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Abstract
Functional verification of multicore architectures is widely

acknowledged as a major challenge. Directed tests are promis-
ing since a significantly smaller number of directed tests can
achieve the same coverage goal compared to constrained-
random tests. SAT-based bounded model checking is effective
for automated generation of directed tests (counterexamples).
While existing approaches focus on clause forwarding between
different bounds to reduce the test generation time, this paper
proposes a novel technique that exploits the structural similar-
ity within the same bound as well as between different bounds.
Our proposed technique enables the reuse of the knowledge
learned from one core to the remaining cores in multicore
architectures. The experimental results demonstrate that our
approach can significantly (2-10 times) reduce overall test
generation time compared to existing approaches.

I. Introduction

Multicore architectures are widely used in today’s desktop
and embedded computing systems to circumvent the power
wall and memory wall encountered by single core architectures.
While more and more cores are integrated into the same
chip to boost the throughput, their increasing complexity also
introduces significant verification challenge. As a result, con-
ventional random tests based simulation becomes inadequate
to achieve the required coverage within ever decreasing time-
to-market window. Directed tests are promising to solve this
problem, because a drastically small number of directed tests
are required to achieve the same coverage goal compared to
random tests. Unfortunately, most directed tests are currently
manually written, which is time consuming and error-prone.
Fully automatic directed test generation schemes are desired to
accelerate the verification process of multicore architectures.

Model checking appears to be a good candidate for automatic
test generation. To activate a particular scenario, we can feed
the negated version of a property to the model checker, and use
the resultant counterexample as a directed test. However, BDD-
based symbolic model checking is not suitable for test gener-
ation involving large designs and complex properties due to
the state space explosion problem. SAT-based bounded model
checking (BMC) [1], [2] is proposed to address this problem,
which tries to falsify a property on the states reachable from

the initial state within a fixed number (k) of time steps. This
is implemented by unrolling the design k times, then encoding
the design and the property description as a satisfiability (SAT)
problem. Next, a SAT solver is used to find a satisfying
assignment for all variables (if any), which can be translated
into a counterexample (a directed test).

When SAT-based BMC is applied to generate directed tests
for multicore architectures, there are two different categories
of symmetry in the corresponding SAT instances. The first
category is the “temporal” symmetry. It occurs because the
SAT instance is encoded by unrolling the same architecture
for multiple times. This regularity has already been exploited
by existing research [3] to accelerate the SAT solving process.
On the other hand, the structural similarity of multiple cores
also introduces a second category of symmetry or “spatial”
symmetry. This symmetry appears among the CNF clauses for
different cores at the same time step. Intuitively, we can also
exploit spatial symmetry by reusing the knowledge obtained
from one core to other cores. Unfortunately, this intuitive
reasoning is hard to implement because it is very difficult
to reconstruct the symmetry from the CNF formula. The
high level information is lost during CNF synthesis, and it
is inefficient as well as computationally expensive to recover
through “reverse engineering” methods.

In this paper, we address the directed test generation for
multicore architectures by developing a novel BMC based
test generation technique, which enables the reuse of learned
knowledge from one core to the remaining cores in the
multicore architecture. Instead of direct synthesis of the CNF
for the multicore design, we compose the CNF description
of the entire design using CNF formulae for cores and the
memory subsystem. Since the CNF representation of cores
are generated by performing variable substitution of the CNF
for one of them, the correct mapping information is easily
obtained. In this way, we are able to translate and reuse
the conflict clauses learned on any core to other cores. We
prove that the CNF description generated by our approach has
the same satisfiability as original methods. Our experimental
results demonstrate that our approach can remarkably reduce
the overall test generation time.

The rest of the paper is organized as follows. Section 2
describes related work on BMC and directed test generation.
Section 3 briefly discusses the background on SAT-based
BMC. Section 4 describes our test generation methodology for
multicore architectures. Section 5 presents our experimental



results. Finally, Section 6 concludes the paper.

II. Related Work

Model checking techniques are promising for functional
verification and test generation for complex systems [4], [5].
Due to the state explosion problem, conventional symbolic
model checking approaches are not suitable for large designs.
SAT-based bounded model checking is introduced by Biere et
al. [1] as an alternative solution. Although BMC cannot prove
the validity of a safety property to hold globally when no
counterexample is found within a specific bound, it is quite
effective to falsify a design when the bound is not large.
The reason is that SAT solvers usually require less space
and time than conventional binary decision diagram based
model checkers [6]. Therefore, SAT-based BMC is suitable
for directed test generation, where a counterexample typically
exists within a relatively small bound.

