
Temperature- and Energy-Constrained Scheduling in
Multitasking Systems: A Model Checking Approach∗

Weixun Wang, Xiaoke Qin, and Prabhat Mishra
Department of Computer and Information Science and Engineering, University of Florida

Gainesville, FL, USA
{wewang,xqin,prabhat}@cise.ufl.edu

ABSTRACT
The ongoing scaling of semiconductor technology is causing se-
vere increase of on-chip power density and temperature in micro-
processors. This has raised urgent requirement for both power and
thermal management during each level of system design. In this
paper, we propose a formal technique based on model checking us-
ing extended timed automata to solve the processor frequency as-
signment problem in a temperature- and energy- constrained multi-
tasking system. The state space explosion problem is alleviated by
transforming and solving a Pseudo-Boolean satisfiability problem.
Our approach is capable of finding efficient solutions under vari-
ous constraints and applicable to other problem variants as well.
Our method is independent of any system and task characteristics.
Experimental results demonstrate the usefulness of our approach.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: Real-time systems and embedded systems

General Terms
Algorithm, Design

Keywords
Temperature-aware, Low Power Design, DVS, Model Checking

1. INTRODUCTION
Along with the performance improvement in state-of-art micro-

processors, power densities are rising more rapidly due to the fact
that feature size scales faster than voltages [27]. In last five years,
though the processor frequency is only improved by 30%, the power
density is more than doubled and expected to reach over 250W/cm2

[12]. Since energy consumption is converted into heat dissipation,
high heat flux increases the on-chip temperature. The “hot spot"
on current microprocessor die, caused by nonuniform peak power
distribution, could reach up to 120◦C [6]. This trend is observed in
both desktop and embedded processors [29] [38].

Thermal increase will lead to reliability and performance degra-
dation since CMOS carrier mobility is dependent on the operating
∗This work was partially supported by NSF grants CCF-0903430
and CNS-0746261.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’10, August 18–20, 2010, Austin, Texas, USA.
Copyright 2010 ACM 978-1-4503-0146-6/10/08 ...$10.00.

temperature. High temperature can result in more frequent tran-
sient errors or even permanent damage. Industrial studies have
shown that a small difference in operating temperature (10-15◦C)
can make 2 times difference in the device lifespan [29]. Yeh et al.
[35] also estimate that more than half of the electronic failures are
caused by over-heated circuits. Furthermore, leakage power is ex-
ponentially proportional to temperature, which potentially results
in more thermal runaway [34]. Studies also show that cooling cost
increases super-linearly with the thermal dissipation [14].

Since high on-chip thermal dissipation has severe detrimental
impact, we have to control the instantaneous temperature so that
it does not go beyond a certain threshold. Thermal management
schemes at all levels of system design are widely studied for general-
purpose systems. However, in the context of embedded systems,
traditional packaging and cooling solutions are not applicable due
to the limits on device size and cost. Moreover, embedded systems
normally have limited energy budgets since most devices are driven
by batteries. Multitasking systems with real-time constraints add
another level of difficulty since tasks have to meet their deadlines.
Since such systems normally have well-defined functionalities, this
multi-objective problem admits design-time algorithms.

Dynamic voltage scaling (DVS) is acknowledged as one of the
most efficient techniques used in both energy optimization [9] and
temperature management [38]. In existing literatures, tempera-
ture (energy)- constrained means there is a temperature thresh-
old (energy budget) which cannot be exceeded, while tempera-
ture (energy)- aware means there is no constraint but maximum
instantaneous temperature (total energy consumption) needs to be
minimized. In this paper, we propose a formal method based on
model checking for temperature- and energy- constrained (TCEC)
scheduling problems in multitasking systems. We extend the clas-
sical timed automata [1] with notions of task scheduling, voltage
scaling, system temperature and energy consumption. To the best
of our knowledge, our approach is the first attempt on solving TCEC
problem which is meaningful (especially in embedded systems)
and as difficult as other problems including temperature-constrained
(TC) scheduling, temperature-aware (TA) scheduling, temperature-
constrained energy-aware (TCEA) scheduling and energy- con-
strained temperature-aware (TAEC) scheduling. A novel contri-
bution of the paper is the development of a flexible and automatic
design flow which models the TCEC problem in timed automata
and solves it using formal verification techniques. Our approach is
also capable of solving other problem variations mentioned above.
Furthermore, our approach is applicable to a wide variety of sys-
tem and task characteristics. Runtime voltage scaling overhead and
leakage power consumption can also be easily incorporated.

