
Synergistic Integration of Dynamic Cache Reconfiguration and Code Compression in

Embedded Systems
*

Hadi Hajimiri, Kamran Rahmani, Prabhat Mishra
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida, USA

{hadi, kamran, prabhat}@cise.ufl.edu

Abstract—Optimization techniques are widely used in embedded

systems design to improve overall area, performance and energy

requirements. Dynamic cache reconfiguration is very effective to

reduce energy consumption of cache subsystems which accounts

for about half of the total energy consumption in embedded sys-

tems. Various studies have shown that code compression can

significantly reduce memory requirements, and may improve

performance in many scenarios. In this paper, we study the chal-

lenges and associated opportunities in integrating dynamic cache

reconfiguration with code compression to retain the advantages

of both approaches. Experimental results demonstrate that syn-

ergistic combination of cache reconfiguration and code compres-

sion can significantly reduce both energy consumption (65% on

average) and memory requirements while drastically improve

the overall performance (up to 75%) compared to dynamic cache

reconfiguration alone. *

1. INTRODUCTION

Energy conservation has been a primary optimization ob-
jective in designing embedded systems as these systems are
generally limited by battery lifetime. Several studies have
shown that memory hierarchy accounts for as much as 50% of
the total energy consumption in many embedded systems [1].
Dynamic cache reconfiguration (DCR) and code compression
are two of the extensively studied approaches in order to
achieve energy savings as well as area and performance gains.

Different applications require highly diverse cache con-
figurations for optimal energy consumption in the memory
hierarchy. Unlike desktop-based systems, embedded systems
are designed to run a specific set of well-defined applications.
Thus it is possible to have a cache architecture that is tuned
for those applications to have both increased performance as
well as lower energy consumption. Since too many cache con-
figurations are possible, the challenge is to determine the best
cache configuration (in terms of total size, associativity, and
line size) for a particular application. Studies have shown that
cache tuning can achieve 53% memory-access-related energy
savings and 30% performance improvement [2].

The use of high-level programming languages coupled
with RISC instruction sets leads to a larger memory footprint
and increased area/cost and power requirements, all of which
are important design constraints in most embedded applica-
tions. Code compression is clearly beneficial for memory size
reduction because it reduces the static memory size of execut-
able code. Several code compression techniques have been
proposed for reducing instruction memory size in low cost

* This work was partially supported by NSF grant CNS-0915376.

978-1-4577-1221-0/11/$26.00 ©2011 IEEE

embedded applications [3]. The basic idea is to store instruc-
tions in compressed form and decompress them on-the-fly at
execution time. More importantly, code compression could
also be beneficial for energy by reducing memory size and the
communication between memory and the processor core [4].

Design of efficient compression techniques needs to con-
sider two important aspects. First, the compressed code has to
support the possibility of starting the decompression during
execution at several points inside the program (i.e., branch
targets). Second, since decompression is performed on-line,
during program execution, decompression algorithms should
be fast and power efficient to achieve savings in memory size
and power, without compromising performance. We explore
various compression techniques (including dictionary-based
compression, bitmask-based compression and Huffman cod-
ing) that represent a trade-off between compression perfor-
mance and decompression overhead.

It is expected that by compressing instructions the cache
behavior of programs is no longer the same. Thus in order to
have the optimal cache configuration, more analysis should be
done including hit/miss behavior of the compressed programs.
In other words, cache reconfiguration needs to be aware of
code compression to obtain best possible area, power and per-
formance results. In this paper, we present an elaborate analy-
sis of combining two optimization techniques: dynamic cache
reconfiguration and code compression. Our experimental re-
sults demonstrate that the combination is synergistic and
achieves more energy savings as well as overall performance
compared to DCR and code compression alone.

The rest of the paper is organized as follows. Section 2
provides an overview of related research activities. In Section
3 we describe our compression-aware cache reconfiguration
methodology. Section 4 presents our experimental results.
Finally, Section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1 Dynamic Cache Reconfiguration (DCR)