A great deal of work has been done to reduce the SAT
solving time during BMC [3], [7], [8], [9]. The basic idea is
to exploit the regularity of the SAT instances between different
bounds. For example, incremental SAT solvers [7], [8] reduce
the solving time by employing the previously learned conflict
clauses. Generated conflict clauses are kept in the database as
long as the clauses which led to the conflicts are not removed.
Strichman [3] proposed that if a conflict clause is deduced
only from the transition part of a SAT instance, it can be
safely forwarded to all instances with larger bounds, because
the transition part of the design will still be in the SAT instance
when we unroll the design for more times. Besides, the learned
conflict clause can also be replicated across different time steps.
However, the existing approaches did not exploit the symmetric
structure within the same time step. In directed test generation
for multicore architectures, same knowledge about the core
structure needs to be re-discovered for each core independently,
which can lead to significant wastage of computational power.

When BMC is applied in circuits, Kuehlmann [10] proposed
that the unfolded transition relation can be simplified by merg-
ing vertices that are functionally equivalent under given input
constraints. In this way, the complexity of transition relation is
greatly reduced. However, since this technique was developed
based on the AIG representation of logic designs, it is difficult
to use it accelerate the solving process of CNF instances that
are directly created from high level specifications.

Verification and validation based on high level specification
are proved to be effective. For example, Bhadra et al. [11] used
executable specification to validate multiprocessor systems-on-
chip designs. Mishra et al. [9] proposed directed test generation
based on high level specification. To accelerate the test gener-
ation process, conflict clauses learned during checking of one
property are forwarded to speed up the SAT solving process of
other related properties, although the bound is required as an
input.

When the SAT instance contains symmetric structure, sym-
metry breaking predicate [12], [13], [14], [15], [16] can be
used to speed up the SAT solving by confining the search
to non-symmetric regions of the space. By adding symmetry

breaking predicates to the SAT instance, the SAT solver is
restricted to find the satisfying assignments of only one repre-
sentative member in a symmetric set. However, this approach
cannot effectively accelerate the directed test generation for
multicore processors, because the properties for test generation
are usually not symmetric with respect to each core. Thus,
the symmetric regions in the entire space are usually small
despite the fact that the structure of each core is identical.
On the other hand, in component analysis for SAT solving,
Biere et al. [17] proposed that each component can be solved
individually to accelerate the solving process. However, the
symmetric structure is not used at the same time for further
speedup.

III. Background : SAT-based BMC
BMC is widely used to verify whether a safety property

holds within a given bound [2]. The basic idea is to encode
the verification problem as a propositional SAT problem by
unrolling the design. Given a design M , a safety property p,
and a bound k, the general formula for BMC is the following:

BMC(M,p, k) = I(s0) ∧
k−1∧
i=0

R(si, si+1) ∧
k∨

i=0

¬p(si) (1)

where I(s0) is the initial state of the system, R(si, si+1) is
the state transition constraint from state si to state si+1, and
p(si) represents whether property p holds on state si. This
formula is satisfiable if and only if there exists a state within
bound k, on which the property p does not hold. The system
is usually modeled by some high level language, like SMV,
and is converted to CNF format before checked by a SAT
solver. Generally, high level information is lost in CNF, i.e.,
it is impossible to map auxiliary variables introduced during
CNF encoding with high level components.
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Fig. 1. Directed test generation

To generate directed tests [4], [5], we can first obtain a set
of properties for the desired behaviors (faults), which should
be activated in the simulation based validation stage, based
on functional coverage requirements. The formal model of the
system and the negated version of the property are then fed
to BMC, as shown in Figure 1. For a suitable bound, the
SAT solver will find a satisfying assignment for all variables,
which can be then translated into an input sequence of the
system. This input will drive the system from the initial state



to the desired state, which contradicts the negated version of
the property. Therefore, it can be used as a test to activate the
intended functionality during simulation-based validation.

