
INTEGRATION, the VLSI journal] (]]]])]]]–]]]
Contents lists available at SciVerse ScienceDirect
INTEGRATION, the VLSI journal
0167-92

http://d

$This

Sympos

results o

has sign

ism is d

scheme

decomp

propose

in the o

has bee

RLE is h
n Corr

E-m

cmurth

Pleas
p://d
journal homepage: www.elsevier.com/locate/vlsi
Bitmask aware compression of NISC control words$
Kanad Basu n, Chetan Murthy, Prabhat Mishra

Department of Computer and Information Science and Engineering, University of Florida, United States
a r t i c l e i n f o

Article history:

Received 15 November 2010

Received in revised form

15 February 2012

Accepted 16 February 2012

Keywords:

No-instruction-set compiler

Compression
60/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.vlsi.2012.02.004

is an extended version of the paper that ap

ium on VLSI (GLSVLSI), 2009 [1]. The GLSV

n applying bitmask based compression on N

ificant additional material, in particular: (i)

iscussed in detail in Section 5, with focus o

as well as individual bitmask based decoders,

ression overhead (both memory and perform

d by [2]; (iii) We have also analyzed the effec

verall compression in Sections 6.3 and 6.4; (iv

n developed in Section 4.5 to derive a condi

elpful in compression.

esponding author.

ail addresses: kanad@ufl.edu, kbasu@cise.ufl.e

y@cise.ufl.edu (C. Murthy), prabhat@cise.ufl.e

e cite this article as: K. Basu, et al., B
x.doi.org/10.1016/j.vlsi.2012.02.004
a b s t r a c t

It is not always feasible to implement an application specific custom hardware due to cost and time

considerations. No instruction set compiler (NISC) architecture is one of the promising directions to

design a custom datapath for each application using its execution characteristics. A major challenge with

NISC control words is that they tend to be at least 4–5 times larger than regular instruction size, thereby

imposing higher memory requirement. A possible solution to counter this is to compress these control

words to reduce the code size of the application. This paper proposes an efficient bitmask-based

compression technique to drastically reduce the control word size while keeping the decompression

overhead in an acceptable range. The main contributions of our approach are (i) smart encoding of

constant and less frequently changing bits, (ii) efficient do not care resolution for maximum bitmask

coverage using limited dictionary entries, (iii) run length encoding to significantly reduce repetitive

control words and (iv) design of an efficient decompression engine to reduce the performance penalty.

Our experimental results demonstrate that our approach improves compression efficiency by an average

of 20% over the best known control word compression, giving a compression ratio of 25–35%. In addition,

our technique only requires 1–3 on-chip RAMs, thus making it suitable for FPGA implementation.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Desktop-based systems use general purpose processors to execute
a wide variety of application programs. However, it is not always
profitable to run an application on a generic processor. On the other
hand the implementation of a custom hardware may not be feasible
due to cost and time constraints. One of the promising directions is to
automatically design a custom datapath for each application using its
execution characteristics and the design constraints. The datapath is
synthesized and then the application is compiled on it. Any future
change in the application is accommodated by just recompiling the
application on the datapath. No Instruction Set Compiler (NISC) [3] is
one such technology that is used in statically scheduled Horizontal
ll rights reserved.

peared in ACM Great Lakes

LSI paper presented initial

ISC control words. This paper

The decompression mechan-

n the overall decompression

(ii) Section 6.5 compares the

ance) of our method and that

tiveness of each of the steps

) A mathematical framework

tion when the application of

du (K. Basu),

du (P. Mishra).

itmask aware compression o
Microcoded Architectures (HMA). The abstraction of instruction set in
generic processors limits from choosing such custom data path. NISC,
which operates on HMAs, promises faster performance guarantees by
skipping the abstraction phase and directly compiling the program to
microcodes. It also controls the selection of optimal datapath to meet
the application’s performance requirements and hence provides a
maximum utilization of the datapath resources. Therefore, parallel
architectures can be built on top of these despite the complexity of
the controller or the hardware scheduler. However, these datapath or
control words (CW) tend to be at least 4–5 times wider than regular
instructions thus increasing the code size of applications. One
promising approach is to reduce these control words by compressing
them.

Fig. 1 shows the compressed control word execution flow on a
NISC architecture. It should be remembered that these control
words are specific to a particular datapath. The compressed control
word is read from control word memory (CW Mem) and decoded to
obtain the original control word and sent to controller for execution.
Compression ratio is the metric commonly used to measure effec-
tiveness of a compression technique, as shown in Eq. (1). Clearly,
smaller the compression ratio better the compression efficiency:

Compression Ratio¼
Compressed Code Size

Uncompresssed Code Size
ð1Þ

One may argue that introduction of compression to offset the
code size increase can nullify the advantages of using NISC
f NISC control words, INTEGRATION, the VLSI journal (2012), htt

www.elsevier.com/locate/vlsi
www.elsevier.com/locate/vlsi
dx.doi.org/10.1016/j.vlsi.2012.02.004
mailto:kanad@ufl.edu
mailto:kbasu@cise.ufl.edu
mailto:cmurthy@cise.ufl.edu
mailto:prabhat@cise.ufl.edu
dx.doi.org/10.1016/j.vlsi.2012.02.004
dx.doi.org/10.1016/j.vlsi.2012.02.004

CW Mem

C
on

tro
l W

or
d

Decoder

Address
A

dd
re

ss
G

en
er

at
or

Offset

Data Path

Functional
Units

Data
Memory

Counter
Program

Fig. 1. NISC architecture and decoder placement.

K. Basu et al. / INTEGRATION, the VLSI journal] (]]]])]]]–]]]2
technology. In other words, NISC improves the performance by
removing the need for decoding control words, whereas use of
compression re-introduces it to decode the compressed control
words. It is a major challenge to employ an efficient compression
technique to achieve best possible control word size reduction
while employing a simple decoder to minimize the performance
penalty. As the experimental results demonstrate, our method
can provide significant code size improvement with moderate
performance penalty.

Compression techniques may vary widely depending on the
encoding approaches such as complex statistical coding or simple
dictionary based compression. It is known that although statistical
codings (such as Huffman coding) can provide a good compres-
sion, the decompression penalty is huge. A complex decompres-
sion architecture means longer running time for applications as
well as additional power wastage. Hence, these methods may not
be suitable in many systems with real time and other design
constraints. Therefore, widely used code compression techniques
utilize dictionary based compression. A dictionary is used to store
the most frequently occurring instructions. The instructions are
replaced with smaller dictionary indices. The application of such
algorithm on NISC control words is not profitable. This is because
the uncompressed control words are themselves long in length
(typically around 90 bits [2]). Therefore, the probability that two
words exactly match is ð12Þ

90, which is indeed a very low prob-
ability. As a result, control words replacing the original instruc-
tions might not retain the same repeating pattern. Gorjiara et al.
[2] described an interesting approach in which the control words
are split to obtain redundancies and then compressed using
multiple dictionaries. The main disadvantage of their technique
is that all the unique entries are stored in dictionary without
considering any masking opportunity for mismatches. This leads
to large compressed code (inefficient compression) and variable
length dictionary size that requires variable number of on-chip
block RAMs, in FPGA implementations where these dictionaries
are stored.