In power constrained embedded systems, nearly half of
the overall power consumption is attributed to the cache sub-
system [1]. Applications require vastly different cache re-
quirements in terms of cache size, line size, and associativity.
Research shows that specializing the cache to application’s
needs can significantly reduce energy consumption [2]. Fig. 1
illustrates how energy consumption can be reduced by using
inter-task (application-based) cache reconfiguration in a sim-
ple system supporting three tasks. In application-based cache
tuning, DCR happens when a task starts its execution or it
resumes from an interrupt (either by preemption or when exe-

cution of another task completes) and the same cache for the
application gets chosen no matter if it is starting from the be-
ginning or resuming anywhere in between. Fig. 1 (a) depicts a
traditional system and Fig. 1 (b) depicts a system with a re-
configurable cache. For the ease of illustration let’s assume
cache size is the only reconfigurable parameter of cache (as-
sociativity and line size are ignored). In this example, Task1
starts its execution at time P1. Task2 and Task3 start at P2 and
P3 respectively. In a traditional approach, the system always
executes using a 4096-byte cache. We call this cache as base
cache throughout the paper. Base cache is the best possible
cache configuration optimized for all the tasks. With the op-
tion of reconfigurable cache, Task1, Task2, and Task3 execute
using 1024-byte cache starting at P1, 8192-byte cache starting
at P2, and 4096-byte cache starting at P3 respectively.
Through proper selection of cache size for each task the sys-
tem can achieve significant amount of energy savings as well
as performance gains compared to using only the base cache.

Fig. 1: DCR for a system with three tasks

The inter-task DCR problem is defined as follows. Con-
sider a set of n applications (tasks) A = {a1, a2, a3, ... , an} in-
tended to run on a configurable cache architecture capable of
supporting m possible cache configurations C = {c1, c2, c3, ... ,
cm }. We define e(cj , ai) as the total energy consumed by run-
ning application ai on the architecture with cache configura-
tion cj. We also define co C as the optimal cache configura-
tion for application ai, such that e(co, ai) e(cj, ai), cj C.
Through exhaustive exploration of all possible configurations
of C = {c1, c2, c3, ... , cm}, best energy optimal cache configu-
ration for each application can be found.

Dynamic cache reconfiguration has been extensively
studied in several works [5] [6] [7] [8]. The reconfigurable
cache architecture proposed by Zhang et al. [6] determines the
best cache parameters by using Pareto-optimal points trading
off energy consumption and performance. Their method im-
poses no overhead to the critical path, thus cache access time
does not increase. Chen and Zou [9] introduced a novel recon-
figuration management algorithm to efficiently search the
large design space of possible cache configurations for the
optimal one. None of these approaches consider the effects of
compressed code on cache reconfiguration.

DCR can be viewed as a technique that tries to squeeze
cache size with other cache parameters to reduce energy con-
sumption without (or with minor) performance degradation.
Smaller caches contribute less static power but may increase
cache misses which can lead to increased dynamic power and
performance degradation (longer execution time thus higher
energy consumption). Therefore, the smallest possible cache
may not be a feasible solution in many cases. DCR techniques
find the best cache that fits the application by exploring cache
configurations using various schemes. In this paper, we show
that code compression which significantly reduces the code
size can also help the cache reconfiguration technique to
choose relatively smaller cache sizes, smaller associativity, or
smaller line size without performance degradation, therefore,
reduces cache energy consumption significantly.

The configurable caches used in our work are based on
the architecture described in [10]. The underlying cache archi-
tecture contains four separate banks that can operate as four
separate ways. Special configuration registers are used to in-
form the cache tuner – a custom hardware or a lightweight
process – to concatenate ways such that the associativity can
be altered. The special registers may also be configured to
shut down ways to vary the cache size. Similarly, by configur-
ing the fetch unit to fetch cache lines in various lengths, we
can adjust the line sizes. Cache reconfiguration time and ener-
gy overhead of the reconfigurable hardware is negligible [10].

2.2 Code Compression in Embedded Systems

Various code compression algorithms are suitable for
embedded systems, i.e., provide good compression efficiency
with minor (acceptable) or no decompression overhead. Wolfe
and Chanin [11] were among the first to propose an embedded
processor design that incorporates code compression. Xie et
al. [12] introduced a compression technique capable of com-
pressing flexible instruction formats in VLIW architectures.
Seong et al. [13] modified dictionary-based compression
(BMC) technique using bitmasks which improved compres-
sion efficiency without introducing any additional decompres-
sion overhead. Lin and Xie [14] proposed LZW-based algo-
rithms to compress branch blocks. Recently, Rawlins et al.
[15] used compressed programs in their approach of combined
loop caching with DCR. Their approach has several limita-
tions. They primarily focus on loop caching which may not be
applicable in many embedded systems due to intrusive addi-
tion of another level of cache. Furthermore, due to emphasis
on loop caching, interactions between compression and DCR
was not explored in detail. In this paper we provide compre-
hensive analysis of how compression and DCR synergistically
interact with each other as well as energy-performance trade-
offs available for system designer.