Many techniques and heuristics are employed in SAT solvers
to accelerate the solving process. Modern SAT solvers such
as zChaff [18] adopt the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm and conflict-driven non-chronological back-
tracking. Conflict means the current partial assignment implies
that one variable must be true and false at the same time to
make the entire formula true. When a conflict occurs, we have
to undo some previous assignments to continue the search.
At the same time, we can also add some conflict clauses
into the database, which prevents the SAT solver to make the
same partial assignment that can lead to the same conflict
in the future. Notice that if a set of clauses S that deduce
a conflict clause C have a symmetric counterpart S′, we
can produce the symmetric conflict clause C ′ by performing
symmetric implications based on S′. In other words, C ′ can
be directly added to SAT solver’s database, without changing
the satisfiability. This technique [3] is very effective in BMC
because the transitional relations are repeated between different
bounds.

IV. Test Generation for Multicore Architectures
Our work is motivated by previous works on incremental

SAT-based BMC [3]. Based on the temporal symmetry between
different bounds, these methods accelerate the SAT solving
process by passing the knowledge (deduced conflict clauses)
in the temporal direction. Nevertheless, the SAT instances
generated by multicore designs also exhibit remarkable spatial
symmetry. Figure 2 depicts the high level structure of a system
with 2 cores. Both cores are identical1 and connected to
memory subsystem with a bus. Figure 3 shows the SAT solving
process when we perform BMC for bounds 0, 1, 2, and 3 on
this multicore architecture using the technique proposed in [3].
We use solid dots to represent different SAT instances and
lines to indicate the conflict clause forwarding paths. Although
different cores have identical structures, this spatial symmetry
is not exploited.
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Fig. 2. Abstracted architecture of a two core system

Intuitively, it should be beneficial if the knowledge or conflict
clauses can also be shared “vertically” among different cores
as shown in Figure 4, because the solving effort spent on a
single core can be reused by other cores to save overall time
consumption. Unfortunately, the spatial symmetry is difficult

1We first discuss our approach in the context of homogeneous cores. The
application of our approach on heterogeneous cores will be presented in
Section IV-C.

to recover from the CNF representation of the SAT instance.
The reason is that most clauses contain auxiliary variables
introduced during the CNF encoding process. Since these
auxiliary variables are unlabeled, the correspondence between
clauses from different cores cannot be established directly.
Although the spatial symmetry can be partially recovered by
solving a graph automorphism problem [12], [13], [14], it
may require impractical time for large designs, because no
polynomial time solution is found for graph automorphism
problem. The underlying reason for this dilemma is that the
high level information is lost after the CNF encoding. In other
words, a single flattened CNF SAT instance is not suitable to
exploit the spatial symmetry.
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Fig. 3. Incremental SAT solving technique [3]
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Fig. 4. Test generation for multicore architectures

Instead of using a monolithic CNF as input, our approach
solves this problem by composing the CNF description of
the system using CNF formulae for one core, bus and the
memory subsystem. Since the cores are identical, their CNF
representations are identical as well. We just need to perform
variable name substitution to obtain the CNF for all other
cores. As shown in Theorem 1, when the state variables are
substituted by the correct names, the system CNF composed
by these replicated CNF for cores, bus as well as memory
subsystem will have the same satisfiability behavior as the
original monolithic CNF representation. Since both the state
variables and auxiliary variables in replicated cores are as-
signed by our algorithm, it is easy to obtain the correct mapping
between variables and clauses in different cores. The spatial
symmetry can then be effectively exploited during the SAT
solving process. Before we describe our algorithm in details,
we first introduce some notations.

Definition 1: Symmetric Component (SC) is a set of iden-
tical finite state machines (FSM). For the jth FSM within a
SC, we denote its initial condition and transitional constraints
as I(sis0,j) and R(sisi,j , s

in
i,j , s

is
i+1,j , s

out
i+1,j) (0 ≤ i ≤ k − 1),



where sini,j , s
out
i+1,j , s

is
i,j are its input variables, output variables,

and internal state variables at the ith (i + 1th) time step. It
should be noted that a symmetric component itself can also
be viewed as FSM, whose input and output variables are the
collection of all the input and output variables of FSMs within
it.
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Fig. 5. FSM representation of Figure 2 at time step i

In a multicore system with NS identical cores, we model
the set of all cores as a symmetric component FS . Other
asymmetric components, such as bus and memory subsystem,
are modeled as a single finite state machine FA. We also
map the input and output of FA to the output and input
of FS so that different cores can perform communication
through bus and memory subsystem. Formally, we denote the
initial condition and transition constraints of FA as I(sA0 ) and
R(sAi , s

