
able at that iteration; however, these states can no longer be
reconstructed when a subsequent iteration eliminates other
signals. In the example, the signal K is eliminated in an
early iteration since the states restorable from K can be
restored without K as long as the signal L is available; how-
ever, when a subsequent iteration eliminates L as well, the
set of states that can be restored gets drastically reduced.

4. AUGMENTATION-BASED SELECTION
Our algorithm exploits the advantages of simulation-based

signal selection while avoiding the drawbacks discussed above.
Figure 6 illustrates the framework. We apply an iterative
approach based on augmentation rather than elimination.
In particular, we maintain a set S of signal candidates (ini-
tially empty), which we “grow” at each iteration by identi-
fying the most promising signal based on mock simulations;
the objective is to maximize the set of states that can be
restored from the signals in the candidate set. The key ob-
servation here is that in this approach restorability of the
candidate set is never over-estimated at any iteration since
each member of S is guaranteed to be in the final trace
selection set. Furthermore, note that the number of itera-
tions in this approach is bounded by buffer size, which is
very small precisely because of the observability limitation
in post-silicon validation. On the other hand, the number of
iterations in the elimination-based selection is bounded by
the number of signals which can be large. Thus our approach
achieves much better run-time performance compared to the
elimination-based selection.

Signal Selection 1

ILP-based Re�ning

All Signals

Selected SignalsSignal Selection 2

Signal Selection p

Figure 6: Proposed signal selection process.
Simulation-based signal selection is applied p times
to the circuit. The result of all the runs are com-
bined and is refined using an ILP-based method.
The output of the ILP optimization is the set of
selected signals.

Our second observation is that any selection algorithm



based on random simulation is susceptible to perturbations
based on the randomness in the input vectors. To elimi-
nate the influence of randomness, our approach makes use
of multiple simulation runs using an ILP-based refinement
algorithm to consolidate the results from these runs.

4.1 Augmentation-based Signal Selection
We first describe our augmentation-based selection algo-

rithm; we will discuss the ILP-based refinement in the next
subsection. Algorithm 1 outlines the major steps of the sig-
nal selection process. The inputs of the algorithm are the
circuit, trace buffer width (w), and the number of cycles in
mock simulations (c). To understand the workings of the
algorithm we need two key concepts: restoration influence
and restoration difference.

Given a set of candidate signals s, an input vector I, and
the number of simulation cycles c, we define the Restoration
Influence RI(s, I, c), as the total number of states that can
be restored if we do a mock simulation over c cycles using
input vector I and the signals set S. The restoration differ-
ence between two candidates s1 and s2 with respect to I and
c, denoted by RD(s1, s2, I, c), is then given by the following
formula:

RD(s1, s2, I, c) = RI(s1, I, c)− RI(s2, I, c)

Algorithm 1 Signal selection

1: procedure SelectSignals(circuit, w, c)
2: Create list of selected signals S . initially empty
3: while |S| < w do
4: Generate a random input vector I
5: for each flip-flop f that is not in the S do
6: Calculate RD(S ∪ {f}, S, I, c)
7: end for
8: Find flip-flop f with maximum RD. If two or more

flip-flops have same RD, find the one with higher con-
nectivity

9: Add f to the list S
10: end while
11: return S
12: end procedure

Informally, for a given c-cycle mock simulation I, the restora-
tion difference between two candidate signal sets s1 and s2
measures the observability improvement achieved by select-
ing s2 over s1. In particular, if s2 = s1∪{f} for some design
signal f , then it measures the observability improvement
achieved by augmenting s1 with f . Algorithm 1 is a greedy
algorithm that uses this metric to iteratively grow the set S
of currently selected signals. At each iteration, it (1) per-
forms a new simulation for c cycles using a random input
vector I, (2) computes the restoration difference between S
and S ∪ {f} for each design signal f , and (3) augments S
with the signal that maximizes the restoration difference.
If two or more signals have identical restoration difference,
then the tie is broken in favor of the signal that has the high-
est connectivity.1 The process is continued until w signals
have been selected.

1The connectivity of a flip-flop is the number of flip-flops
connected to it through other combinational gates in both
backward and forward directions.

4.2 ILP Optimization
Experiments show that most of the selected trace signals

are identical in different runs of our signal selection. How-
ever, in any simulation-based signal selection approach, sig-
nals may be different in different runs depending on gener-
ated random input vector seed. The goal of our refinement
algorithm is to eliminate the influence of randomness and
also to cover more states of the circuit through selected sig-
nals. To do so, we use multiple runs of the signal selection
algorithm which are then processed by ILP to select the best
signal set among all outcomes.