Traditional code compression and decompression flow is
illustrated in Fig. 2 where the compression is done offline
(prior to execution) and the compressed program is loaded
into the memory. The decompression is done during the pro-
gram execution (online) and as shown in Fig. 7 it can be
placed before or after cache. It is possible to place the decom-
pression unit between two levels of cache as well, if the sys-
tem has multi-level cache hierarchy.

1024

2048

4096

execution sequence

ca
ch

e
si

ze
 (

b
y
te

s)

Task1 Task2 Task3

8192

1024

2048

4096

execution sequence

8192

b) A system with reconfigurable cache

a) A traditional system

P1 P2 P3

P1 P2 P3

ca
ch

e
si

ze
 (

b
y
te

s)

In this paper we explore three compression techniques:
dictionary-based compression (DC), bitmask-based compres-
sion (BMC) [13], and Huffman coding. DC and Huffman cod-
ing represent two extremes. DC is a simple compression tech-
nique and therefore produces moderate compression but de-
compression is very fast. On the other hand, Huffman coding
is considered to be one of the most efficient compression
techniques but has higher decompression overhead/latency.
DC and Huffman are widely used but BMC is a recent en-
hancement of DC that enables more matching patterns. Fig. 3
shows the generic encoding formats of bitmask-based com-
pression technique for various numbers of bitmasks. Com-
pressed data stores information regarding the bitmask type,
bitmask location, and the mask pattern itself. The bitmask can
be applied in different places in a vector and the number of
bits required for indicating the position varies depending on
the bitmask type. Bitmasks may be sliding or fixed. A fixed
bitmask can be applied to fixed locations, such as byte bound-
aries. However, sliding bitmasks can be applied anywhere in
the code vector.

The main advantage of bitmask-based compression over
traditional dictionary-based compression is the increased
matching patterns. In dictionary-based compression, each vec-
tor is compressed only if it completely matches with a dic-
tionary entry. Fig. 4 illustrates an example of bitmask-based
compression in which it can compress up to six data entries
using bitmask-based compression, whereas using only dic-
tionary-based compression would compress only four entries.
The example in Fig. 4 uses only one bitmask. In this case,
vectors that match exactly a dictionary entry are compressed
with 3 bits. The first bit represents whether it is compressed
(using 0) or not (using 1). The second bit indicates whether it
is compressed using bitmask (using 0) or not (using 1). The
last bit indicates the dictionary index. Data that are com-
pressed using bitmask requires 8 bits. The first two bits, as
before, represent if the data is compressed, and whether the
data is compressed using bitmasks. The next three bits indi-
cate the bitmask position and followed by two bits that indi-
cate the bitmask pattern.

In this example, the compression ratio is 80%. Compres-
sion ratio (CR), widely accepted as a primary metric for
measuring the efficiency of code compression, is defined as:

Bitmask selection and dictionary selection are two major
challenges in bitmask-based code compression. Seong et al.
[13] have shown that the profitable bitmasks to be selected for
code compression are 1s, 2s, 2f, 4s, and 4f (s and f stand for
sliding and fixed bitmasks respectively). Since the decom-
pression engine must be able to start execution from any of
jump targets, branch targets should be aligned in the com-
pressed code. In addition, the mapping of old addresses (in the
original uncompressed code) to new addresses (in the com-
pressed code) is kept in a jump table.

3. COMPRESSION-AWARE DCR

It is a major challenge to optimize both performance and
energy consumption simultaneously. In case of DCR,
tradeoffs between performance and energy consumption
should be considered in order to choose the most profitable
cache configuration for each application. Fig. 5 shows an ex-
ample of performance-energy consumption tradeoff using
Anagram benchmark. Each dot represents a cache configura-
tion showing its corresponding energy consumption and total
execution time of the task. By plotting all cache configura-
tions in performance-energy consumption graph (based on
time and energy consumption from simulation results) we can
determine Pareto optimal points representing feasible alterna-
tives. For instance, increasing cache line or associativity can
improve performance and may increase energy consumption
as well. High performance alternatives will sacrifice some
amounts of energy while selecting energy saving options
would have lower performance. The remainder of this section
describes how to combine the advantages of both compression
and dynamic reconfiguration.