Sout
i , sAi+1, s

Sin
i+1) (0 ≤ i ≤ k − 1), where sAi represent

internal state variables in bus and memory subsystem at the
ith time step. Moreover, sSin

i = {sini,j |1 ≤ j ≤ NS} and
sSout
i = {souti,j |1 ≤ j ≤ NS} are the input and output variables

of the symmetric component FS , which is the combination
of the inputs and outputs of all cores. For example, Figure 5
shows the FSM representation of the system in Figure 2. The
symmetric component FS is composed of core 1 and core
2. The rest of the system is represented by FA. In the ith

time step, the internal state variable of FS are {sisi,1, sisi,2}
and sAi . The input and output variables of FS (also the
output and input variable of FA) are sSin

i = {sini,1, sini,2} and
sSout
i = {souti,1 , s

out
i,1 }, respectively.

The BMC formula of the multicore system can be expressed
as

BMC(M,p, k) = I(s0) ∧
k−1∧
i=0

R(si, si+1) ∧
k∨

i=0

¬p(si)

=I(sA0 ) ∧
NS∧
j=1

I(sis0,j) ∧
k−1∧
i=0

(R(sAi , s
Sout
i , sAi+1, s

Sin
i+1)

∧
NS∧
j=1

R(sisi,j , s
in
i,j , s

is
i+1,j , s

out
i+1,j)) ∧

k∨
i=0

¬p(si)

The basic idea of our approach is to generate CNF formula

BMC ′(M,p, k) = CNFA
I ∧

NS∧
j=1

CNFS
I (j)

∧
k−1∧
i=0

(CNFA
R (i) ∧

NS∧
j=1

CNFS
R(i, j)) ∧ CNF p(k)

Algorithm 1: Test Generation for Multicore Architectures

Input: CNF formulae CNFA
I , CNFS

I (1), CNFA
R (i),

CNFS
R(i, 1), CNF p(k), Number of cores NS ,

Maximum bound Kmax,
Output: Test testp
Bound k ←− 0
Initialize variable mapping table T
Common Clause Set CCS ←− ∅
Generate CNFS

I (j) using CNFS
I (1) for 1 < j ≤ NS

Add Clauses in CNFS
I (j) to CCS for 1 ≤ j ≤ NS

Update T
Add Clauses in CNFA

I to CCS
while k ≤ Kmax do

Generate CNFS
R(k, j) using CNFS

R(k, 1) for
1 < j ≤ NS

Add Clauses in CNFS
R(k, j) to CCS 1 ≤ j ≤ NS

Update T
Add Clauses in CNFA

R (k) to CCS
Step1: (ConflictC, testp)←− SAT(CCS

⋃
CNF p(k),T )

Step2: CCS ←− CCS
⋃

Filter(ConflictC)
if testp 6= null then return testp
k ←− k + 1

end

and perform SAT solving on BMC ′(M,p, k) instead
of solving the CNF formula directly synthesized
from BMC(M,p, k), where CNFA

I , CNFS
I (j),

CNFA
R (i), CNFS

R(i, j) and CNF p(k) are the CNF
representations of I(sA0 ), I(sis0,j), R(sAi , s

Sout
i , sAi+1, s

Sin
i+1),

R(sisi,j , s
in
i,j , s

is
i+1,j , s

out
i+1,j) and

∨k
i=0 ¬p(si), respectively.

Algorithm 1 shows our test generation method for multicore
architectures. It accepts the CNF representation of one core,
bus, the memory subsystem as well as the properties at different
time steps as inputs and produces corresponding directed tests.
As indicated before, we first generate the CNF representations
of the initial condition and transition constraints of all other
FSMs in FS based on the input CNF formulae CNFS

I (1)
and CNFS

R(i, 1), which are the initial condition and transition
constraints of the first FSM (Core 1). It is accomplished by
replacing variable in CNFS

I (1) and CNFS
R(i, 1) with corre-

sponding variables for other FSMs (cores). At the same time,
we maintain a table T 2 to record the symmetric set of variables
for both state variables and auxiliary variables. After that, we
invoke the SAT solving process on the conjunction of clauses
in CCS and CNF p(k), which is equivalent to BMC ′(M,p, k)
defined above. Next, we perform the following 2 steps.