In code compression domain, Seong and Mishra [4] presented
a promising approach to achieve better compression by using
limited dictionary entries and recording bit changes to match
most of the instructions with dictionary. Thus, codes which
mismatch the dictionary entries by small number of bits can also
be compressed. Our approach is motivated by bitmask based
compression (BMC) [4]. The direct application of BMC algorithm is
found not to reduce the control word size significantly. It is a
major challenge to develop an efficient compression technique
which significantly reduces control word size and has minimal
decompression overhead.

In this paper, we propose an efficient compression technique
that takes advantage of both NISC control word compression [2]
and bitmask-based compression [4] techniques. This paper makes
five important contributions: (i) an efficient NISC control word
compression technique to improve compression ratio by splitting
control words and compressing them using multiple dictionaries,
(ii) smart encoding of constant and less frequently changing bits
Please cite this article as: K. Basu, et al., Bitmask aware compression
p://dx.doi.org/10.1016/j.vlsi.2012.02.004
to further reduce the control word size, (iii) a bitmask aware do
not care resolution to improve dictionary coverage, (iv) run length
encoding of repetitive sequences to both improve compression
ratio and decrease decompression overhead by providing the
uncompressed words instantaneously and (v) an efficient decom-
pression engine to reduce the overall decompression overhead.
Our algorithm is also easily implementable in FPGA, since it has
reduced the on-chip BRAM requirements to 1–3, which was
almost nine in the case of [2] for storing dictionaries, thus
reducing the additional memory penalty to a large extent com-
pared to [2].

The rest of the paper is organized as follows. Section 2 surveys
the existing code compression techniques. Section 3 describes NISC
architecture and existing bitmask based compression. Section 4
describes our compression technique followed by a discussion on
the decompression architecture in Section 5. Section 6 presents our
experimental results. Finally, Section 7 concludes the paper.
2. Related work

Dictionary-based compression methods are widely used in
many application domains [4]. In dictionary based compression, a
dictionary stores the patterns with maximum frequency and the
dictionary indices replace the actual code during compression.
The first code-compression technique for embedded processors
was proposed on similar lines by Wolfe and Chanin [5]. Their
technique uses an amalgam of dictionary based compression and
Huffman coding; the compressed program is stored in the main
memory. The decompression unit is placed between the main
memory and the instruction cache. They used a Line Address
Table (LAT) to map original code addresses to compressed block
addresses. Their compression mechanism was further improved
by IBM’s CodePack [6]. A statistical method for code compres-
sion using arithmetic coding and Markov model was proposed
by Lekatsas and Wolf [7]. Lekatsas et al. [8] also proposed a
dictionary based decompression prototype that is capable of
decoding one instruction per cycle. The idea of using dictionary
to store the frequently occurring instruction sequences has been
explored by Lefurgy et al. [9], Liao et al. [10] among others. Seong
and Mishra [4] proposed a bitmask-based compression to
improve compression ratio by creating matching patterns using
bitmasks. A code compression scheme can be further classified
into pre-cache and post-cache compression depending on the
placement of the decompression unit. In a pre-cache scheme, the
decompression engine is placed between the main memory and
the cache, while in post-cache, it is placed between the cache and
the processor. Pre-cache techniques have the advantage of low
decompression overhead, since the decompression engine is
fetched only when there is a cache miss. Post-cache schemes,
on the other hand are useful since their cache sizes can be kept
small, or an equal size cache can store larger amount of data.

The techniques discussed so far target reduced instruction set
computer (RISC) processors. There has been a significant amount
of research in the area of code compression for very long
instruction word (VLIW) and no instruction set computer (NISC)
processors. The technique proposed by Ishiura and Yamaguchi
[11] splits a VLIW instruction into multiple fields, and each field
is compressed by using a dictionary-based scheme. However,
instruction packing reduces the efficiency of these approaches,
which was further improved by Ros and Sutton [12] by combining
nearly identical instructions into a single entry dictionary. Mis-
matches were also considered by Prakash et al. [13]. Gorjiara et al.
[2] applied similar approach as [11] by splitting the control words
into different fields and compressing them using multiple dic-
tionaries. Nam et al. [14] also used a dictionary based scheme to
of NISC control words, INTEGRATION, the VLSI journal (2012), htt

dx.doi.org/10.1016/j.vlsi.2012.02.004

PC

Data
Path

Data
Memory

Program
Memory

(Instructions)

IR

CW

PC

Data
Path

Data
Memory

Program
Memory

(Instructions)

Decoder

IR

CW

Program
Memory

(Microcodes)

PC

Data
Memory

Program
Memory

(Control Words)

K. Basu et al. / INTEGRATION, the VLSI journal] (]]]])]]]–]]] 3
compress VLIW instructions. Various techniques like Huffman
based compression, Tunstall coding, LZW compression on VLIW
instructions were used by Larin et al. [15], Xie et al. [16] and Lin
et al. [17], respectively.

Recently, dictionary based compression techniques have
been applied for NISC control words by Gorjiara et al. [2]. Their
technique follows the same line of approach as [11]. They first
split each control word into different fields and compress them
using multiple dictionaries. However, their approach can lead to
unacceptable compression since it stores all the unique binaries
in the dictionary. Our method, on the other hand, selects the
binaries needed for maximum compression and hence requires a
smaller dictionary. Moreover, their method will require variable
number of block RAMs (BRAM) to store variable-length diction-
aries for different applications. Our approach outperforms [2] on
both fronts by achieving 20% better compression (on average) and
huge reduction in the number of RAMs required using a fixed-
length dictionary.

The approach proposed by Seong and Mishra [4] is useful for
NISC control word compression. However, the direct application
of their algorithm is not beneficial due to lack of redundancy in
longer control words. Moreover, the existing approach does not
handle the presence of do not cares in input control words. As a
result, it will sacrifice on compression efficiency by randomly
replacing do not cares by 0’s or 1’s. These two methods [2,4] are
closest to our approach. Section 6 presents experimental results
to show how our method improves compression efficiency
compared to these approaches, with minimal impact on decom-
pression overhead.
Data
Path

CW

Fig. 2. CISC, RISC and NISC Architectures. (a) CISC, (b) RISC, and (c) NISC.
3. Background and motivation

3.1. No instruction set computer (NISC)

NISC technology is based on horizontal microcoded architec-
ture. In this technology, first a custom datapath is generated for
an application, and then the datapath is synthesized and laid out
properly to meet timing and physical constraints. The final step is
to compile the program on the generated datapath. If the
application is changed after synthesis, it is recompiled on the
existing datapath. This feature significantly improves the produc-
tivity of the designer by avoiding repetition of timing closure
phase. NISC relies on a sophisticated compiler [3] to compile a
program described in a high-level language to binary that directly
drives the control signals of components in the datapath. The
values of control signals generated for each cycle are called a
control word. The control words (CWs) are stored in the control
word memory (CW Mem, shown in Fig. 1) in programmable IPs,
while they are synthesized to lookup-table logic in hardwired
dedicated IPs.

The NISC toolset [18] can be used by generating or specifying
an architecture description and then running the application on
the datapath obtained. The datapath can have components like
registers, register files, multiplexers and functional units. Each
control signal in the datapath is represented by a field in the
control word. The bits of the control word may be ‘0’, ‘1’ or ‘X’,
where ‘X’ represents a do not care. A major problem in compres-
sing the control words is to efficiently assign values to the do not
cares to enable efficient compression.