The rest of the paper is organized as follows. Section 2 intro-
duces relevant existing research works. Section 3 provides related
background information. Section 4 describes our approach in de-
tails. Experimental results are presented in Section 5. Finally Sec-
tion 6 concludes the paper.

2. RELATED WORK
Energy-aware scheduling techniques for real-time systems have

been widely studied to reduce energy consumption. While several
works employed dynamic cache reconfiguration [33] [31], most of
them are based on DVS. Aydin et al. [3] addressed both static
and dynamic slack allocation problems for periodic task sets, while
Shin et al. [25] also considered aperiodic tasks. Jejurikar et al.
focused on energy-aware scheduling for non-preemptive task sets
[16] and leakage power minimization [17]. Zhong et al. [39] solved
a system-wide energy minimization problem with consideration of
other components. Wang et al. [31] proposed a leakage-aware en-
ergy saving technique based on DVS as well as cache reconfigu-
ration. As shown in [37], applying DVS in real-time systems is a
NP-hard problem. Optimal and approximation algorithms are given
in [39] [37] [32], while other works proposed heuristics. A survey
on recent works can be found in [9]. However, these techniques are
not aware of controlling the operating temperature.

Temperature-aware scheduling in real-time systems has drawn
significant research interests in recent years. Wang et al. [30] intro-
duced a simple reactive DVS scheme aiming at meeting task timing
constraints and maintaining processor safe temperature. Zhang et
al. [38] proved the NP-hardness of temperature-constrained perfor-
mance optimization problem in real-time systems and proposed an
approximation algorithm. Yuan et al [36] considered both temper-
ature and leakage power impact in DVS problem for soft real-time
systems. Chen et al. [8] explored temperature-aware scheduling for
periodic tasks in both uniprocessor and homogeneous multiproces-
sor DVS-enabled platforms. Liu et al. [18] proposed a design-time
thermal optimization framework which is able to solve problem
variants EA, TA and TCEA scheduling in embedded system with
task timing constraints. Jayaseelan et al. [15] exploited different
task execution orders, in which each task has distinct power profile,
to minimize peak temperature. However, none of these techniques
solves TCEC problem. Moreover, they all make certain assump-
tions on system characteristics that limits their applicability.

Timed automata [1] has been widely adapted in real-time sys-
tem researches. Norstorm et al. [22] first extended timed automata
with a notion of real-time tasks and showed that the traditional
schedulability analysis can be transformed to a decidable reacha-
bility problem in timed automata, which can be solved using model
checking tools. Fersman et al. [13] further generalized [22] with
asynchronous processes and preemptive tasks in continuous-time
model. Abdeddaïm et al. However, none of these techniques con-
sidered energy or temperature related issues.

There are several studies on dynamic power management (DPM)
using formal verification methods for embedded systems [26] and
multiprocessor platforms [19]. Shukla et al. [26] provided a pre-
liminary study on evaluating DPM schemes using an off-the-shelf
model checker. Lungo et al. [19] tried to incorporate verification of
DPM schemes in the early design stage. They showed that tradeoffs
can be made between design quality and verification efforts. None
of these approaches considers temperature management in such
systems. Moreover, they did not account for energy and timing
constraints, which makes our methodology different from theirs.

3. BACKGROUND

3.1 Timed Automata
A classical timed automaton [1] is a finite-state automaton ex-

tended with notion of time. A set of clock variables are associated
with each timed automaton and elapse uniformly with time in each
state (i.e., location). Transitions (i.e., edges) are performed instan-
taneously from one state to another. Each transition is labeled with
a set of guards which are Boolean constraints on clock variables
and must be satisfied in order to trigger the transition. Transitions

also have a subset of clock variables that need to be reset by taking
the transition. Formally, we can define it as follows:

DEFINITION 3.0.1. A timed automaton A over clock set C , state
set S and transition set T is a tuple {S ,C ,T ,s0}where s0 is the ini-
tial state. Transition set is represented as T ⊆ S ×Φ(C)×2C ×S ,
where each element φ in clock constraint (guard) set Φ(C) is a con-
junction of simple conditions on clocks (φ := c 6 t | t 6 c |¬φ |φ1∧
φ2 where c ∈ C , t ∈ R). 2C represents the subset of clock variables
that will be reset in each transition and we term it as ρ.