1) During SAT solving, analyze any conflict clause cls found
by the SAT solver. If cls is purely deduced by the clauses
which belong to a single FSM, replicate and forward cls
to all other FSMs. This is implemented by substituting the
variables in cls by their counterparts for each FSM in FS

based on table T . At the same time, we also replicate the
cls in temporal direction, as discussed in [3].

2As discussed in Section IV-B, a physical table is not required, instead a
mapping function is used in our framework.



2) After the solving process, only keep new conflict clauses
that are deduced independent of CNF p(k), and merge
them into CCS.

If the satisfied assignment, or a counterexample testp is found
in step 1, the algorithm returns it as a test. Otherwise, the
algorithm repeats for each bound k until the maximum bound
is reached.
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Fig. 6. Test generation for multicore architectures
We use the same example in Figure 2 to illustrate the flow

of Algorithm 1. The two different clause forwarding paths
employed in our approach are shown in Figure 6. Suppose
(¬ai ∨ bi ∨ ci+1) and (ai ∨ ¬di+1) are two clauses within
CNFS

R(i, 1) (transition constraint of Core 1), in the first itera-
tion for k = 0, two clauses (¬a′i ∨ b′i ∨ c′i+1) and (a′i ∨¬d′i+1)
will be produced during the generation of CNFS

R(i, 2) (tran-
sition constraint of Core 2). In the subsequent SAT solving
process, suppose a conflict clause (bi∨ci+1∨¬di+1) is deduced
based on (¬ai∨bi∨ci+1) and (ai∨¬di+1), it will be forwarded
to Core 2, because its two parent clauses are all from the
CNF formula for Core 1. Therefore, (b′i ∨ c′i+1 ∨ ¬d′i+1) can
now be used by Core 2 to prevent the partial assignment
{b′i, c′i+1, d

′
i+1} = {0, 0, 1}, which will result in a conflict

on a′i. Such forwarding of conflict clauses is not possible
using Strichman’s approach [3], which only considers temporal
symmetry but not spatial symmetry.

In the remainder of this section, we prove the correctness
of our approach and discuss the implementation details of our
directed test generation algorithm for multicore architectures.

A. Correctness of Our Proposed Approach

To prove the correctness of our test generation approach, we
need to ensure that the produced CNF formula BMC ′(M,p, k)
in Algorithm 1 has the same satisfiability as BMC(M,p, k).

Theorem 1: BMC(M,p, k) and BMC ′(M,p, k) have the
same satisfiability.

Proof: Clearly, we have

BMC(M,p, k) = I(s0) ∧
k−1∧
i=0

R(si, si+1) ∧
k∨

i=0

¬p(si)

=I(sA0 ) ∧
NS∧
j=1

I(sis0,j) ∧
k−1∧
i=0

(R(sAi , s
Sout
i , sAi+1, s

Sin
i+1)

∧
NS∧
j=1

R(sisi,j , s
in
i,j , s

is
i+1,j , s

out
i+1,j)) ∧

k∨
i=0

¬p(si)

By their definitions, CNF formulae CNFA
I , CNFS

I (j),
CNFA

R (i), CNFS
R(i, j) and CNF p(k) are CNF

representation of propositional formulae I(sA0 ), I(sis0,j),
R(sAi , s

Sout
i , sAi+1, s

Sin
i+1), R(sisi,j , s

in
i,j , s

is
i+1,j , s

out
i+1,j) and∨k

i=0 ¬p(si), where 0 ≤ i ≤ k − 1 and 1 ≤ j ≤ NS .
Therefore, BMC(M,p, k) has the same satisfiability as

BMC ′(M,p, k) =CNFA
I ∧

NS∧
j=1

CNFS
I (j)

∧
k−1∧
i=0

(CNFA
R (i) ∧

NS∧
j=1

CNFS
R(i, j)) ∧ CNF p(k)

because the auxiliary variables introduced during CNF con-
version do not change the satisfiability. In other words,
BMC(M,p, k) and BMC ′(M,p, k) have the same satisfia-
bility.