Fig. 2 shows CISC, RISC and NISC architectures. In CISC architec-
ture, microcoded instructions are used. The Program Counter
indexes the program memory; the data from the program memory
is then indexed by the micro Program Counter (mPC) to index the
micro-Program Memory (mPM). The primary concern with this
architecture is that the instructions are too complex, consisting of
Please cite this article as: K. Basu, et al., Bitmask aware compression o
p://dx.doi.org/10.1016/j.vlsi.2012.02.004
a combination of many control words (microcodes). In RISC archi-
tectures, instructions are fetched from the program memory and
stored in the instruction register (IR). The decoder decodes it to
generate the required control word. In contrast, the NISC architec-
ture directly stores the control word in the program memory thus
eliminating the instruction decoder and hardware scheduler as
shown in Fig. 2(c). However, the code size is very large compared
to RISC architectures due to two factors: control words are wider
than instructions, and the number of NISC control words can be
more than the number of RISC instructions. As can be seen in [2],
when the code size and cycle number on running the MiBench
benchmarks on the two processors, GNISC and Xilinx MicroBlaze
[19] are compared, NISC implementation runs 5.54 times faster than
RISC-based MicroBlaze, while its code size is four times larger [2].
The large code size increases the size of required control memory in
programmable IPs, and the area of control logic in dedicated IPs. The
goal of control word compression technique is to reduce the control
word size of NISC processors while maintaining the performance
benefits.

3.2. Bitmask-based compression

Bitmask based encoding improves the compression efficiency
of traditional dictionary based compression. Fig. 3 shows an
example of traditional dictionary based compression using a
2 entry dictionary. This example has been used by [4]. Here the
dictionary size is of 2 instruction sequences, that is 16 bits. The
two most frequently occurring sequences are stored in the
dictionary and are replaced with the dictionary index (1 bit)
f NISC control words, INTEGRATION, the VLSI journal (2012), htt

dx.doi.org/10.1016/j.vlsi.2012.02.004

0100 0010

0 1
0
0
0
0
0
0
0
0
0

0 11 10

0 10 11
0 01 01
0 10 11

1

1

1

Original Code

0
1
1
0
1
1
1
0
1
0

1000 0010
0000 0010

0100 1110
0101 0010
0000 1100

1100 0000

1

1

0

1000 0010
0000 0010
0100 0010
0100 1110
0101 0010
0000 1100
0100 0010
1100 0000
0000 0000

0000 00000
1
0

1
1
1
1
0
1
0

0 0011

bitmask flagcompress flag

0000 0000
Content

0
1

Index

Dictionary

0
0 00 11

bitmask position bitmask value
Dictionary based Bitmask based

Fig. 3. Dictionary and bitmask-based compression, similar to [4].

Fig. 4. Encoding formats of existing compression techniques. (a) Compressed with

dictionary index, (b) uncompressed word, (c) bitmask compressed using diction-

ary index, and (d) compressed using bitmasks.

Bitmask Compressed
Control Words

RLE
Compression

Compressed
Control Words

Remove
Constant Bits

Splitting

Uncompressed
Control Words

Don’t Care
Resolution

Dictionary Selection Mask Generation

Splitted Control Words

Reduced Control Words

Control Words

Bitmask based
Compression

Fig. 5. Compression of NISC control words.

K. Basu et al. / INTEGRATION, the VLSI journal] (]]]])]]]–]]]4
during compression. The compressed program consists of both
indices and uncompressed instructions. The first bit represents
whether a string has been compressed or not. A ‘0’ represents
that it is compressed while a ‘1’ represents an uncompressed
sequence. If the sequence is compressed, it is followed by the
dictionary index corresponding to the matching pattern. Other-
wise, the entire uncompressed sequence follows the first ‘1’ bit.
Fig. 4(a) and (b) show the encoding formats for traditional
dictionary based compression. In this example, the dictionary
based compression achieves a compression ratio of 97.5%.

Seong and Mishra [4] improved the standard dictionary based
compression techniques by considering mismatches. The basic
idea is to find the instruction sequences that are different in few
consecutive bit positions and store that information in the
compressed program. Compression ratio will depend on how
many bit changes (and length of each consecutive change) are
considered during compression. Fig. 3 shows the same example
compressed using one bitmask allowing two consecutive bit
changes starting at even bit positions. As in the case of dictionary
based compression, the first bit signifies whether an instruction is
compressed or not. If not compressed, the entire uncompressed
instruction follows it. If compressed, there may be two cases. The
instruction may be compressed by direct matching with diction-
ary or it might have been compressed using bitmask (that is, there
were mismatches present). A ‘1’ in the second bit signifies the first
case, while a ‘0’ in the second bit signifies the second case. In the
former case, the matching dictionary entry follows the ‘0’. When
compressed by bitmask, the ‘1’ is followed by bits to signify the
bitmask position (2 bits in this case, since there are 4 even bit
positions in a 8-bit string) and then the bitmask (2-bit bitmask in
this case). The index to the nearest matching dictionary entry
follows at the end. By nearest matching, we mean the dictionary
entry which can compress the string with minimal number of
bitmasks. Fig. 4(b)–(d) show the encoding format used by these
techniques. In the example in Fig. 3 we are able to compress all
Please cite this article as: K. Basu, et al., Bitmask aware compression
p://dx.doi.org/10.1016/j.vlsi.2012.02.004
the mismatched words using smaller number of bits and achieve
compression ratio of 87.5%.
4. Control word compression using bitmasks

The existing bitmask-based compression is promising but
there are various challenges discussed in the previous section
that needs to be addressed. Fig. 5 shows the overview of our
approach. NISC control words are usually 3–4 times wider than
normal instructions. To achieve more redundancy and to reduce
code size, the control words are split into two or more slices
depending on the width of the control word. The control words
are scanned for less frequent and constant bits. The constant bits
are those that do not change with sequences. As a result,
compressing them becomes easy, since all we have to do is to
remember those bits once. The infrequent bits are then encoded
as a skip map. A skip-map is one which keeps account of never
changing bit positions or those which rarely change. A bit position
which remains constant for all control words need not be taken
into account when compressing the control words. Instead, that
bit position can be just encoded once and remembered for all
control words. The control words contain do not cares along with
‘0’s and ‘1’s. The do not cares can assume any value, which makes
their existence important for compression purpose. It is impor-
tant to assign values to do not cares carefully that make them
suitable for compression with higher compression efficiency. We
resolve the do not care bits using vertex coloring. Then each slice
is compressed using bitmask based algorithm by selecting profit-
able parameters.

Algorithm 1 lists the major steps in compressing NISC control
words. Initially in step 1, the input is split into required slices as
discussed in Section 4.1. For each slice, the constant and less
frequently changing bits are removed to get reduced control
of NISC control words, INTEGRATION, the VLSI journal (2012), htt

dx.doi.org/10.1016/j.vlsi.2012.02.004

CW1

. .
 .

.