Algorithm 2 ILP Matrices Initialization

1: procedure InitializeMatrices(circuit, w, c, p)
2: Create S[1..p][1..w] and R[1..p][1..w]
3: Create k and j, initialize to 1
4: Create list of all selected signals A . initially empty
5: while k <= p do
6: T = Signal selection algorithm with (circuit, w,

c)
7: Generate a random input vector I
8: j = 1
9: for each flip-flop f in the T do

10: S[k][j] = f
11: A = A ∪ {f}
12: RDf = RD(T, T − {f}, I, c)
13: R[k][j] = RDf

14: j + +
15: end for
16: k + +
17: end while
18: return A, S, and R
19: end procedure

To perform the refinement, we first create ILP formulation
matrices from the signal selection algorithm. Algorithm 2
outlines the steps involved. The inputs of the algorithm are
the circuit, trace buffer width (w), the number of cycles in
mock simulations (c), and refinement precision (p). The re-
finement precision specifies the number of runs of the signal
selection algorithm used in the refinement process. The al-
gorithm returns two matrices S and R, and a set A, which
are then used as the basis of the ILP optimization. A is
the set of all flip-flops selected in the p runs of our selection
algorithm. The matrices S and R record the importance of
the selected flip-flops in state reconstruction: S[k][j] records
the j-th selected flip-flop in the k-th run of our selection al-
gorithm; R[k][j] records the number of states that is lost in
the mock simulation corresponding to the k-th run if S[k][j]
is removed from the final selected set. The algorithm exe-
cutes p runs of our selection algorithm, filling out the entries
S[k][j] and R[k][j] at the k-th run. Recall that the pertur-
bation caused to the selection set is typically small. Thus,
for the set T of flip-flops computed in the k-th run and any
f ∈ T , most of the signals in T − {f} end up in the final
selected signal set; thus, the value of R[k][j] is a reliable
estimate of the importance of flip-flop S[k][j].

Once the required matrices are initialized, we can model
our refinement process as an ILP optimization problem in
a fairly standard manner. For each flip-flop in A, we create
a variable which can be 0 or 1. Ai = 1 indicates that Ai



is eliminated; Ai = 0 indicates that it is not removed and
therefore exists in final trace signals set. Note that since
A is a cumulative superset of all selected flip-flops during p
runs, for each 1 ≤ i ≤ p and 1 ≤ j ≤ w, we have S[i][j] ∈ A.
Equation 1 shows the objective function which should be
minimized. Li is the number of states that is lost in ith run,
based on signal assignments in A. The aim is to minimize
the total number of lost states in all the runs.

min :

p∑
i=1

Li (1)

Equation 2 shows how Li is calculated. Recall that S[i][j]
is the assignment of signal j in A (which is 0 or 1), and
R[i][j] is the number of states that is lost in i-th run if j-th
signal is removed (i.e., is equal to 1). Therefore, Li is the
total number of states that is lost due to removed flip-flops
of i-th run.

L1 =

w∑
i=1

S[1][i] ∗R[1][i], ..., Lp =

w∑
i=1

S[p][i] ∗R[p][i] (2)

The constraints of ILP optimization problem are shown
in Equation 3. Recall that A is the superset of all selected
signals in different runs. However, |A| may be larger than
w as some selected signals may be different during signal
selection runs. It means |A| − w signals must be removed
from A. These signals are removed in such a way that the
total number of lost states in all runs is minimized. The re-
maining w flip-flops in A which are assigned to 0 correspond
to the final trace signals set.

|A|∑
i=1

Ai = |A| − w

A1, A2, ..., A|A| ∈ {1, 0} (3)

4.3 Complexity and Scalability
Simulation of large industrial designs incurs high cost in

running time. Indeed, simulation time is the primary bot-
tleneck in the usability of simulation-based signal selection
on large-scale designs. Therefore, a good metric of the com-
plexity of such algorithms is the number of mock simula-
tions required in the computation. Note that although our
approach involves ILP-based optimization, the running time
for solving the ILP in practice is still negligible compared to
the time for mock simulations. The reason is that the per-
turbation caused by randomization in simulations in practice
to the selected set of signals is small, so that there is a large
overlap between the signals selected at different runs. Thus,
the selected set A of flip-flops over all the different runs in
our ILP-based refinement is of the order of the width of the
trace buffer, independent of the number p of iterations of
the selection algorithm actually performed. Consequently,
we compute the complexity of our algorithm in terms of the
number of required mock simulations.

Assume that there are N flip-flops in the circuit and the
trace buffer width is w. Number of needed simulation in each
run of signal selection algorithm is N + (N − 1)+...+(N −
w+ 1). Note that N >> w for large circuits, since the trace
buffer size is bounded by the observability limitations. The
complexity of Algorithm 1 is thus θ(Nw). Algorithm 2 con-
sists of a main loop which runs signal selection algorithm
followed by w additional simulations to fill in matrix R.