In fact, the value of state variables in a satisfying assignment
of BMC ′(M,p, k) also satisfy BMC(M,p, k) and therefore
can be used as a counterexample of the property p. The reason
is that the value of the variables in a satisfying assignment of
BMC ′(M,p, k) will also satisfy all CNF formulae CNFA

I ,
CNFS

I (j), CNFA
R (i), CNFS

R(i, j) and CNF p(k). Thus, the
value of the state variables will satisfy corresponding propo-
sitional formulae I(sA0 ), I(s

j
0), R(sAi , s

A
i+1), R(sji , s

j
i+1) and∨k

i=0 ¬p(si). Hence, they together will satisfy BMC(M,p, k),
which is a conjunction of above propositional formulae. There-
fore, the correctness of our algorithm is justified.

B. Implementation Details

Our test generation algorithm for multicore architectures is
built around NuSMV model checker [19] and zChaff SAT
solver [18]. We first model the system using SMV language,
then use NuSMV to generate the CNF formulae CNFA

I ,
CNFS

I (1), CNFA
R (i), CNFS

R(i, 1) and CNF p(k) in DI-
MACS format as the input of Algorithm 1. zChaff is employed
as the internal SAT solver. In this section, we briefly explain
CNF generation process and the implementation of Step 1 and
Step 2 in Algorithm 1.

The generation of CNF descriptions for a single core, bus
and memory subsystem using NuSMV is straight forward. The
only practical consideration is that all variables are represented
by their indices in CNF clauses. As a result, it is important to
avoid the same index to be used by two different variables.
Since NuSMV does not offer any external interface to control
the index assignment, we modified the source code to make
the index space suitable for our purpose. The basic idea is
to make the assignment of indices satisfy the following two
constraints: 1) the indices of variables from the same core at
the same time step are assigned continuously; 2) the indices
of variables of the same time step across cores are assigned
continuously as well. For example, in a 2-core system with
each core having 100 variables, in time step 1 for core 1 we
can use indices from 1-100 (controlled by the first constraint)
whereas the second constraint indicates that the variables for
core 2 at time step 1 should be 101-200. Therefore, 201-300
can be used to represent variables of core 1 in time step 2, and



so on. Based on these two constraints, the computation of the
indices of symmetric variables can be efficiently implemented
as increasing or decreasing by a certain offset.

During SAT solving, we also need to track the dependency
of generated conflict clauses to determine whether they can
be forwarded to other cores. This can be easily implemented
within zChaff, which provides clause management scheme to
support incremental SAT solving. For each clause in its clause
database DB, zChaff uses a 32-bit group ID to track the
dependency. Each bit identifies whether that clause belongs to
a certain group. When a conflict clause is deduced based on
clauses from multiple groups, its group ID is a “OR” product
of the group ID of all its parent clauses, i.e., this clause belongs
to multiple groups. zChaff also allows user to add or remove
clauses by group ID between successive solving processes. If
one clause belongs to multiple groups, it is removed when any
of these groups are removed.

With these mechanisms, the step 1 and 2 in Algorithm 1 can
be implemented efficiently as follows:

1) Add clauses in CNFS
I (j) and CNFS

R(i, j) with group
ID j, 1 ≤ j ≤ NS

2) Add clauses in CNFA
I , CNFA

R (i)with group ID NS +1.
3) Add clauses in CNF p(k) with group ID NS + 2.
4) When a new conflict clause is obtained during SAT

solving, if it only belongs to a single group with ID
smaller than NS+1, replicate this clause to all other cores
with proper group ID.

5) After solving all clauses in DB with zChaff, remove
clauses with group ID NS + 2.

The overhead introduced by dependency identification and
tracking in our algorithm is negligible compared to the im-
provement in SAT solving time. At the same time, since
the indices of variables in symmetric cores are carefully
assigned, the mapping table T is not maintained explicitly, but
implemented as a simple mapping function, which is used to
generate forwarding clauses for different cores. In that way, we
avoid the potential caching overhead which may deteriorate the
performance of the SAT solver.

C. Heterogeneous Multicore Architecture

So far, we discussed our algorithm using homogeneous
cores. This section describes the application of our approach
in the presence of heterogeneous cores. In a heterogeneous
multicore system, if any two cores are completely different, it
is not possible to reduce the test generation time by exploiting
the symmetry. However, most real systems usually employ a
cluster of identical cores for same computational purpose. In
this case, we can first group them into symmetric components
based on their types, then apply our algorithm to each sym-
metric component. For example, in the 5-core system shown
in Figure 7, core 5 is used for monitoring and core 1-4 are
identical cores for computation. We can define core 1-4 as
the symmetric component and apply our algorithm on them. In
general, we can apply our algorithm on each cluster of identical
cores in a system.