Control Word

Decoder 1

Decoder 2

Decoder 3

CW2

 3
C

om
pr

es
so

r 2

Compressor 1

K. Basu et al. / INTEGRATION, the VLSI journal] (]]]])]]]–]]] 5
words along with an initial skip map (Section 4.2).1 For each slice,
do not care values are resolved using Algorithm 3 as described in
Section 4.3. The resultant slices are compressed using a combina-
tion of bitmask based compression [4] (Section 4.4) and Run
Length Encoding (RLE) (Section 4.5). Finally, the compressed
control words are returned. The remainder of this section
describes each of these steps in detail.

Algorithm 1. NISC control word compression.
CWn

Control Words

Decompression EngineCompressed CW

C
om

pr
es

so
r

Fig. 6. Slicing of NISC control words for compression.

1 0 1 1 0 0 0 0

− 0 − − 0 0 0 0
1 1 1
0 0 1
1 1 1
0 0 1

Skip map− 0 − 1 0 0 0 0

1 0 1 1 0 0 0 X
0 0 0 1 0 0 0 X
Input: (i) control words with do not cares, I

(ii) number of slices n

(iii) threshold bits that can change t

Output: Compressed control words C

1. S[]¼slice_the_control_words(I)
2. forall s in S½� do

2.1 W[i]¼remove_constant_and_less_frequent_bits(s)

2.2 S[i]¼bitmask_aware_dont_care_resolve (W ½i�)

2.3 C[i]¼bitmask_RLE_compress (S½i�)
end
3. Return C
− 1 − 2 − − − −

0 0 0 1 0 X 0 0

0 0 1 1 0 X 0 0
1 0 0 1 0 0 X 0
0 0 1 0 0 0 X 0

1 1 0 0 0 0 X 0 0 1 1
1 1 0 0

1 0 1
0 1 0 Constant

bits

Conflict map with threshold 2

Fig. 7. Removal of constant and less frequently changing bits.
4.1. NISC word slices

As discussed earlier, each NISC control word is almost 90-bit
wide. As a result, it may not have the redundancy required for
profitable bitmask based compression. In order to introduce more
redundancy and matching among the control words, they are split
into slices. Since each slice is smaller than the original control
word, it is easier to match with a dictionary entry. Even if two
slices are slightly different, they can be matched using bitmasks.
Splitting of control words is illustrated in Fig. 6. In this example,
the input control word is split into three slices. The input
containing the control word slices is passed to the compressor.
The compressor reduces the control word size by applying the
Algorithm 1 and produces the compressed file. For example,
compressor 1 encodes the first slice of every control word. Later
each decoder fetches compressed words from different locations
in the memory. These compressed words are then decoded using
the dictionary stored on block RAM (BRAM). The decompressed
control word is then assembled from the slices to form the
original control word.

4.2. Encoding less frequently changing bits

A detailed analysis of the control word sequence reveals that
some bits are constant or change less frequently throughout the
code segment. Removal of such bits improves compression effi-
ciency and does not affect matches provided by rest of the bits.
Those bits can be remembered only once and need not be repeatedly
encoded for each and every sequence. The less frequently changing
bits are encoded by using an unused bitmask value as a marker
(01 in case of a 2-bit bitmask). A threshold number determines
the number of times that a bit can change in the given location
throughout the code segment. It is found that 10 to 15 is a good
threshold for the benchmarks used in our experiments. Algorithm 2
lists the steps in eliminating the constant bits and less frequently
changing bits. Initially the number of ones and zeros in each bit
position is calculated. In the next step only those bit positions that
change less than threshold t are considered in the initial skip map.
A skip map maintains the positions and corresponding values that
remain constant or almost constant for a set of binary instructions.
1 Skip map represents the bits that can be skipped from compression, and are

hardcoded.

Please cite this article as: K. Basu, et al., Bitmask aware compression o
p://dx.doi.org/10.1016/j.vlsi.2012.02.004
For any given control word if there are more than one bit position
changes, it is not profitable to encode all these bit changes. Taking
all these changes into account will not only complicate the encoding
process, but will also lead to decompression overhead. To avoid this
condition, the last step of the algorithm updates the initial skip
map by constructing a conflict map for each control word. The bit
position which causes the least conflict is retained for skipping.

Algorithm 2. Removal of less frequently changing bits.

Input: (i) Control Words with do not cares D,
(ii) Threshold t number of bits
Output: Skip Map S

S¼f
forall w in D do

forall bi, ith bit in w do
count_ones
count_zeros

end
end
create a skip_map of 0/1 or taken with count o threshold t.
forall w in D do

if w has a conflict with skip_map then
count the number of bits w conflicts with skip_map.

if conflict41 then
remove most conflict bit from previously calculated

skip_map.
end
return S

Fig. 7 shows an example control word sequence to demonstrate
bit reduction. Each control word is scanned for number of ones and
zeros in each bit position. The last four bit positions do not change
throughout the input thus they are removed from the input, storing
these bits in a skip map. Columns with bit changes less than
threshold (2 in this example), i.e., column 2 has less frequent
bits changes. In the final step conflict map is created (listed at
f NISC control words, INTEGRATION, the VLSI journal (2012), htt

dx.doi.org/10.1016/j.vlsi.2012.02.004

K. Basu et al. / INTEGRATION, the VLSI journal] (]]]])]]]–]]]6
the bottom part of the figure) representing the number of collisions.
The bit positions with collisions 0 or 1 are considered for skipping,
the remaining columns (column 4) are excluded from the initial skip
map. The skip map and the bits which need to be encoded are
shown on the right side of the figure. In this example, we have
converted do not cares into the constant bits with ‘0’s. The code
words with conflicts are taken care of using a conflict-map as shown
in Fig. 7. For example, in the second column, the constant-bit is 0,
while the fifth code word from the top has a 1 in that position. The
particular bit and its position are remembered in the conflict-map.
During decompression, when the skip-map is considered, the
conflict map takes care of such conflict bit positions in the code
words. It should be noted that there is a significant reduction in
control word size for compression.

4.3. Bitmask-aware do not care resolution

In a generic NISC processor implementation not all functional
units are involved in a given datapath, such functional units can be
either enabled or disabled. The compiler [3] inserts do not care bits
in such control words. These do not care values can take either a
value of ‘0’ or ‘1’. To obtain maximum compression, a compression
algorithm can utilize these do not care values efficiently, that is, they
should be assigned values to assist in maximal compression. One
such algorithm presented in [2] creates a conflict graph with nodes
representing unique control words and edges between them repre-
senting that these words cannot be merged. Application of minimal
k colors to these vertices results in k merged words. It is well known
fact that vertex coloring is a NP-Hard problem. Hence a heuristic
based algorithm proposed by Welsh and Powell [20] is applied to
color the vertices to obtain a dictionary. This algorithm is well suited
in reducing the dictionary size with exact matches. However, the
dictionary chosen by this algorithm might not yield a better bitmask
coverage, since the dictionary entries were selected based on direct
match and do not take the benefit of matching using bitmask.

An intuitive approach is to consider the fact that the dictionary
entries will be used for bitmask based matching during compres-
sion. Algorithm 3 describes the steps involved in choosing such a
dictionary. The algorithm allows certain bits that can be bit-
masked while creating a conflict graph. This reduces the diction-
ary size drastically. These bits that can be bitmasked are not used
to represent edges in the conflict graph, thus allowing the graph
to be colored with fewer colors. This results in dictionary size
A 0 0 0 X 1 1

2

5

8

B

C

D

1 0 0 X 1

0 0 0 1 1

0 1 1 X 0

BA

D C

0 0 0 1 1

1 0 0 X 1

0 1 1 X 0

Fig. 8. Bitmask aware do not care resolution. (a) control words, (b) traditional vertex co

to color in this figure legend, the reader is referred to the web version of this article.)