Semantically, the current configuration of a timed automaton A
is decided by a state s ∈ S and the clock valuations V in the form
of C → R+

⋃
{0}. Therefore, a legal execution of A consists of a

sequence of transitions:

(s0,V0)
φ,ρ−−→ (s1,V1)

φ,ρ−−→ · · · φ,ρ−−→ (sn,Vn) (1)

3.2 Thermal Model
A thermal RC circuit is normally utilized to model the temper-

ature variation behavior of a microprocessor [38]. We adopt the
RC circuit model proposed in [28], which is widely used in recent
researches [38] [15], to capture the heat transfer phenomena in the
processor. If P denotes the power consumption during a time in-
terval, R denotes the thermal resistance, C represents the thermal
capacitance, Tamb and T0 are the ambient and initial temperature,
respectively, the temperature at the end of the time interval t can be
calculated as:

T = P ·R+Tamb− (P ·R+Tamb−Tinit) · e
−t
RC (2)

where t is the length of the time interval. If t is long enough, T will
approach a steady-state temperature Ts = P ·R+Tamb.

3.3 Energy Model
We adapt the energy model proposed in [20]. Processor’s dy-

namic power can be represented as Pdyn = α ·C ·V 2
dd · f . Here

Vdd is the supply voltage and f is the operation frequency. C is
the total capacitance and α is the actual switching activity which
varies for different applications [2]. In other words, task’s power
profile can be different from each other. Static power is given by
Psta =Vdd · Isubth+ |Vbs| · I j where Vbs, Isubth and I j denote the body
bias voltage, subthreshold current and reverse bias junction cur-
rent, respectively. Hence, we have P = Pdyn +Psta. Our technique
is, however, independent of the power model and thermal model.

3.4 System Model
The system we consider can be modeled as:
• A voltage scalable processor which supports l discrete volt-

age levels V{v1,v2, ... ,vl}
• A set of m independent tasks T{τ1, τ2, ... ,τm}.
• Each task τi ∈ T has known attributes including worst-case

workload, arrival time, deadline, period (if it is periodic) or
inter-arrival time (if it is aperiodic/sporadic).

The runtime overhead of voltage scaling is variable and depends
on the original and new voltage levels. The context switching over-
head is assumed to be constant.

4. TCEC SCHEDULING APPROACH

4.1 Overview
Figure 1 illustrates the workflow of our approach. The task in-

formation describes the characteristics of the tasks running in the
system and is fed into the scheduler along with the scheduling pol-
icy. Any scheduling algorithm is applicable in our approach. The
scheduler executes the task set under the highest voltage level and

produces a trace of execution blocks. In this paper, an execution
block is defined as a piece of task execution in a continuous period
of time under a single processor voltage/frequency level. Each exe-
cution block is essentially a whole task instance in non-preemptive
systems. However, in preemptive scheduling, tasks could be pre-
empted during execution hence one block can be a segment of one
task. The scheduler records runtime information for each block in-
cluding its corresponding task, required workload, arrival time and
deadline, if applicable.

The task execution trace, along with system specification (pro-
cessor voltage/frequency levels), thermal/power models and design
objective (not shown in Figure 1), are fed into the timed automata
generator (TAG) that we have developed. Here the design objective
decides the nature of the problem, e.g. TCEC. TAG generates two
important outputs. One is the description of our timed automata
model, which will be discussed in Section 4.2, and the other one
contains the properties reflecting the design objectives. We use a
script based program to drive the model checker to solve the prob-
lem. Finally, the results and/or solutions are collected. Our method-
ology is flexible, completely automatic, based on formal technique
and hence suitable in early design stages.

Task Information

System

Specification

Scheduling Policy

Timed Automata

Description

Temperature/

Power Model

Properties

Result + Solution Trace

Task Execution

Trace

Temperature/

Energy

Constraints

Scheduler

Timed Automata

Generator (TAG)

Problem

Solving Driver
Model Checker

Figure 1: Workflow of our model checking approach.