However, when the heterogeneous cores are not completely
different, i.e., only some functional units in them are different,
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Fig. 7. Multicore system with different types of cores

our proposed algorithm can be employed in a more efficient
way. Recall that the FSMs in a symmetric component are
not restricted to cores. We can actually define the symmetric
component in such a way that it includes only the identical
functional units in different cores. For example, Figure 8 shows
a system with heterogeneous cores. Both of the cores are
pipelined with five stages: fetch, decode, execute, memory
access, and writeback. The only difference is that they have
different implementation in the execute stage EX. In this
case, we define our symmetric component FSas the set of all
functional units in two cores except EX. These two execution
stages as well as bus and memory subsystem are modeled in
the asymmetric part FA. Of course, the input and output of
FS here will include not only the input and output variable of
the cores, but also all the interface variables between EX and
other stages. In this way, the information learned on all other
stages of one core can still be shared by the other core. Clearly,
the correctness of our approach is still guaranteed, because the
selection of the symmetric component satisfies its definition.
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Fig. 8. Multicore system with different types of execution
units

V. Experiments
We have evaluated the applicability and usefulness of our

test generation technique on different multicore architectures.

A. Experimental Setup

As described in Section IV-B, the designs and properties are
described in SMV language and converted to required CNF
formulae (DIMACS files) using modified NuSMV [19]. We
used zChaff [18] as our SAT solver to implement our test
generation algorithm. Experiments were performed on a PC
with 3.0GHz AMD64 CPU and 4GB RAM.

First, we present results of our approach using a multicore
design that is composed of different number of identical cores,
one bus, and memory subsystem. The pipeline inside each



core has five stages: fetch, decode, execute, memory access,
and writeback. Besides, each core has its own cache, which
is connected with the memory through the bus. Next, we will
present (in Figure 11) the applicability of our approach on
heterogeneous multicore architectures.

In order to activate the desired system behaviors, we used
different number of properties on designs with different com-
plexity. For instance, we used 375 properties in case of 16 core
design that trigger two simultaneous activities between cores.
We have also used several properties that involves multicore
interactions. For example, one test will activate the following
scenario: “if the value in a memory location which is initialized
as one by core 1, is increased by one by all other cores, it
should be equal to the number of cores when it is readback by
core 2”. It should be noted that the corresponding property is
not symmetric with respect to all cores.

B. Results

We compared our approach with Strichman’s approach [3]
and original BMC [2]. Each approach was used to solve a
sequence of SAT instances for the same property with varying
bounds until a satisfiable instance is found. The input SAT
instances for Strichman’s approach and the original BMC was
directly synthesized from BMC(M,p, k) to improve their
performance. When our approach was applied, we performed
the SAT solving on BMC ′(M,p, k) as indicated in Section
IV. We also tried to compare with [13]. Unfortunately, the
implementation [20] failed to produce the symmetry breaking
predicates due to the large size of our input CNF (more than
600k clauses).
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Fig. 9. Test generation time with different number of cores

Figure 9 presents the average test generation time for dif-
ferent number of cores. The original BMC failed to produce
results within 3000 seconds on several properties for the 16
core system. Therefore, its time is omitted. As expected, the
time consumption increases with the number of cores. Both our
approach and Strichman’s approach [3] are remarkably faster
than original BMC [2]. By effective utilization of both spatial
and temporal symmetry, our approach outperforms [3] (which
only considers temporal symmetry) by nearly 2 times.

Table I shows a more detailed comparison of different
approaches on the 8 core system for 10 most time consuming
properties. The first column represents the names of properties
used. The second column shows the corresponding bounds or
time steps to activate each property. The next three columns

TABLE I. Test generation time for 8 core system
Prop. Bound [2] [3] Our Speedup Speedup

Time(s) Time(s) Approach over [2] over [3]
1 28 79 56 25 3.16 2.24
2 22 67 44 21 3.19 2.10
3 32 93 62 30 3.10 2.07
4 28 208 94 17 12.24 5.53
5 33 * 342 148 - 2.31
6 20 413 124 47 8.79 2.64
7 20 * 125 48 - 2.60
8 23 883 140 63 14.02 2.22
9 25 2106 157 128 16.45 1.23

10 25 1991 106 101 19.71 1.05
Total - 5840 1250 628 9.30 1.99

* represent run times exceeding 3000 sec.

present the test generation time (in seconds) for each property
using the original BMC [2], Strichman’s approach [3], and our
approach, respectively. The time is calculated as the summation
of the time to solve all the SAT instances from k = 0 to the
bound of the property. The time calculation also includes the
time consumed by non-SAT-solving steps in Algorithm 1. The
last two columns indicate the speedup of our approach over [2]
and [3]. It can be seem that our approach outperforms [3] by
two times and [2] by an order of magnitude.