Please cite this article as: K. Basu, et al., Bitmask aware compression
p://dx.doi.org/10.1016/j.vlsi.2012.02.004
with smaller dictionary index bits and hence reduces the final
compressed code size. It may be noted that if the bits are already
set, merging the vertices retains the bits originating from the
most frequent words. This promises reduced code size as they
result in more direct matches.

Fig. 8 describes an example of do not care resolution of NISC
control words and a merging iteration. The input words and their
frequencies are as shown in Fig. 8(a). There are four inputs A, B, C
and D. Fig. 8(b) shows the scenario when we try to compress them
using traditional vertex coloring scheme. As can be seen, three
different colors are needed, which results in three dictionary entries.
On the other hand, as shown in Fig. 8(c), our method utilizes the
bitmask based compression mechanism in vertex coloring. As a
result, we could reduce the number of dictionary entries to 2.

Algorithm 3. Bitmask aware do not care resolution.
Input: (i) Unique input control words C ¼ fci,f ig,
(ii) number and type of bitmasks b, B¼{si,ti}
Output: merged control words M

forall u in C do
forall v in C do

if bit_conflict (u,v) cannot be bitmasked using B then
add (u,v) with cuv ¼ f u and (v,u) with cvu ¼ f v

end
end
colors¼wp_color_graph (G)
sort_on_frequencies (G)

forall clrAcolors do
M¼merge all the nodes with same color clr

Retain the bits of most frequent words while merging
end
Return M
4.4. Bitmask based compression

After the reduction of control words by removal of constant bits,
we are left with the reduced portion of the control words that need
to be compressed. These sequences of control words are then
compressed using bitmask based compression as we discussed in
Section 3.2. In general, the compression ratio depends mainly on
the instruction width, dictionary size and the number of bitmasks
used. A smaller instruction size results in more direct matches but
0

BA

D C

0 0 0 1 1

0 1 1 X 0

loring, and (c) Bitmask-aware vertex coloring. (For interpretation of the references

of NISC control words, INTEGRATION, the VLSI journal (2012), htt

dx.doi.org/10.1016/j.vlsi.2012.02.004

K. Basu et al. / INTEGRATION, the VLSI journal] (]]]])]]]–]]] 7
increases the number of words to compress. A larger dictionary size
can match more words replacing them with dictionary index but
at the cost of increased dictionary index bits. A larger number of
bitmasks results in more compressed words at the same time
requiring more bits to encode the bitmask information. Increasing
or decreasing any of the aforementioned parameters might result in
poor compression efficiency. Decreasing any of these will result in
smaller number of words that can be compressed. On the other
hand, increasing any of these might lead to an increase in the length
of the compressed words, to the extent that the final size of the
compressed sequence of instructions may exceed the original
uncompressed code size, thus nullifying the advantages of compres-
sion. Our approach splits the wider control words to achieve better
redundancy by employing multiple dictionaries.

The number of dictionary entries and the number and type
of bitmasks that are used to compress are decided first. For the
Mediabench benchmarks, the length of each control words was
around 90 bits, which when divided into three slices, resulted in
each slice having 30 bits. For compressing these, we use eight
dictionary entries per slice and at most two bitmasks (double bits)
to compress them. The masks can be fixed or sliding. The lemma
presented in [21] shows that our usage of 2-bit masks is appropriate
in this case. The dictionary selection algorithm follows in line with
that of [4]. We utilize a bit-saving dictionary selection method where
each node, representing each data set, stores a bit-saving representing
its frequency. Edge between any two nodes stores the bit-saving due
to bitmask. The bit-saving distribution of each nods is calculated,
and the most profitable nodes are included in the dictionary. This
algorithm helps in providing with a beneficial dictionary.
4.5. Run length encoding

Careful analysis of the control words reveals that they contain
consecutive repeating patterns. These control words will all match
to the same dictionary entry and hence, the bitmask based com-
pression [4] encodes such patterns using same repeated compressed
words. Instead we use a method in which such repetitions are
compressed using run length encoding (RLE). To represent such
encoding no extra bits are needed. An interesting observation leads
to the conclusion that bitmask value 0 is never used, because this
value means that it is an exact match and would have encoded using
zero bitmasks. For example, if we are using 2-bit masks, a mask of
00 simply signifies that the corresponding bits have never changed,
thus nullifying the utility of such masks. Similar conditions can be
obtained for higher length masks as well. Using this as a special
marker, these repetition of control words can be encoded. Thus,
a single compressed word can take care of all the compressed
control words.

Fig. 9 illustrates the bitmask-based RLE. The input contains
control word ‘‘0000 0000’’ repeating five times. In normal bit-
mask-based compression these control words will be compressed
with repeated compressed words, whereas our approach replaces
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0

0 1 0
0 1 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1

0 1 0
0 1 1

0 0 0 0 0 0 0 0 0 1 0
Input without RLE

0 1 0
0 0 10 0

0 1 1

with RLE

0 0 0 0 0 0 0 0

00

Dictionary

Fig. 9. An illustrative example of RLE with bitmask.

Please cite this article as: K. Basu, et al., Bitmask aware compression o
p://dx.doi.org/10.1016/j.vlsi.2012.02.004
such repetitions using a bitmask of ‘‘00’’. The number of repetition
is encoded as bitmask offset and dictionary bits combined
together. In this example, the bitmask offset is ‘‘10’’ and dic-
tionary index is ‘0’. Therefore, the number of repetition will be
‘‘100’’, i.e., 4 (in addition to the first occurrence). The compressed
words are run length encoded only if the savings made by RLE is
greater than the actual encoding. Compressing using bitmasks
without RLE requires 15 bits, however, our approach using RLE
requires 10 bits, thus providing a saving of 5 bits.

Application of RLE for compression might not always be
beneficial. For example, when there are only a few repetitions,
it is profitable not to employ RLE, since more bits may be needed
to compress using RLE than ordinary bitmask based compression.
It is obvious that RLE is only useful when the final length of the
compressed code is less than the compressed code length without
the application of RLE. We can mathematically derive the condi-
tion when application of RLE would be beneficial. Let there are
ðnþ1Þ repeating patterns in the compressed code, each consisting
of x bits. The initial compressed data before application of RLE is
n� x.2 Application of RLE should decrease the length of this
compressed data, and hence, the final data length should be less
than n� x. In bitmask based compression scheme, let b denote
the number of bits comprising the mask. For a 2-bit mask, b¼2;
let d be the number of bits to represent the dictionary, for a 64
entry dictionary, d¼6; and let y be the number of bits used to
represent the bitmask position numbers—for example, if each of
the control words are of length 32 bits and there are 2-bit masks
only on even-bit positions, then y¼4. Therefore, using RLE

compression, the bits required to compress a number of con-
secutive words using one RLE word is l¼ yþd. The number of
repetitions n can be represented as

n¼m� ð2l
�1Þþr ðiÞ

where m and r are non-negative integers. The maximum number
of words that can be compressed using one RLE string is 2l

�1.
Clearly, if possible, this case requires application of RLE m times
for the first part of right hand side of Eq. (i), i.e., m� 2l

�1. The
number of bits used to represent 2l

�1 strings in RLE is 2þ lþb.
Therefore, it is important to note that each application of RLE
needs to satisfy the following inequality, where the right hand
side represents the cost of using RLE and the left hand side the
cost when RLE is not used.