4.2 Modeling with Extended Timed Automata
Our approach scales the processor voltage level on the granular-

ity of each execution block. In other words, the frequency level is
changed at the beginning of each execution block. This strategy can
lead to more flexible energy and temperature management in pre-
emptive systems since decisions are made upon a finer granularity
compared to inter-task manner [38]. We utilize timed automata to
model the voltage scaling problem in the execution trace and ex-
tend the original automata with notions of temperature and energy
consumption. Our model supports both scenarios in which task set
has a common deadline and each task has its own deadline. For
ease of discussion, the terms of task, job and execution block refer
to the same entity in the rest of the paper.

Task set with common deadline: TAG is given a trace of n ex-
ecution blocks B{b1,b2, ...,bn}. If tasks are assumed to have the
same power profile (i.e. α is constant), the energy consumption
and execution time for bi under voltage level vk ∈V , denoted by ek

i
and tk

i respectively, can be calculated based on the given processor

model. Otherwise, they can be collected through static profiling by
executing each task under every voltage level. Let ψvi,v j and ωvi,v j

denote runtime energy and time overhead, respectively, for scaling
from voltage vi to v j . Since the power is constant during one exe-
cution block, the temperature is monotonically either increasing or
decreasing [15]. We denote Ti as the final temperature of bi. If the
task set has a common deadline D, the safe temperature threshold is
Tmax and the energy budget is E , TCEC scheduling problem can be
represented as finding a voltage assignment K {k1,k2, ...,kn}1 such
that:

n

∑
i=1

(eki
i +ψvki−1 ,vki

)6 E (3)

Ti 6 Tmax,∀i ∈ [1,n] (4)
n

∑
i=1

(tki
i +ωvki−1 ,vki

)6 D (5)

where Ti is calculated based on Equation (2). Here Equation (3),
(4) and (5) denote the energy, temperature and common deadline
constraints, respectively.

For illustration, an extended timed automata A generated by
TAG is shown in Figure 2 assuming that there are three tasks and
two voltage levels. Generally, we use l states for each task, forming
disjoint sets (horizontal levels of nodes in Figure 2) among tasks, to
represent different voltage selections. We also specify an error state
which is reached whenever there is deadline miss. There are also
a source state and a destination state denoting the beginning and
the end of the task execution. Therefore, there are totally (n · l +4)
states. There is a transition from every state of one task to every
state of its next task. In other words, the states in neighboring dis-
joint sets are fully connected. There are also transitions from every
task state to the error state. All the states of the last task have tran-
sitions to the end state.

The system temperature and cumulative energy consumption are
represented by two global variables, named T and E, respectively.
The execution time for every task under each voltage level is pre-
calculated and stored in a global array c[]. The common dead-
line D is stored in variable deadline. Constants such as processor
power values, thermal capacitance/resistance, ambient temperature
and initial temperature are stored in respective variables. There are
two clock variables, time and exec, which represent the global sys-
tem time and the local timer for task execution, respectively. The
time variable is never reset and elapses uniformly in every state.
Both clock variables are initially set to 0.

The transition from the source state carries a function initial-
ization() which contains updates to initialize all the variables and
constants. Each state is associated with an invariant condition, in
the form of exec 6 c[], which must be satisfied when the state is
active. This invariant represents the fact that the task is still un-
der execution. Each transition between task states carries a pair of
guard: time 6 deadline && exec == c[]. The former one ensures
that the deadline is observed and the latter one actually triggers the
transition, reflecting the fact that the current task has finished exe-
cution. Note that the overhead can be incorporated here since we
know the start and end voltage level, if they are different. Each
transition is also labeled with three important updates. The first
one, T = calcTemperature(P[],T,c[]), basically updates the cur-
rent system temperature after execution of one task based on the
previous temperature, average power consumption and the task’s
execution time. The second one, E = calcEnergy(P[],c[]), adds the
energy consumed by last task to E. The third update resets clock
exec to 0. All the transitions to the error state are labeled with a
guard in the form of time > deadline, which triggers the transition
whenever the deadline is missed during task execution. Note that
not all the transition labels are shown in Figure 2.
1ki denote the index of the processor voltage level assigned to bi.

TASK1V1

exec≤c[0]

TASK1V2

exec≤c[1]

TASK2V1

exec≤c[2]

TASK3V1

exec≤c[4]

TASK2V2

exec≤c[3]

TASK3V2

exec≤c[5]

initialization()

time>deadline

time>deadline

END

BEGIN
Task execution transition

Deadline miss transition

ERROR

time≤deadline && exec==c[0]

T=calcTemperature(P[0],T,c[0]),

E=calcEnergy(P[0],c[0]),

exec=0

time≤deadline && exec==c[2]

T=calcTemperature(P[0],T,c[2]),

E=calcEnergy(P[0],c[2]),

exec=0

Figure 2: TCEC problem modeled in extended timed automata.