Consequently, each iteration needs θ(Nw) + θ(w) = θ(Nw)
simulations. Therefore, the complexity of our algorithm is
p ∗ θ(Nw) = θ(Npw). However, our experiments show that
in practice p << N is enough to cover most of the input vec-
tors. Consequently, in most cases, our algorithm requires
fewer simulations than the previous simulation-based ap-
proach of Chatterjee et al. [4], which has a complexity of
O(N2) — with the lower bound of Ω(N2/dstep) which is
still computationally expensive since N >> dstep in large
industry-scale circuits (dstep = 50 in their experiments).
On the other hand, the hybrid approach [8] uses simula-
tion/restoration computation only for top k% of the candi-
date signals, (where k = 5 in their experiments). The com-
plexity of their approach is O(kwN) where w is the trace
buffer width. Note that once the parameters are fixed, both
our approach and the hybrid approach have the same asymp-
totic complexity θ(N)), with different constant coefficients.

In addition, not only all the simulations in each iteration
of our selection algorithm are independent, but the itera-
tions of initialization algorithm are also independent tasks.
This makes our approach scalable for very large industry-
level circuits by running them in parallel in a multi-processor
environment.

5. EXPERIMENTS

5.1 Experimental Setup
In order to investigate the effectiveness of our proposed

approach, we have developed a cycle-accurate simulator for
ISCAS’89 benchmarks using C++. Our simulator also con-
ducts restoration in both forward and backward directions.
The simulator iterates on the unknown signals queue and
attempts to restore them leveraging both forward and back-
ward techniques. This process terminates when it is not
possible to restore any more states. In addition, we checked
the correctness of our simulator by comparing its output
with the output of Verilog simulation of the identical cir-
cuits using Icarus Verilog [15]. We also used lp solve 5.5 [1]
to solve the ILP optimization part of our approach.

In the results reported below, the comparisons with re-
lated work [4, 8] are based on our implementation of their
results. The reason is that their reported results used their
own synthesized/optimized version of the ISCAS’89 bench-
marks, while we used the standard, publicly available ver-
sions. Moreover to make the comparison fair for comparing
restorability, identical input vectors should be used in all
the approaches. We used the same parameters c = 64 and
PT = 95% as reported in Chatterjee et al. [4]. In addition,
we used the same parameters M = 64, k = 5%, and an
initialization simulation of 10K cycles as reported in Li et
al. [8]. We also used c = 32 and p = 6 for our approach in our
experiments. Our experiments demonstrate that restoration
ratio shows no improvement for p > 6 in the set of used
benchmarks. After signal selection and for reporting the
restoration ratios, we fed the simulator with 100 sets of ran-
dom input vectors and noted the average restoration ratios
for the selected set of signals. However, we forced the cir-
cuits to operate in their normal mode by fixing the relevant
control (reset) signals, while assigning random values to all
the other inputs. The control signals include active low re-
set signals RESET in s35932 and g35 in s38584 which was
set to 1 in our experiments. To make the comparison fair,



Table 5: Restoration ratios using our approach compared with existing selection approaches

Circuit
#Flip-
flops

Buffer
Width

Simulation-based
[4]

Hybrid [8] Our Approach
Improvement over

the best

s5378 179
8 13.41 13.32 14.63 9.1%
16 7.35 7.26 9.26 26.0%
32 4.47 4.27 5.11 14.3%

s9234 228
8 13.98 14.58 15.97 9.5%
16 8.30 8.55 9.32 9.0%
32 4.46 4.46 5.53 24.0%

s15850 597
8 26.33 27.38 45.89 67.6%
16 19.89 20.65 25.82 25.0%
32 13.19 13.19 13.97 5.9%

s13207 669
8 35.52 39.21 52.22 33.2%
16 20.13 22.47 34.89 55.3%
32 11.25 12.52 16.37 30.8%

s38584 1452
8 19.73 25.87 159.1 515.0%
16 28.39 29.01 48.39 66.8%
32 32.45 34.62 44.46 28.4%

s38417 1636
8 29.23 51.01 53.47 4.8%
16 17.02 19.22 26.87 39.8%
32 15.14 13.25 17.22 13.7%

s35932 1728
8 132.00 139.52 185.1 32.7%
16 67.45 71.36 93.2 30.6%
32 34.63 35.08 47.13 34.4%

these random input vectors are different from those which
are used in signal selection process.