ð2l
�1Þ � x42þ lþb

For the last part of Eq. (i), i.e., r, RLE would be profitable if
r � x42þ lþb.
5. Decompression mechanism

This section describes the decompression architecture used in
NISC control words decompression. The basic decoding unit
follows the same structure as [4]. This is shown in Fig. 10. As
can be seen, the Lookup Table (LUT) provides the compressed
portion of the splitted data which is then processed for decom-
pression. Three different memory reads are necessary to read in
the three slices of compressed data from three locations. Since the
dictionary contents are fixed, a standard ASIC or FPGA implemen-
tation of a memory with multiple read ports (such as [22]) is
required. The decompression unit first checks whether the data is
compressed or not. If it is uncompressed, the data is then
decompressed just by removing the first bit without any dic-
tionary look up. If the input is compressed, there might be two
2 It is to be noted that we intentionally dropped one pattern of length x, since,

when RLE is applied, the first pattern remains unchanged.

f NISC control words, INTEGRATION, the VLSI journal (2012), htt

dx.doi.org/10.1016/j.vlsi.2012.02.004

1

Dictionary

Mask

00 or 01

01

Read
Index

Output BufferXOR

From LUT

Compressed
Codewords

Dictionary
Based

Uncompressed RLE

Decompression
Logic

Bitmask
based

Decompressed
Control Words

Fig. 10. Decompression of bitmask compressed data.

DEMUX

Output Buffer

Matching Flag Register

Compression Flag RegisterInput Data
Buffer

RLE
Decoder

Bit Location
Decoder

Bitmask
Decoder

Bypass

0−− − . . −

From Decoder nFrom Decoder 1

Less Frequent
Bits Skip Map

Constant Bits
Skip Map

Compressed Control Words

.

Fig. 11. Multi-dictionary based decompression engine.

90−bits original conrol word

Decompression
Engine 1

Decompression
Engine 2

Decompression
Engine 3

Control Word
Slice 1

Control Word
Slice 2

Control Word
Slice 3

30
bits

30
bits

30
bits

Fig. 12. Reconstruction from decompressed control words.

K. Basu et al. / INTEGRATION, the VLSI journal] (]]]])]]]–]]]8
cases. It is either compressed using simple dictionary or using
bitmask. Both cases are dealt separately as shown in Fig. 10. It is
to be noted that for bitmask based compression, a parallel dictionary
look up follows along with the mask generation. This parallel lookup
provides a faster decompression, thus reducing the overall perfor-
mance penalty. The special case of RLE decoder is shown in the
figure, where the mask ‘00’ indicates the presence of RLE. When
handling a RLE compressed date, the decompression engine finds it
being bitmask compressed. Upon looking at the mask value, 00, it
infers that the code has been compressed using RLE. Therefore, a
totally different path is utilized for decompression as shown by RLE

in Fig. 10. In the RLE unit, it captures the number of repetitions and
puts those uncompressed data in the output buffer. For example, if
the compressed word ‘‘00 10 000’’ as in Fig. 9, is input to the
decompression engine, it will look at the previous uncompressed
word, that is, ‘‘00000000’’ and repeat it four more times.

Now, we analyze the modification required for the decompres-
sion engine proposed in [4]. The decompression hardware consists of
multiple decoding units for each slice of compressed control words.
Fig. 11 shows one such decoding unit. Each decoder contains input
buffer to store the incoming data from memory. Based on the type of
compressed word, control is passed to the corresponding decode
unit. Each decoding engine has a skip map register to insert extra bits
that were removed during less frequently changing bit reduction. A
separate unit to toggle these bits handles the insertion of these
difference bits. This unit reads the offset within the skip map register
to toggle the bit and places it in the output buffer. All outputs from
decoding engine are then directed to the skip map for constant bits
which holds the completely skipped bits (bits that never change).
The output from constant bit register will be connected to controller
for execution. In case of PC changes, once the original branch address
is obtained the new control word locations (three locations for three
slices) locations are obtained using branch-target table (same as LAT

described in [5]). Such a table is also used in existing code compres-
sion techniques [4] that maintains a mapping between original
address and address at compressed binary.

Our decompression architecture is different from that used
by [2]. When [2] compresses the control words, they keep all the
different types of entries in the dictionary, so that each control
word can be matched with a dictionary entry. The primary
problem of this approach is that, the dictionary size remains
unknown (depending on the variation in each pattern), and hence
the number of BRAMs required in FPGA implementation becomes
variable. As a result, [2] have reported as high as nine BRAMs for
decompression of Mediabench benchmarks. On the other hand, in
our approach, the number of dictionary entries is fixed. Therefore,
whatever be the input pattern, there will be the same number of
bits reserved for creating the dictionary entry. As a result, the
number of BRAMs are always 1–3 in our case, which is signifi-
cantly less than the numbers reported by [2].
Please cite this article as: K. Basu, et al., Bitmask aware compression
p://dx.doi.org/10.1016/j.vlsi.2012.02.004
After all the three slices of control words are decompressed,
they are appended using the mechanism shown in Fig. 12.
6. Experiments

The effectiveness of our proposed compression technique is
measured using MediaBench benchmarks [2]. In particular we use
adpcmcoder, adpcmdecoder, crc32, dijkstra, sha, and fpmp3
programs. These applications are commonly used embedded
software in mobile, networking, security and telecom domains.
These benchmarks are also used in the existing control word
compression technique [2]. We evaluate the compression and
decompression performance against the compression approach
proposed by Gorjiara et al. [2] and original BMC [4]. We have
explored the suitability of the different parameters used in
different steps of our algorithm to find out the variation in
of NISC control words, INTEGRATION, the VLSI journal (2012), htt

dx.doi.org/10.1016/j.vlsi.2012.02.004

20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%
55.00%
60.00%
65.00%
70.00% m-BMC - op1 m-BMC - op2 m-BMC - op3 m-BMC - op4

Fig. 15. Our approach using multiple dictionaries.

Fig. 16. Effect of skip-maps on compression ratio.

K. Basu et al. / INTEGRATION, the VLSI journal] (]]]])]]]–]]] 9
compression performance. Finally, we compare the decompres-
sion penalty in terms of both memory requirement and perfor-
mance overhead of our approach with that of Gorijara et al. [2].

6.1. Compression performance

The benchmarks are compiled in release mode using NISC
compiler [3]. The profitable parameters selected for bitmask
based compression are determined by the width of the control
word. For example a reduced control word between 16 and 32
bits, dictionary size of 16, two bitmasks of each 2-bit sliding is
selected. For a control word less than 16 bits, dictionary size of 8,
single bitmask of 2-bit sliding is selected for compression.