The extended timed automata’s current configuration is decided
by valuations of clock variables (time and exec) and global vari-
ables (T and E). Therefore, the system execution now is trans-
formed into a sequence of states from the source state to the des-
tination state2. The sequence consists of one and only one state
from each disjoint set which represents a task. Solving the TCEC
problem as formulated above is equal to finding such a sequence
with the following properties. First, the final state is the destination
state which guarantees the deadline constraint. Next, the temper-
ature T is always below Tmax in every state. Finally, the energy
consumption E is no larger than E . We can write this requirement
as a property in computation tree logic (CTL) [11] as:

EG((T < Tmax ∧ E < E) U A .end) (6)

where A .end means the destination state is reached. Now, we can
use the model checker to verify this property and, if satisfied, the
witness trace it produces is exactly the TCEC scheduling that we
want.

However, it is possible that the model checker’s property de-
scription language does not support the operator of “until" (U),
e.g. UPPAAL [4]. In that case, we can add two Boolean variables,
isT Sa f e and isESa f e, to denote whether T and E are currently
below the constraints. These two Boolean variables are updated in
functions calcTemperature() and calcEnergy(), respectively, when-
ever a transition is performed. Once the corresponding constraint
is violated, they are set to f alse. We can express our requirement
in CTL as:

EF(isT Sa f e ∧ isESa f e ∧ A .end) (7)

Note that in the timed CTL that UPPAAL uses, the above prop-
erty can be written as follows, where Proc represents the timed
automata A , which is called a “Process" in UPPAAL.

E <> (Proc.End and Proc.isT Sa f e and Proc.isESa f e) (8)

Task set with individual deadlines: In the scenario where each
task has its own deadline, e.g. periodic tasks, we have to make
sure the execution blocks finish no later than their corresponding
task’s deadline. A global array, d[], is used to store the deadline
constraints of each execution block. If not applicable, i.e. the block
does not end that task instance, its entry in d[] is set to −1. There-

2The sequence of states follows the same characteristics of Equa-
tion (1).

fore, instead of Equation (5), we have:

i

∑
j=1

(tk j
j +ωvk j−1 ,vk j

)6 d[i],∀d[i]> 0 (9)

Figure 3 shows part of the new timed automata. The difference
lies in the guard of transitions. Instead of time 6 deadline, the
guard for transitions between task states is in the form of ((d[] >
0 && time 6 d[]) || d[]< 0). The transition from task state to error
state now carries a guard of (d[]> 0 && time > d[]).

TASK1V1

exec≤c[0]

TASK2V1

exec≤c[2]

((d[0]>0 && time≤d[0]) || d[0]<0)

&& exec==c[0]

T=calcTemperature(P[0],T,c[0]),

E=calcEnergy(P[0],c[0]),

exec=0

d[0]>0 && time>d[0]

ERROR

Figure 3: Problem modeling when every task has own deadline
(partial graph).

4.3 Problem Variants
Our approach is also applicable to other problem variants by

modifying the property and making suitable changes to invocation
of the model checker.

TC: Temperature-constrained scheduling problem is a simplified
version of TCEC. It only needs to ensure that the maximum instan-
taneous temperature is always below the threshold Tmax. Therefore,
the property can be written in CTL as:

EG(T < Tmax U A .end) (10)

TA: To find a schedule so that the maximum temperature is min-
imized, we can employ a binary search over the temperature value
range. Each iteration invokes the model checker to test the prop-
erty (10) parameterized with current temperature constraint Tmax.
Initially, Tmax is set to the mid-value of the range. If the property
is unsatisfied, we search in the range of values larger than Tmax
in the next iteration. If the property is satisfied, we continue to
search in the range of values lower than Tmax to further explore bet-
ter results. This process continues until the lower bound is larger
than the upper bound. The minimum Tmax and associated schedule,
which makes the property satisfiable during the search, is the result.
Note that the temperature value range for microprocessors is small
in practice, e.g. [30◦C,120◦C]. Hence, the number of iterations is
typically no more than 7.