To inspect the reason of our improvement over [3], we
analyze the behavior of the SAT solver. Table II shows details
of the last five SAT instances immediately before the bound
was found during the BMC of property 8 on the 8-core system
(highlighted entry in Table I). The first column in Table II is
the time step of each SAT instance. The next four columns
contain the real size of the clause database before the solving
process, the number of decisions made by zChaff, the number
of forwarded conflict clauses and the time consumption in [3].
Similar information of our approach is represented in the last
four columns. Compared to [3], the total number of decisions
made by the SAT solver is much smaller when our approach
is applied. At the same time, the number of forwarded clauses
are comparable. In other words, our approach saves the time
to rediscover the same knowledge for each core, without the
overhead of forwarding too many conflict clauses.
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We also investigated the impact of different number of cores
involved in the interaction on the test generation time. In this
experiment, we use a processor with eight 3-stage cores. They
are connected to the memory subsystem using snoopy protocol.



TABLE II. Detailed test generation information
k [3] Our approach

#Cls in DB #Decision #Fwd Cls Time(s) #Cls in DB #Decision #Fwd Cls Time(s)
19 721427 40045 25608 2.4 756149 21231 4441 1.2
20 762855 71854 27329 3.6 857103 30049 26685 2.7
21 827272 56692 22824 3.4 900428 35687 24534 3.1
22 893382 203112 102202 15.4 965925 30873 6834 1.9
23 954998 2652411 142585 97.3 1029266 1228603 261989 52.8

Total - 3024114 320548 122.1 - 1346443 324483 61.7

The desired test should trigger all cores perform read and
write operation on the same shared memory variable in certain
order. The results are given in Figure 10. When the interaction
involves only a small number of cores, the difference in
test generation time of [2], [3], and our approach is quite
small. However, when more and more cores are involved, our
approach outperforms both [2] and [3] remarkably, due to the
usage of symmetry information.
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Fig. 11. Test generation time with heterogeneous cores

Finally, to illustrate the effectiveness of our approach in
a more general scenario, we measure the test generation
time on a system with heterogeneous cores. We use cores
with different implementations in their fetch, issue, execution
stages, and repeat the previous test generation experiment. As
discussed in Section IV-C, we only replicate learned conflict
clauses within the symmetric components. Figure 11 shows
the result. The “fetch” curve corresponds to a system where
the 8 cores are identical except their fetch stages. Similarly,
curves marked as “Issue” and “Execution” represent cores
with different issue and execution stages, respectively. We
also show the test generation time for homogeneous cores
using our approach (“None”) and [3] as reference. It can
be observed that due to less scope of knowledge reuse, the
time consumption of our approach for heterogeneous cores
are generally larger than homogeneous cores. Nevertheless,
our approach still outperforms [3] especially for complicated
interactions involving many cores.

VI. Conclusions
Functional verification of multicore architectures is chal-

lenging due to the increased design complexity and reduced
time-to-market. Directed tests are promising because it requires
significantly less number of tests to achieve the same coverage
requirement compared to random tests. Unfortunately, the
automatic generation of directed tests is time consuming due
to the limitation of current model checking tools. Existing
incremental SAT approaches have only exploited the symmetry

in BMC across different time steps. In this paper, we presented
a novel approach for directed test generation of multicore
architectures that exploits both spatial and temporal symmetry
in SAT-based BMC. The CNF description of the design is
synthesized using CNF for cores, bus and memory subsystem
to preserve the mapping information between different cores.
As a result, the symmetric high level structure is well preserved
and the knowledge learned from a single core can be effectively
shared by other cores during the SAT solving process. The ex-
perimental results using homogeneous as well as heterogeneous
multicore architectures demonstrated that the test generation
time using our approach is remarkably smaller (2-10 times)
compared to existing methods.
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