Fig. 4: An example of bitmask-based code compression

bitmask position

00000000 → 0 1 0
10000010 → 1 10000010
00000010 → 0 0 110 10 0

01000010 → 0 1 1

01001110 → 1 01001110

01011010 → 0 0 011 11 1

00001100 → 1 00001100

01000010 → 0 0 1

11000000 → 1 11000000

00000000 → 0 1 0

bitmask pattern

 Original program

Compressed program

Index Content

0 00000000

1 01000010

Dictionary

0 – use bitmask

1 – no action

0 – compressed

1 – uncompressed

Format for Uncompressed Code

Decision

(1-bit) Uncompressed Data

Format for Compressed Code

Decision
(1-bit)

of mask
patterns

Mask

Type
Location

Mask
pattern

…

Dictionary
Index

 Extra bits for considering mismatches

Fig. 3: Encoding format for incorporating mismatches

Fig. 2: Traditional code compression methodology

Application

Program
(binary)

Compressed

Code

Memory

Compression

Algorithm

Decompression

Hardware

+

Cache Hierarchy

Fetch and
Execute

Processor

3.1 Motivation

A reconfigurable cache can be viewed as an elastic cache
with flexible parameters such as cache size, line size, and as-
sociativity. The dynamic reconfiguration technique exploits
the elasticity of such caches by selecting a profitable cache
configuration which is capable of maintaining the critical por-
tion of the application to reduce energy consumption. Choos-
ing smaller caches that fail to store the critical portion of the
program may lead to increased cache misses thus longer exe-
cution time and eventually escalation in energy consumption.
However, it is possible that the cache reconfiguration method
may find a cache configuration that increases the execution
time of the application in spite of reduced energy consump-
tion. This may not be an issue for systems without real-time
constraints but timing constraints in real-time applications
limit use of such cache reconfiguration techniques. Integrating
code compression with cache reconfiguration resolves this
problem by effectively shrinking the program size in order to
fit the critical portion of the application into a smaller cache.

Fig. 6 illustrates different caches for a real-time embed-
ded system with a set of applications. Associativity is ignored
for the ease of illustration. The horizontal and vertical axis
show different possibilities of cache size and line size, respec-

tively. Cache1 is the optimized base cache chosen for the
system which is used for all applications and will have the
minimal energy consumption while ensuring that no deadlines
will be missed. Cache2 is the cache selected by dynamic re-
configuration technique (with no compression) to reduce the
energy consumption of this application. But to ensure real-
time (deadline) constraints, low energy cache alternatives may
get rejected because of longer execution times (critical portion
of applications may not fit, for example). Incorporating com-
pression into DCR would lead to selection of Cache3. Apply-
ing compression will help dynamic reconfiguration to perfect-
ly fit the critical portion of the application into smaller cache
thus gaining even more energy savings without increasing the
execution time.

3.2 Compression-Aware DCR

AlgorithmAlgorithm 1 outlines the major steps in our
cache configuration selection in the presence of compressed
applications. The algorithm collects simulation results for all
possible cache configurations (cache sizes of 1KB, 2KB,
4KB, and 8KB; associativity of 1, 2, 4-way; cache line sizes
of 16, 32, 64). It finds the best energy optimal cache configu-
ration for each application through exhaustive exploration of
all possible cache configurations of C = {c1, c2, c3, ... , cm }.
Number of simulation cycles for each run is collected based
on the simulation results. The energy model of [6] is used to
calculate the energy consumption using the cache hit and miss
statistics. The algorithm finally constructs the Pareto optimal
alternatives and returns it in a list. The most energy efficient
cache configuration among all Pareto optimal alternatives
which satisfies timing requirements of the application is cho-
sen next. Suppose there are two cache configurations, C1 with
execution time of 2 million cycles and energy consumption of
5 mJ and C2 with execution time of 1.8 million cycles and
energy consumption of 6 mJ, available in the Pareto optimal
list of alternatives. If the task has to be done in 1.9 million
cycles, the faster alternative (C2) gets chosen. If the timing
requirement of the task is not constrained by 2 million cycles,
the more energy efficient cache alternative (C1) gets selected.

The algorithm is similar to traditional DCR but uses
compressed code. Therefore the simulation/profiling infra-
structure needs to have decompression unit to provide the

Fig. 5: An example of performance-energy consumption

tradeoff using Anagram benchmark (Pareto optimal alterna-

tives are connected using dashed lines)

Fig. 6: Different caches used in different scenarios

Cache1: conventional system without reconfiguration,

Cache2: only dynamic reconfiguration (no compression),

Cache3: both dynamic reconfiguration and compression

0

20

40

60

80

100

120

1.8 3.8 5.8 7.8 9.8 11.8

Ex
e

cu
ti

o
n

 T
im

e
 (

M
ill

io
n

s
o

f
cy

cl
e

s)

energy consumption (milli J)