TAEC: TAEC has the same objective as TA except that there is
an energy budget constraint. Therefore, we can solve the problem
by using property (6) during the binary search.

TCEA: TCEA can be solved using the same method as TAEC
except that the binary search is carried on energy values and tem-
perature acts as a constant constraint. Since energy normally has
a much larger value range, to improve the efficiency, we can dis-
cretize energy value to make trade-off between solution quality and
design time. Since the number of iterations has a logarithmic rela-
tionship with the length of energy value range, only moderate dis-
cretization is enough.

4.4 Using SAT solver
Timed automata can be used to model the TCEC problem ef-

fectively. However, when the number of tasks is large, it can be

time consuming to check the properties on the timed automata di-
rectly. The reason is that the underlying symbolic model checker
like UPPAAL sometimes cannot handle large problems due to the
state space explosion problem. Fortunately, we can alleviate this
problem by transforming our model checking problem to a Pseudo-
Boolean satisfiability problem [7]. Similar to SAT-based techniques
[10] [24], which are used to reduce the test generation time, Pseudo-
Boolean satisfiability solvers usually has better scalability over sym-
bolic model checker and therefore can be used to perform model
checking on timed automata more efficiently.

We use Boolean variable xk
i to indicate wether block i is executed

at voltage level vk. The original model checking problem is equiv-
alent to finding an assignment to xk

i ,1 6 i 6 n,1 6 k 6 l, which
satisfies:

l

∑
k=1

xk
i = 1,∀i ∈ [1,n] (11)

n

∑
i=1

l

∑
k=1

xk
i · (ek

i +
l

∑
k′=1

xk′
i−1 ·ψvk′ ,vk)6 E (12)

Ti 6 Tmax,∀i ∈ [1,n] (13)

n

∑
i=1

l

∑
k=1

xk
i · (tk

i +
l

∑
k′=1

xk′
i−1 ·ωvk′ ,vk)6 D (14)

Since there are production terms in the constraints, this problem is
a nonlinear Pseudo-Boolean satisfiability problem. It can be solved
by normal linear solvers like PBclasp [23] after standard normal-
ization [5]. As we have shown in Section 5, compared to direct
model checking of the original timed automata, it is more scalable
to perform model checking using Pseudo-Boolean solver.

5. EXPERIMENTS

5.1 Experimental Setup
In this section, we describe the experimental setup for evaluation

of our approach. A DVS-capable processor StrongARM [21] is
modeled with four voltage/frequency levels (1.5V-206MHz, 1.4V-
192Mhz, 1.2V-162MHz and 1.1V-133MHz). We use synthetic task
sets which are randomly generated with each of them having execu-
tion time in the range of 100 - 500 milliseconds. These are suitable
and practical sizes to reflect variations in temperature, and millisec-
ond is a reasonable time unit granularity [38]. We adopt the thermal
resistance (R) and thermal capacitance (C) values from [15], which
are 1.83◦C/Watt and 112.2mJoules/◦C, respectively. The ambient
temperature and initial temperature of the processor are set to 32◦C
and 60◦C, respectively. The scheduler and TAG shown in Figure 1
are both implemented in C++.

5.2 Result

5.2.1 Solving TCEC Problems
Table 1 shows the results on task sets with different number of

blocks and constraints. The first and the second column are the
index and number of blocks of each task set, respectively. The
next three columns present the temperature constraint (TC, in ◦C),
energy constraint (EC, in mJ), and deadlines (DL, in ms) to be
checked on the model. The sixth column indicates wether the there
exists a schedule which satisfies all the constraints. The last three
columns give the actual maximum temperature (AT), total energy
cost (AE), and time required to finish all blocks (AD) using the
schedule found by the model checker (UPPAAL). It can be ob-
served that our approach can find the solution (if exists) which sat-
isfied all the constraints.

5.2.2 Running Time Variations

Table 1: TCEC results on different task sets
TS #Blk TC EC DL Found? AT AE AD

1 10
85 180000 7000 Y 77 171612 6865
85 150000 8000 Y 77 149623 7966
80 140000 8000 N

2 12
85 70000 2500 Y 79 66375 2499
85 60000 2700 Y 76 59911 2667
80 60000 2500 N

3 14
90 90000 2600 Y 90 81287 2540
85 80000 2800 Y 79 71649 2702
90 80000 2700 N

We have studied the impact of constraint variations on the run-
ning time required by UPPAAL. To achieve this, we measure the
model checking time using task set 2 with two constraints kept
constant while let the third one vary (TC, EC and DL). Figure 4
summarizes the results.