5.2 Results

5.2.1 Restoration Quality
Table 5 presents the restoration ratios of our approach

compared with previous techniques [4, 8] using the ISCAS’89
benchmarks. The trace buffer sizes used in our experiment
are 8×4k, 16×4k, and 32×4k. The corresponding restora-
tion ratio for each technique is reported. The last column
indicates the percentage of improvement using our approach
compared with the best (shown in bold) result provided by
existing approaches. The results indicate that our approach
performs significantly better in most cases; in particular we
achieve improvement in restoration performance is up to
515% (in s38584 ). Note however that the restoration ratio
is heavily dependent on the circuit structure, and such high
restoration in isolated cases may be an anomaly. Neverthe-
less, our approach performs better on most cases, with an
improvement of 51.23% in restoration quality. Compared
to original simulation-based signal selection [4], our fine-
grained pruning reduces the chance of removing effective
flip-flops prior to selection itself. On the other hand hybrid
selection [8] incorporate simulations for only top 5% of the
candidate flip-flops, which sacrifices the precision of the se-
lection process; our approach performs better by addressing
this weakness through refinement.

5.2.2 Signal Selection Time
In addition to restoration ratio, we compared the run-

time between our approach and Chatterjee et al. Figure
7 illustrates the selection time of our approach compared
and normalized to [4] using different ISCAS’89 benchmarks.
Since selection complexity of [4] is O(N2) (Ω(N2/50) in the
best case) and ours is θ(Npw), as expected, for smaller

benchmarks where pw is comparable to or larger than N
our approach takes comparable time or longer than [4] (for
example s5378 benchmark and buffer width of 16 and 32 re-
spectively). However, our approach demonstrates consistent
speed-up for larger benchmarks (s15850, s13207, s38584,
s38417, and s35932 ). The reason is that even after pruning
phase of [4], number of conducted simulations in [4] is sig-
nificantly larger than our approach. In fact, once p and w
are fixed, our approach grows linearly with respect to num-
ber of flip-flops in circuit. In short, our approach not only
produces better restoration quality, but also it is more fea-
sible in terms of selection runtime in large circuits. This
makes our approach a better fit for large-scale industry cir-
cuits where N >> pw. Our signal selection time speed-up is
up to 127.6X (in s38417 with buffer width of 8) and 12.9X
on average. Note however that the hybrid approach of Li et
al. [8] also reports significant speed-up over simulation-based
techniques. However, their runtime results are reported for
a multithreaded implementation running on a specific quad-
core machine, and are difficult to reproduce in our frame-
work to provide a fair comparison.

6. RELATED WORK
Various signal selection techniques [6, 9, 2] used restora-

bility calculations to determine the profitable signals. Prab-
hakar et al. [11] proposed a logic implication based trace
signals selection technique that uses the primary inputs in
restoration process. The use of scan chains in post-silicon
debug has been extensively studied in [16, 5]. Various ap-
proaches [7, 3, 12] divided trace buffer bandwidth into two
parts, one for the trace signals and the other one for the
scan signals.

Chatterjee et al. [4] demonstrated that simulation-based
signal selection is a promising approach. However, their ap-
proach requires O(N2) simulations (where N is the number
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Figure 7: Selection times of our approaches com-
pared and normalized to [4]

of flip-flops), making their approach computationally infea-
sible for large circuits. To address this issue, they propose a
signal pruning phase as a pre-processing process. The prun-
ing can be viewed as a faster but less precise run of the algo-
rithm itself. It reduces the initial candidate flip-flops set but
still requires long signal selection time. In addition, it may
sacrifice the signal selection quality. Li et al. [8] proposed
a hybrid (metric-based and simulation-based) signal selec-
tion technique; however, this approach uses simulation for a
small fraction of the signals and thereby sacrifices restora-
tion performance. Finally, very recently, we show how to
make use of machine learning techniques to ameliorate the
cost of simulations [13].

7. CONCLUSION
Post-silicon validation is an expensive phase in the pro-

duction of integrated circuits, and crucially depends on sig-
nal selection to effective use of the limited available observ-
ability. Thus it is critical to develop signal selection tech-
niques that provide high state reconstruction and can scale
to large industrial designs. Existing metric-based signal se-
lection techniques are computationally efficient, but often
yield signals with poor restorability; simulation-based tech-
niques, while superior in restoration quality suffer from ma-
jor computational drawbacks.

We presented a simulation-based signal selection technique
that yields signals with higher restorability than current ap-
proaches while still being computationally efficient. Our key
contribution is the observation that simulation-based sig-
nal selection can be significantly improved by augmentation
through ILP-based refinement, together with the insights to
smoothly integrate the augmentation phase into the selec-
tion framework resulting in a unified scalable infrastructure.
Our experiments demonstrate that our approach provides
up to 515% (51.23% on average) improvement in restora-
tion ratio compared to existing signal selection techniques.
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