1024 819240962048

16

32

64

cache size

li
n
e

si
ze

Cache1 Cache2 Cache3

Algorithm 1: Finding Pareto optimal cache configurations

Input: Compressed code

Output: List of Pareto optimal cache alternatives

Begin

 li = an empty list to store cache alternatives

 for s = cache sizes of 1KB, 2KB, 4KB, and 8KB do

 for a = associativity of 1,2,4-way do

 for l = cache lines of 16,32,64 do

 do cycle accurate simulation for cache Cs,a,l ;

 ts,a,l = simulation cycles;

 es,a,l = energy consumption of the cache subsystem;

 add the triple (Cs,a,l, ts,a,l, es,a,l) to li;

 end for

 end for

 end for

 return Pareto optimal points in li;

end

ability of decoding compressed instructions. For example, in
our case, we implemented and placed the required decompres-
sion routines/functions for respective compression algorithms
in Simplescalar simulator [16].

Since we consider systems with only one level of recon-
figurable cache architecture, number of cache reconfigurations
is small. So we can exhaustively explore all possible configu-
rations in a reasonable time. Since the reconfiguration of as-
sociativity is achieved by way concatenation as described in
Section 3.1, 1KB L1 cache can only be direct-mapped as other
three banks are shut down. For the same reason, 2KB cache
can only be configured to direct-mapped or 2-way associativi-
ty. Therefore, there are 18 (=3+6+9) configuration candidates
for L1.

3.3 Placement of Decompression Hardware

Fig. 7 shows two different placement of the decompres-
sion unit. In pre-cache placement the memory contains com-
pressed code and instructions are stored in cache in original
form. Whereas, in the post-cache placement the decompres-
sion unit is placed between cache and processor thus both
memory and cache contain compressed instructions.

Our studies show that having the pre-cache placement has
very little effect on energy and performance of cache. In this
case uncompressed instructions are stored in the cache and
when cache miss occurs, the cache controller asks the decom-
pression unit to provide a block of instructions. In majority of
the cases the decompression hardware requires one clock cy-
cle in pipelined mode (as shown in Fig. 7), so one clock cycle
will be added to the latency of entire block fetch. In rare cas-
es, e.g., when the first instruction of the block is not com-
pressed, it will introduce two cycle penalty since it will take
two cycles to fetch and decompress the instruction [17]. As
demonstrated in Fig. 8, the energy consumption of cache in
the pre-cache placement is almost the same as the case when
there is no compression involved. So the best choice is to use
post-cache placement to achieve maximum performance as
well as minimum energy consumption.

Incorporating compression, cache miss penalty caused by
memory fetch latency is reduced because of improved band-
width (since compressed code is smaller). In addition, off-chip
access energy (the buses to main memory and memory access)
is also reduced since the decompression engine reads com-
pressed code from memory resulting in lower traffic to main
memory. However, post-cache placement can introduce sig-
nificant performance overhead to the system. Seong et al. [13]
presented a bitmask-based compression technique that adds no
penalty to the system performance using pipelined one-cycle
decompression engine with negligible power requirement.
Using this decompression engine makes it practical to place

the decompression unit after cache (post-cache placement)
and benefit from the compressed code stored in the cache.

In the context of embedded systems one of the main goals
is maximizing energy savings while ensuring the system will
meet applications requirements. Usually, choosing a cache
configuration for energy savings may result in performance
degradation. However, the synergistic combination of cache
reconfiguration and code compression enables energy savings
without loss of performance. Our proposed methodology pro-
vides an efficient and optimal strategy for cache tuning based
on static profiling using compressed programs.

4. EXPERIMENTS

4.1 Experimental Setup

In order to quantify compression-aware cache configura-
tion tradeoffs, we examined cjpeg, djpeg, epic, adpcm (raw-
caudio and rawdaudio), g.721 (encode, decode) benchmarks
from the MediaBench [18] and dijkstra, patricia, crc32,
bitcnts from MiBench [19] compiled for the Alpha target ar-
chitecture. All applications were executed with the default
input sets provided with the benchmarks suites.

Three different code compression techniques including
bitmask-based, dictionary-based and Huffman code compres-
sion were used. To achieve the best attainable compression
ratios, in bitmask-based compression, for each application we
examined dictionaries of 1 KB, 2KB, 4KB, and 8 KB. Similar
to Seong et al. [13] we tried three mask sets including one 2-
bit sliding, 1-bit sliding and 2-bit fixed, and 1-bit sliding and
2-bit fixed masks. Similarly for dictionary-based and Huffman
compression we used 0.5 KB, 1KB, 2KB, 4KB, and 8 KB
dictionary sizes with 8 bits, 16 bits and 32 bits word sizes. We
found out that dictionary size of 2 KB and word size of 16 bits
are the best choices for this set of benchmarks. The reason is
that using 8 bits words increases the number of compression
decision bits and using 32 bits word size decreases the words
frequencies significantly. Hence, as simulation results
showed, 16 bits word size is the best choice.