Fig. 13 compares our approach (using three dictionaries) with
the existing bitmask based compression technique (BMC [4]).
Here, we have plotted the compression ratio obtained for differ-
ent Mediabench benchmarks using both the approaches. As
discussed earlier, a lower compression ratio indicates a better
compression performance. Our bitmask-based RLE approach (m-
BMC) combined with constant and less frequently changing bits
outperforms the existing bitmask based compression method [4]
by an average of 20–30%. It is obvious that since BMC [4] did not
use control word slicing, they had to compress larger set of
control words, with less redundancy, and hence inferior compres-
sion is obtained. Also, they did not use effective techniques like
bitmask aware do not care resolution or skip-maps.

Fig. 14 compares the compression ratio between the existing
multi-dictionary compression technique (GNISC-opt) proposed by
Gorjiara et al. [2] and our approach. Both approaches use three
dictionaries. On an average, our approach outperforms NISC
compression technique [2] by 15–20%.

6.2. Comparison with multiple dictionaries

Fig. 15 compares the compression ratios of our approach (m-BMC)
using single (m-BMC-op1) and multiple (two: m-BMC-op2, three:
m-BMC-op3, four: m-BMC-op4) dictionaries. We split the input
20.00%

25.00%

30.00%

35.00%

40.00%

45.00%
BMC m-BMC - our approach

Fig. 13. Bitmask-based compression versus our approach.

Fig. 14. Our approach versus existing NISC compression.

Please cite this article as: K. Basu, et al., Bitmask aware compression o
p://dx.doi.org/10.1016/j.vlsi.2012.02.004
control words based on the number of dictionaries used. For each
control word slice we select the profitable parameters mentioned in
Section 6.1. The three dictionary option clearly outperforms the other
combinations except in the case of sha and crc32 benchmarks, where
two and four dictionary options, respectively, result in better com-
pression ratio. Overall we find that using three dictionary option is
better for most of the benchmarks. The best performance is obtained
in the benchmark dijkstra, where we are able to reduce the final
control word size to almost 1

4th of the original size.
With lower number of dictionaries, it becomes difficult to find

redundancies in the control words. On the other hand, with
higher number of dictionaries, the number of sliced control
words to be compressed increases, leading to larger number of
compressed slices, and hence a direct improvement in the
compression ratio.

6.3. Effect of skip-map on compression performance

Fig. 16 compares the compression performance of the pro-
posed algorithm against the scenario where skip-map is not used.
As can be seen clearly, introduction of skip-map provides a better
compression performance. There are a couple of reasons behind
this. First, if skip map is not used, the constant bits are being
encoded over and over again for each of the control words, which
adds to the compressed control word length. Also, since the
constant bits are not removed, the length of the uncompressed
control words increases. As a result, length of the slices also
increases, thus reducing the redundancy for bitmask based
compression.

6.4. Effect of do not care resolution on compression efficiency

In our algorithm, we have used a bitmask-aware do not care
resolution technique as discussed in Section 4.3. In this section, we
try to show the effectiveness of our do not care resolution
algorithm by comparing with an equivalent compression algorithm
where all the do not care bits are replaced with all ‘0’s or all ‘1’s.
The results are shown in Fig. 17. It can be seen that our method
f NISC control words, INTEGRATION, the VLSI journal (2012), htt

dx.doi.org/10.1016/j.vlsi.2012.02.004

K. Basu et al. / INTEGRATION, the VLSI journal] (]]]])]]]–]]]10
provides a better compression compared to using all ‘0’s or all ‘1’s.
This is because we have carefully resolved the do not care bits so
that they create maximum advantage to the bitmask based
compression algorithm. However, in some cases, like fpmp3, the
difference is not significant due to two reasons. First, even with the
bitmask aware do not care resolution, those bits are converted to
values ‘0’ or ‘1’. Also, none of those bits are those are not the
positions where bitmasks are used.

6.5. Decompression overhead

Our approach automatically generates the Verilog based
decompression engine with selected compression parameters.
Since the decompression format and algorithm are fixed for all
the benchmarks, we have developed generic Verilog modules to
generate the decompression engine. These modules comprise of
input parameters such as the number of slices and the dictionary
entries. For each benchmark, these modules are linked with their
respective parameters. The dictionary size used in all the bench-
marks are small and limited. We used the lsi_10k target library
and 180 nm technology to synthesize using Synopsys Design
Compiler. The operating frequency obtained is 125 MHz.

FPGA implementation of our approach demands storing the
dictionaries in memory blocks or RAMs. Logical memories are
formed in FPGAs using one or more block RAMs depending on
their parameters. It should be noted that to reduce the cost of
FPGA implementation and to enhance the packaging capability,
the BRAM requirement should be as small as possible. FPGA
implementation of our approach shows that the BRAMs used to
store these dictionaries are fixed requiring 1 or 3 BRAMs for the
benchmarks, whereas the existing method (GNISC-opt) [2] uses
up to nine BRAMs (18 Kbits per BRAM), thus improving the RAM
utilization. Fig. 18 compares the number of on-chip BRAMs
required in our approach and the one proposed by [2] (best
results are shown for each of the benchmarks).

Addition of the decompression unit adds delay to the overall
execution performance. In this case, the compressed control
words from the LUT have to be decompressed first before
Fig. 17. Effect of bitmask-aware do not care resolution.

Fig. 18. Comparison of the number of 18 Kbits BRAMs required to store the

dictionary entries.

Please cite this article as: K. Basu, et al., Bitmask aware compression
p://dx.doi.org/10.1016/j.vlsi.2012.02.004
processing it. The decompression unit may introduce execution
delay in two scenarios. First, one extra cycle is required for every
conditional branch without delay slot filled. This penalty is also
incurred by the approach used in [2]. Additionally, in our case,
each uncompressed instruction requires a delay of one clock cycle
to fetch the entire instruction. The performance overhead is
measured as

Performance Overhead¼
Number of Extra Cycles

Number of Actual Cycles
ð2Þ

Our decompression engine incurs about 10% additional perfor-
mance overhead compared to the approach proposed by Gorijara
et al. [2]. In summary, compared to GNISC-opt [2], our approach
can significantly reduce memory requirements by enabling both
20–30% code size reduction of control words and 3–7 times
reduction in BRAMs for storing dictionaries with minor perfor-
mance penalty (decompression overhead).
7. Conclusions

This paper presented a bitmask based compression technique
to reduce the size of NISC control words by splitting and
compressing them using multiple dictionaries. We designed a
bitmask aware do not care resolution that produces dictionary
having large bitmask coverage with minimal and restricted
dictionary size. We developed an efficient RLE technique that
encodes the consecutive repetitive patterns to improve both
compression efficiency and decompression performance. An effi-
cient way of encoding constant and less frequently changing bits
was also developed to significantly reduce the control word size.
A suitable decompression architecture was proposed to reduce
the overall decompression penalty. Our approach improved com-
pression efficiency by 20–30% over the best known compression
technique [2], with significantly less memory overhead and minor
performance penalty.
Acknowledgments

This work was partially supported by NSF Grant CNS-0915376.
We would like to thank Dr. Bita Gorjiara and Dr. Mehrdad Reshadi
for their insightful comments and suggestions about NISC tech-
nology and control word compression.
References

[1] C. Murthy, P. Mishra, Bitmask-based control word compression for NISC
architecture, in: Proceedings of Great Lakes Symposium on VLSI, 2009,
pp. 321–326.

[2] B. Gorjiara, M. Reshadi, D. Gajski, Merged dictionary code compression for
FPGA implementation of custom microcoded PES, ACM Transactions Recon-
figurable Technology Systems 1 (2008) 1–21.