S S S

0

5

10

15

20

25

6500 6550 6600 6650 6700 6750

R
u

n
n

in
g

Ti
m

e
 (

s)

Energy Constraint
(a)

S S
S

S

0

5

10

15

20

25

80 82 84 86 88 90 92

R
u

n
n

in
g

Ti
m

e
 (

s)

Temperature Constraint
(b)

S
S

S

0

5

10

15

20

25

30

2450 2460 2470 2480 2490 2500 2510

R
u

n
n

in
g

Ti
m

e
 (

s)

Deadline Constraint
(c)

0

50

100

150

200

250

300

350

2 3 4 5

R
u

n
n

in
g

Ti
m

e
 (

s)

Number of Voltage Levels
(d)

Figure 4: Running time with different constraints.

For energy constraint (Figure 4(a)) and temperature constraint
(Figure 4(b)), we can observe that time requirement are not no-
tably affected by the variation of these constraints. In general, it
takes more time when the constraint can be satisfied (labeled “S"
in Figure 4). When the constraint goes below or beyond the range
shown in Figure 4, the running time remains the same or slightly
decreases in both cases because the constraint will either be easily
falsified or no longer limit the search space, respectively. How-
ever, for the deadline constraint (Figure 4(c)), our experimental re-
sults show that the running time requirement will increase with the
deadline, because larger time budget yields a larger solution search
space for the model checker. We have also investigated the rela-
tion between the number of voltage levels and the time required for
model checking. As shown in Figure 4(d), model checker’s running
time grows rapidly when more voltage levels are employed. This is
due to the exponential growth of the search space.

5.2.3 Comparison of UPPAAL and SAT Solver
We also compared the efficiency of conventional symbolic model

checker (UPPAAL) with our Pseudo-Boolean satisfiability based
model checking algorithm (PB approach) on task sets with differ-
ent number of blocks. The first six columns of Table 2 are same as
Table 1. The last two columns of Table 2 shows the results (run-
ning time in seconds). Since UPPAAL failed to produce result for
task set 4 and 5, we only report the running time of the PB-based
approach. It can be seen that PB-based approach outperforms UP-
PAAL by more than 10 times on average. Moreover, PB-based
approach can solve much larger problems in reasonable running
time.

Table 2: Running time comparison on different task sets
TS #Blk TC EC DL Found? UPPAAL PB

1 10
85 180000 7000 Y 9.6 0.1
85 150000 8000 Y 9.9 0.1
80 140000 8000 N 9.4 0.1

2 12
85 70000 2500 Y 18.5 0.9
85 60000 2700 Y 106.6 0.1
80 60000 2500 N 17.5 0.8

3 14
90 90000 2600 Y 65.1 9.7
85 80000 2800 Y 648.3 3.1
90 80000 2700 N 208.6 14.3

4 50 85 380000 39500 Y - 104.8
5 100 85 720000 83800 Y - 428.2

6. CONCLUSION
In this paper, we proposed a model checking approach for tem-

perature and energy-constrained scheduling problem in multitask-
ing systems based on processor voltage scaling. We modeled the
problem using extended timed automata which is solved by a model
checker as well as a SAT solver. We proposed a flexible and auto-
matic framework which makes our approach applicable to temper-
ature or energy-constrained problem as well as other variants and
independent of any system characteristic. Extensive experimental
results demonstrate the effectiveness of our approach.

7. REFERENCES
[1] R. Alur et al., A theory of timed automata. Theor. Comput.

Sci., 126(2):183–235, 1994.
[2] H. Aydin et al., Determining optimal processor speeds for

periodic real-time tasks with different power characteristics.
ECRTS, 2001.

[3] H. Aydin et al., Power-aware scheduling for periodic
real-time tasks. IEEE Trans. Comput., 53(5):584–600, 2004.

[4] J. Bengtsson et al., Uppaal—a tool suite for automatic
verification of real-time systems. DIMACS/SYCON workshop
on Hybrid systems III : verification and control, 1996.

[5] T. Berthold et al., Nonlinear pseudo-boolean optimization:
Relaxation or propagation? SAT, 2009.