Code compression is performed offline. In order to ex-
tract the code (instruction) part from executable binaries, we
used ECOFF (Extended Common Object File Format) header
files provided in SimpleScalar toolset [16]. We placed the

Fig. 7: Different placement of decompression unit

Fig. 8: The impact of pre-cache placement of decompres-

sion engine on cache energy – djpeg benchmark

0

0.5

1

1.5

2

2.5

3

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (m

il
li

 J)

BMC pre-cache placement Uncompressed

Processor Instruction
Cache

Decompression Unit

a) pre-cache placement

Processor Instruction
Cache

Decompression Unit

b) post-cache placement

Main

Memory

Main

Memory

compressed code back into binary files so that they can be
loaded into the simulator.

We utilized the configurable cache architecture developed
by Zhang et al [6] with a four-bank cache of base size 4 KB,
which offers sizes of 1 KB, 2 KB, and 4 KB, line sizes rang-
ing from 16 bytes to 64 bytes, and associativity of 1-way, 2-
way, and 4-way. For comparison purposes, we used the base
cache configuration set to be a 4 KB, 4-way set associative
cache with a 32-byte line size, a reasonably common configu-
ration that meets the average needs of the studied benchmarks.

To obtain cache hit and miss statistics, we modified the
SimpleScalar toolset [16] to decode and simulate compressed
applications. We implemented and placed the required de-
compression routines/functions for respective compression
algorithms in Simplescalar simulator. We considered the la-
tency of decompression unit carefully. Decompression unit
can decompress the next instruction in one cycle (in pipelined
mode) if it finds the entire needed bits in its buffer. Otherwise,
it takes one cycle (or more cycles, if cache miss occurs) to
fetch the needed bits into its buffer and on more cycle to de-
compress the next instruction. Correctness of the compression
and decompression algorithms was verified by comparing the
outputs of compressed applications with uncompressed ver-
sions. The performance overhead of decompression includes
decompression unit buffer flush overhead due to jumps, and
variable latency of memory reads in each block fetch (because
of variable length compressed code). These overhead are neg-
ligible according to the experimental results.

We applied the same energy model used in [6], which
calculates both dynamic and static energy consumption,
memory latency, CPU stall energy, and main memory fetch
energy. The energy model was modified to include decom-
pression energy. We updated the dynamic energy consump-
tion for each cache configuration using CACTI 4.2 [20]. Uti-
lizing Perl scripts, the design space of 18 cache configurations
is exhaustively explored during static analysis to determine
the performance, and energy-optimal cache configurations for
each benchmark.

4.2 Energy Savings

Energy consumption for several benchmarks from the
MediaBench and MiBench in different approaches are ana-
lyzed: a fixed base cache configuration, bitmask-based com-
pression without utilizing DCR (BMC only), DCR without
compression (DCR only), dictionary-based compression with
DCR (DC+DCR), Huffman coding with DCR (Huff-
man+DCR), and bitmask-based compression with DCR
(BMC+DCR). The most energy efficient cache configuration

found by exploration in each technique is considered for com-
parison. Fig. 9 presents energy savings for the instruction
cache subsystem. Energy consumption is normalized to the
fixed base cache configuration such that value of 100% repre-
sents our baseline. Energy savings in the instruction cache
subsystem ranges from 10% to 76% with an average of 52%
for utilizing only DCR. As we expected, due to higher de-
compression overhead, Huffman (when combined with DCR)
achieves lower energy savings compared to BMC virtually for
all benchmarks. Energy savings in DC+DCR approach are
even lower than Huffman+DCR as a result of moderate com-
pression ratio by DC. Incorporating BMC in DCR increases
energy savings up to 48% – on top of 10% to 76% energy
savings obtained by DCR only – without any performance
degradation. Our methodology achieves on average 65% en-
ergy savings of the cache subsystem.

Fig. 10 illustrates an example of performance-energy
consumption tradeoffs for both uncompressed and compressed
(using BMC) cases for rawcaudio (adpcm-enc) benchmark. It
can be observed that for every possible configuration for the
uncompressed program there is an alternative which has a
better performance and lower energy requirement if the pro-
gram is compressed. This observation shows that compres-
sion-aware DCR leads to better design choices.