[3] M. Reshadi, No-Instruction-Set-Computer (NISC) Technology Modeling and
Compilation, Ph.D. Thesis, University of California Irvine, Irvine, CA, USA,
2007.

[4] S.W. Seong, P. Mishra, An efficient code compression technique using
application-aware bitmask and dictionary selection methods, in: Proceedings
of Design Automation and Test in Europe, 2007, pp. 582–587.

[5] A. Wolfe, A. Channin, Executing compressed programs on an embedded RISC
architecture, in: Proceedings of International Symposium on Microarchitec-
ture MICRO, 1992, pp. 81–91.

[6] IBM, CodePack: PowerPC Code Compression Utility User’s Manual, version
3.0, International Business Machines (IBM) Corporation, Armonk, NY, USA,
1998.

[7] H. Lekatsas, W. Wolf, SAMC: a code compression algorithm for embedded
processors, IEEE Transactions on CAD 18 (1999) 1689–1701.

[8] H. Lekatsas, J. Henkel, V. Jakkula, Design of an one-cycle decompression
hardware for performance increase in embedded systems, in: Proceedings of
Design Automation Conference, 2002, pp. 34–39.
of NISC control words, INTEGRATION, the VLSI journal (2012), htt

dx.doi.org/10.1016/j.vlsi.2012.02.004

K. Basu et al. / INTEGRATION, the VLSI journal] (]]]])]]]–]]] 11
[9] C. Lefurgy, P. Bird, I.-C. Chen, T. Mudge, Improving code density using
compression techniques, in: Proceedings of International Symposium on
Microarchitecture MICRO, 1997, pp. 194–203.

[10] S. Liao, S. Devadas, K. Keutzer, Code density optimization for embedded DSP
processors using data compression techniques, in: Proceedings of Advance
Research in VLSI, 1995, pp. 393–399.

[11] N. Ishiura, M. Yamaguchi, Instruction code compression for application
specific VLIW processors based of automatic field partitioning, in: Proceed-
ings of International Workshop on Synthesis and System Integration of
Mixed Information Technologies, 1997, pp. 105–109.

[12] M. Ros, P. Sutton, A hamming distance based VLIW/EPIC code compression
technique, in: CASES ’04: Proceedings of the 2004 International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, ACM, 2004,
pp. 132–139.

[13] J. Prakash, C. Sandeep, P. Shankar, Y. N. Srikant, A simple and fast scheme for
code compression for VLIW processors, in: Proceedings of Data Compression
Conference, 2003, p. 444.

[14] S. Nam, I. Park, C. Kyung, et al., Improving dictionary-based code compression
in VLIW architectures, IEICE Transactions on Fundamentals of Electronics,
Communications and Computer 82 (1999) 2318–2324.

[15] S.Y. Larin, T.M. Conte, Compiler-driven cached code compression schemes for
embedded ILP processors, in: Proceedings: 32nd Annual International Symposium
on Microarchitecture, Haifa, Israel, IEEE Computer Society Press, 1999, pp. 82–92.

[16] Y. Xie, W. Wolf, H. Lekatsas, Code compression for VLIW processors using
variable-to-fixed coding, in: ISSS ’02: Proceedings of the 15th International
Symposium on System Synthesis, ACM, New York, NY, USA, 2002, pp. 138–143.

[17] C.H. Lin, Y. Xie, W. Wolf, Lzw-based code compression for VLIW embedded
systems, in: DATE ’04: Proceedings of the Conference on Design, Automation and
Test in Europe, IEEE Computer Society, Washington, DC, USA, 2004, pp. 76–81.

[18] M. Reshadi, D. Gajski, B. Gorjiara, No Instruction Set Computer (NISC)
Technology, Center for Embedded Computer Systems, University of California
Irvine, Irvine, CA, USA, 2007.

[19] Xilinx, Inc., Virtex Series Configuration Architecture User Guide, Version 1.7,
Xilinx, Inc., San Jose, CA, USA, 2004.

[20] T. Jensen, B. Toft, Graph Coloring Problems, Discrete Mathematics and
Optimization, Wiley-Interscience, New York, 1995.

[21] K. Basu, P. Mishra, Test data compression using efficient bitmask and dictionary
selection methods, IEEE Transactions on VLSI 18 (2010) 1277–1286.

[22] C.E. LaForest, J.G. Steffan, Efficient multi-ported memories for FPGAs, in:
Proceedings of International Conference on Field Programable Gate Arrays,
2010, pp. 41–50.
Kanad Basu received the B.E. degree from the Depar-
ment of Electronics and Telecommunication Engineer-
ing, Jadavpur University, India. He is currently a
graduate student at the Embedded Systems Lab in
the Department of Computer and Information Science
and Engineering, University of Florida. His research
interests include functional and structural testing,
design for test and post-silicon validation. He received
the Best Paper Award at the International Conference
on VLSI Design, 2011.
Please cite this article as: K. Basu, et al., Bitmask aware compression o
p://dx.doi.org/10.1016/j.vlsi.2012.02.004
Chetan Murthyreceived the B.E. degree with the
Department of Information Science and Engineering,
People’s Education Society Institute of Technology,
Visvesraiah Technological University, India, in 2004,
and the M.S. degree from the Department of Computer
and Information Science and Engineering, University of
Florida, Gainesville, in 2008. He then joined Huawei
Technologies India Private Ltd., Bangalore, India. Since
Spring 2009, he has been working as a Packet Forwarding
Engineer with Juniper Networks, Inc., Sunnyvale, CA.
Prabhat Mishra received the B.E. degree from Jadav-
pur University, India, the M.Tech. degree from the
Indian Institute of Technology, Kharagpur, and the
Ph.D. degree from the University of California,
Irvine—all in computer science. He is currently an
Associate Professor with the Department of Computer
and Information Science and Engineering, University of
Florida. His research interests include design automa-
tion of embedded systems, energy-aware computing
and hardware verification. He has published four
books, nine book chapters and more than 80 research
papers in premier journals and conferences. His

research has been recognized by several awards

including an NSF CAREER Award in 2008, two best paper awards (VLSI Design
2011 and CODES+ISSS 2003), and 2004 EDAA Outstanding Dissertation Award
from the European Design Automation Association. Dr. Mishra currently serves as
an Associate Editor of ACM Transactions on Design Automation of Electronic
Systems, IEEE Design & Test of Computers, Journal of Electronic Testing, Guest
Editor of IEEE Transactions of Computers, and as a program/organizing committee
member of several ACM and IEEE conferences.
f NISC control words, INTEGRATION, the VLSI journal (2012), htt

dx.doi.org/10.1016/j.vlsi.2012.02.004

	Bitmask aware compression of NISC control words
	Introduction
	Related work
	Background and motivation
	No instruction set computer (NISC)
	Bitmask-based compression

	Control word compression using bitmasks
	NISC word slices
	Encoding less frequently changing bits
	Bitmask-aware do not care resolution
	Bitmask based compression
	Run length encoding

	Decompression mechanism
	Experiments
	Compression performance
	Comparison with multiple dictionaries
	Effect of skip-map on compression performance
	Effect of do not care resolution on compression efficiency
	Decompression overhead

	Conclusions
	Acknowledgments
	References