[6] S. Borkar et al., Parameter variations and impact on circuits
and microarchitecture. DAC, 2003.

[7] E. Boros et al., Pseudo-boolean optimization. Discrete Appl.
Math., 123(1-3):155–225, 2002.

[8] J.-J. Chen et al., On the minimization fo the instantaneous
temperature for periodic real-time tasks. RTAS, 2007.

[9] J.-J. Chen et al., Energy-efficient scheduling for real-time
systems on dynamic voltage scaling (dvs) platforms. RTCSA,
2007.

[10] M. Chen et al., Efficient decision ordering techniques for
SAT-based test generation. DATE, 2010.

[11] E. Clarke et al., Model Checking. MIT Press, 1999.
[12] M. J. Ellsworth. Chip power density and module cooling

technology projections for the current decade. ITHERM,
2004.

[13] E. Fersman et al., Timed automata with asynchronous
processes: Schedulability and decidability. TACAS, 2002.

[14] S. Gunther et al., Managing the impact of increasing
microprocessor power consumption. ITJ, 5(1):1–9, 2001.

[15] R. Jayaseelan et al., Temperature aware task sequencing and
voltage scaling. ICCAD, 2008.

[16] R. Jejurikar et al., Energy aware non-preemptive scheduling
for hard real-time systems. ECRTS, 2005.

[17] R. Jejurikar et al., Leakage aware dynamic voltage scaling
for real-time embedded systems. DAC, 2004.

[18] Y. Liu et al., Thermal vs energy optimization for
dvfs-enabled processors in embedded systems. ISQED, 2007.

[19] A. Lungu et al., Multicore power management: Ensuring
robustness via early-stage formal verification. MEMOCODE,
2009.

[20] S. M. Martin et al., Combined dynamic voltage scaling and
adaptive body biasing for lower power microprocessors
under dynamic workloads. ICCAD, 2002.

[21] Marvell. Marvell StrongARM 1100 processor.
www.marvell.com.

[22] C. Norström et al., Timed automata as task models for
event-driven systems. RTCSA, 1999.

[23] PBclasp. PBclasp. http://potassco.sourceforge.net/labs.html.
[24] X. Qin et al., Synchronized generation of directed tests using

satisfiability solving. VLSI Design, 2010.
[25] D. Shin et al., Dynamic voltage scaling of periodic and

aperiodic tasks in priority-driven systems. ASP-DAC, 2004.
[26] S. Shuklaet et al., A model checking approach to evaluating

system level dynamic power management policies for
embedded systems. HLDVT, 2001.

[27] K. Skadron et al., Temperature-aware computer systems:
Opportunities and challenges. IEEE Micro, 23(6):52–61,
2003.

[28] K. Skadron et al., Temperature-aware microarchitecture:
Modeling and implementation. ACM Trans. Archit. Code
Optim., 1(1):94–125, 2004.

[29] R. Viswanath et al., Thermal performance challenges from
silicon to systems. ITJ, 4(3):1–16, 2000.

[30] S. Wang et al., Reactive speed control in
temperature-constrained real-time systems. ECRTS, 2006.

[31] W. Wang et al., Leakage-aware energy minimization using
dynamic voltage scaling and cache reconfiguration in
real-time systems. VLSI Design, 2010.

[32] W. Wang et al., PreDVS: preemptive dynamic voltage
scaling for real-time systems using approximation scheme.
DAC, 2010.

[33] W. Wang et al., SACR: scheduling-aware cache
reconfiguration for real-time embedded systems. VLSI
Design, 2009.

[34] N. Weste et al., CMOS VLSI Design: A Circuits and
Systems Perspective. Addison Wesley, 2004.

[35] L.-T. Yeh et al., Thermal Management of Microelectronic
Equipment: Heat Transfer Theory, Analysis Methods, and
Design Practices. ASME Press, 2002.

[36] L. Yuan et al., Alt-dvs: Dynamic voltage scaling with
awareness of leakage and temperature for real-time systems.
AHS, 2007.

[37] S. Zhang et al., Approximation algorithms for power
minimization of earliest deadline first and rate monotonic
schedules. ISLPED, 2007.

[38] S. Zhang et al., Approximation algorithm for the temperature
aware scheduling problem. ICCAD, 2007.

[39] X. Zhong et al., System-wide energy minimization for
real-time tasks: Lower bound and approximation. ICCAD,
2006.