Another observation we have made is that without DCR,
applying compression on an application (which executes using
base cache configuration that already fits the critical portion
of the application) will not gain noticeable energy savings.
However, compression-aware DCR effectively uses the ad-

Fig. 9: Energy consumption of the selected "minimal-energy cache" normalized to the base cache

Fig. 10: Performance-Energy consumption tradeoff for

compressed and uncompressed codes using rawcaudio

(adpcm-enc) benchmark

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

cjpeg djpeg epic_encode rawcaudio rawdaudio patricia dijkstra crc32 bitcnts g721_enc g721_dec Average

N
o

rm
a

li
ze

d
 E

n
e

rg
y

 C
o

n
su

m
p

ti
o

n

BMC only DCR only DC+DCR Huffman+DCR BMC+DCR

0

0.5

1

1.5

2

2.5

3

3.5

6.4 6.6 6.8 7 7.2 7.4 7.6

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
m

il
li

 J
)

Execution time (Millions of cycles)

BMC

uncompressed

vantage of reduced program size achieved by compression to
choose smaller cache size, associativity, or line size and yet fit
critical portion of programs. Therefore, compression aware-
DCR can achieve more energy savings compared to DCR
alone. Fig. 11 illustrates comparison of energy profile for dif-
ferent caches for compressed (using BMC) and uncompressed
cjpeg benchmark. Using a 4KB cache with associativity of 4
and 64-bit line size, energy consumption of cjpeg benchmark
is nearly the same for compressed and uncompressed pro-
grams.

In the post-cache placement, compression has a signifi-
cant effect when combined with small cache sizes. In this case
compressed instructions are stored in the cache. Since the
compressed code size is 30 to 45 percent less than uncom-
pressed code it can fit in smaller cache sizes. However, when
size of the selected cache increases, the critical portion of pro-
gram (regardless of whether compressed or not) will fit into
cache entirely. Therefore by utilizing large cache sizes energy
consumption of the compressed code is very close to uncom-
pressed one. It should be noted that the main objective of ex-
ploration is to find the most energy efficient cache configura-
tions so we are not interested in large cache sizes since they
require more energy.

4.3 Performance Improvements

Fig. 12 shows performance of applications for different
schemes normalized to the base cache. Applying DCR alone
for the purpose of energy saving, results in 11% performance
loss on average. We observe that code compression can im-

prove performance in many scenarios while achieving signifi-
cant reduction in energy consumption. For instance, in the
case of the application patricia, applying only DCR would
result in 12% performance degradation with 34% energy sav-
ings. However, incorporating BMC boosts performance by
33% while gaining extra 17% energy savings on top of DCR
achieving 51% energy savings compared to the base cache.
Results show that synergistic integration of BMC with DCR
achieves as much as 75% performance improvement for
g721_enc (21% improvement on average) compared to DCR
alone. Thus it is possible to have a cache architecture that is
tuned for applications to have both increased performance as
well as lower energy consumption.

Fig. 13 shows performance trend of all cache configura-
tions for both uncompressed and compressed codes for cjpeg
benchmark. It is interesting to note that compression also im-
proves performance. The compressed program can fit in
smaller cache because of 30 to 45% reduction in code size.
This decreases cache misses significantly for small caches.
Reduced number of misses can lead to reduced stalls and im-
proved performance. As it can be observed in Fig. 13, without
compression, reducing the cache size may lead to major per-
formance degradation so DCR is forced to discard many cache
alternatives due to timing constraints. For instance, having
timing constraint of 25 million cycles for cjpeg benchmark
will force to discard all cache configurations of size 2048KB
or lower. However, compression improves the performance
significantly when small cache sizes are used. Thus combina-
tion of cache reconfiguration and code compression enables
energy savings while improving overall performance.

Fig. 11: The impact of cache/line size on energy profile of

cache using cjpeg benchmark

Fig. 12: Performance of the selected "minimal-energy cache" normalized to the base cache

Fig. 13: performance trend of different cache configura-

tions using cjpeg benchmark

0

1

2

3

4

5

6

7

8

9

10

En
e

rg
y

co
n

su
m

p
ti

o
n

(m
il

li
 J)

Uncompressed BMC post-cache placement

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

cjpeg djpeg epic_encode rawcaudio rawdaudio patricia dijkstra crc32 bitcnts g721_enc g721_dec Average

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

BMC only DCR only DC+DCR Huffman+DCR BMC+DCR

0

10

20

30

40

50

60

70

80

90

Ex
e

cu
ti

o
n

 t
im

e
 (

M
ill

io
n

s
o

f
cy

cl
e

s)

Uncompressed BMC post-cache placement

5. CONCLUSION

Optimization techniques are widely used in embedded
systems to improve overall area, energy and performance re-
quirements. Dynamic cache reconfiguration (DCR) is very
effective to reduce energy consumption of cache subsystem.
Code compression can significantly reduce memory require-
ments, and may improve performance in many scenarios. In
this paper, we presented a synergistic integration of DCR and
code compression for embedded systems. Our methodology
employs an ideal combination of code compression and dy-
namic tuning of cache parameters with minor or no impact on
timing constraints. Our experimental results demonstrated
65% reduction on average in overall energy consumption of
the cache subsystem as well as up to 75% performance im-
provement (compared to DCR only) in embedded systems.

REFERENCES

1 A. Malik, B. Moyer, and D. Cermak. A low power unified cache

architecture providing power and performance flexibility.

ISLPED (2000).

2 A. Gordon-Ross, F. Vahid, N. Dutt. Automatic tuning of two-

level caches to embedded applications. DATE (2004).

3 C. Lefurgy. Efficient execution of compressed programs. Ph.D.

Thesis, University of Michigan (2000).

4 L. Benini, F. Menichelli, M. Olivieri. A Class of Code

Compression Schemes for Reducing Power Consumption in

Embedded Microprocessor Systems. IEEE Transactions on

Computers (April 2004), p.467-482.

5 A. Gordon-Ross, F. Vahid, N. Dutt. Fast configurable-cache

tuning with a unified second level cache. International

Symposium on Low Power Electronics and Design (2005).

6 C. Zhang, F. Vahid, W. Najjar. A highly-configurable cache

architecture for embedded systems. 30th Annual International

Symposium on Computer Architecture (June 2003).

7 P. Vita. Configurable Cache Subsetting for Fast Cache Tuning.

Design Automation Conference, DAC (2006).

8 D. H. Albonesi. Selective Cache Ways: On-Demand Cache

Resource Allocation (2000).

9 L. Chen, X. Zou, J. Lei, Z. Liu. Dynamically Reconfigurable

Cache for Low-Power Embedded System. Third International

Conference on Natural Computation (2007).

10 C. Zhang, F. Vahid, and R. Lysecky. A self-tuning cache

architecture for embedded systems. DATE (2004).

11 A. Wolfe, A. Chanin. Executing compressed programs on an

embedded RISC architecture. Proc. of the Intl. Symposium on

Microarchitecture (1992), 81–91.

12 Y. Xie, W. Wolf, and H. Lekatsas. A Code Decompression

Architecture for VLIW Processors. MICRO-34. Proceedings.

34th ACM/IEEE International Symposium on Microarchitecture

(2001).

13 S. Seong, P. Mishra. Bitmask-Based Code Compression for

Embedded Systems. IEEE Trans. CAD (2008), 673–685.

14 C. Lin, Y. Xie, and W. Wolf. LZW-Based Code Compression for

VLIW Embedded Systems. Proc. DATE (2004), 76–81.

15 M. Rawlins, A. Gordon-Ross. On the Interplay of Loop Caching,

Code Compression, and Cache Configuration. ASP-DAC (2011).

16 D. Burger, T. Austin, S. Bennet. Evaluating future

microprocessors: the simplescalar toolset. University of

Wisconsin-Madison. Computer Science Department Technical

Report CS-TR-1308 (July 2000).

17 C. Murthy and P. Mishra. Lossless Compression Using Efficient

Encoding of Bitmasks. isvlsi, pp.163-168, 2009 IEEE Computer

Society Annual Symposium on VLSI (2009).

18 C. Lee, M. Potkonjak, and W. H. Mangione-smith. MediaBench:

A Tool for Evaluating and Synthesizing Multimedia and

Communications Systems. International Symposium on

Microarchitecture (1997).

19 M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge,

and R.B. Brown. MiBench: A free, commercially representative

embedded benchmark suite. International Workshop on Workload

Characterization (WWC) (2001).

20 CACTI. HP Labs, CACTI 4.2, http://www.hpl.hp.com/.

21 T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and. Discovering

and exploiting program phases. Micro (2003).

22 W.Wang and P. Mishra. Dynamic Reconfiguration of Two-Level

Caches in Soft Real-Time Embedded Systems. IEEE

International Symposium on VLSI (2009).

23 S. Ramprasad, N.R Shanbhag, and I.N. Hajj. A Dictionary-Based

En/Decoding Scheme for Low-Power Data Buses. Very Large

Scale Integration (VLSI) Systems (1999).

24 H. Lekatsas and W. Wolf. SAMC: A Code Compression

Algorithm for Embedded Processors. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems

(1999).

