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Abstract—A major challenge in exploiting the principles of
quantum information is the influence of noise which tends to
work against the quantum features of a system. The traditional
quantum gate error model provides a general framework to
study noisy quantum circuits, but may fail to capture intricate
microscopic interactions between qubits in addition to the en-
vironment. This can significantly overestimate the feasibility of
implementing useful quantum algorithms on physical quantum
hardware. In this paper, we study a noise model driven by
random matrix theory that captures an effective microscopic
interaction, and assess the suitability of the quantum gate error
model. Our approach assumes noise arises due to interactions
with many physical sources, and modeled using random matrix
theory and applied to the quantum circuit model.

I. INTRODUCTION

Development of quantum algorithms critically depends on
evaluation using classical simulation and access to a quantum
computer. Beyond fifty qubits, classical simulation to verify
a theoretical quantum algorithm becomes infeasible. The
only option left is to test the algorithm on a physical noisy
quantum computer, and assume that studies from smaller
algorithms scale with larger size. A major bottleneck in
developing quantum algorithms today is how to realistically
predict quantum noise using classical computers.

Engineering a real quantum computer first requires
a fundamental quantum mechanical model that follows
Shrödinger’s equation [1]. In the last century, natural sci-
entists have methodically developed and studied models
of various quantum systems, thus bringing major insight
to exploiting small quantum systems. However, for larger
systems, which include the environment, modeling is strictly
difficult and is further limited by computation – where,
for example, 250 complex floating-point numbers need to
be stored and evolved. Although modeling systems via
Shrödinger’s equation brings the most insight, an alternative
form of modeling is necessary for making feasible progress
towards the development of large quantum systems.

The naive alternative is to utilize the results from simple
quantum systems (excluding the environment) modeled by
Schrödinger’s equation and introduce classical uncertainty to
these results. For example, instead of yielding a final state
|ψ〉 |E〉 to describe a quantum device and environment, the
model would imply a discrete probability of the quantum
device being in the state |ψ1〉, or in |ψ2〉, or |ψi〉. Physically,
these uncertainties can be attributed to unknown interactions
between the system components as well as with the environ-
ment, but conceptually they arise from preparation, evolution

(a) The origins of noise can be
studied by including the environ-
ment in the model.

(b) Without understanding the
origins of noise (or without mod-
eling environment), the effect of
noise can be viewed as produc-
ing a mixture of states.

(c) An example system-
environment model where
classical simulation can provide
information about the complete
dynamics of both the system
(qubit) and the environment.

(d) Results from real quantum
devices is a set of probabili-
ties corresponding to each ba-
sis state. Before measurement,
the time dynamics is difficult
to model, or even unknown.
Following from (b), noise will
change expected probabilities.

Fig. 1: Figure (a) and (c) demonstrate the advantage of a
full system and environment model which is governed by
Schrödinger’s equation. All proprieties, including noise, are
known and well-defined. The disadvantage is the exponential
cost required to classically simulate these models. Figure
(b) and (d) introduce a simpler viewpoint, where the en-
vironment is not modeled, and that random errors produce
discrete sets of output probabilities. The advantage is that
this model can be feasibly simulated, at the cost of not
completely understanding noise dynamics and scalability.

and measurement of quantum systems as shown in Figure 1b.
To actually discover these sets of probabilities, or to define
the quantum channel from a quantum device, a thorough
experiment must take place known as quantum process
tomography. However, such experiments grow exponentially
in resources as the system size, or number of qubits, is in-
creased [2]. When only small subsets of the quantum devices
undergo these experiments, they scale linearly in resources.
These simplified quantum channels provide a starting-point
in modeling noise, but do not completely describe the whole
system nor the interactions with an environment.



From an algorithm development perspective, the interest
is to continue using the comfortable and well-established
framework of the quantum circuit model, but now with
an included prediction of noise. Many leading quantum
computing software toolchains [3] apply simplified quantum
channels, such as the standard Pauli error model, to a
quantum circuit to simulate noise in quantum algorithms.
In particular, a quantum circuit is first synthesized to an
approximately equivalent circuit using a set of universal
quantum gates. The universal quantum gate set is given
by the specification of a quantum device, and experiments
have already been performed to yield simplified quantum
channels for each of the gates, and even subsets of pairwise
interacting gates, within the universal gate set. Figure 1d
shows a sample result of this approach, where simulated
noise clearly introduced probabilities in unwanted states.

Although these tuned simplified noise models provide an
important starting point for developing algorithms and noise
mitigation techniques, it remains unclear to what extent this
noise prediction reflects the real quantum devices [4], [5].
In addition, recent experiments including Google’s Quantum
Supremacy [6] result as well as IBM Q benchmarks [7]
have shown that the usual noise model are insufficient. A
noise simulation may yield results that indicate successful
performance of a quantum algorithm [8], yet after running
it on a quantum device the results may be embarrassingly
inaccurate.

This paper attempts to progress the methodology in soft-
ware toolchains to start addressing the uncertainty between
noise simulation and real quantum computation. The general
approach is to use an approximation, as studied by natural
scientists, to model an environment and system interactions,
and apply it to simulations of quantum circuits. This presents
a different mindset from the simplified quantum channels
– the results from noise simulation now have a concrete
interpretation and connection with Schrödinger’s equation.
The approach is also connected via proofs establishing equiv-
alency between the viewpoints of environment modeling and
quantum channels [9]–[11]. Specifically, in this paper, we
make the following major contributions:

1) We model many-qubit and arbitrary gate operations
under the physical assumption that there are many
independent noise sources.

2) We introduce the noise model form the viewpoint of
a natural scientist, via the Schrödinger’s equation, and
incorporate it with the quantum circuit representation.

3) We run the quantum Fourier transform algorithm
showcasing our noise model, comparing it to the
popular simplified quantum channels.

The rest of the paper is organized as follows. Section II
introduces some concepts used in this paper and presents
related efforts. Section III describes our proposed modeling
of noise in quantum circuits. Section IV presents the exper-
imental results. Finally, Section V concluding the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first define relevant notions for analyz-
ing noise in a quantum circuit. Next, we present the related
research to highlight the novelty of our approach.

A. Background and Preliminaries

1) Quantum Evolution: The time evolution of a pure
quantum state |ψ〉, given a Hamiltonian H , and setting
~ = 1 (this is commonly done in quantum mechanics for
simplicity), is:

i
d

dt
|ψ(t)〉 = H |ψ(t)〉 (1)

For a given time τ , the time evolution can be solved for a
unitary operator U :

U = e−iHτ (2)

This will give the resulting evolution for |ψ(τ)〉 as:

|ψ(τ)〉 = U |ψ(0)〉 = e−iHτ |ψ(0)〉 (3)

2) Quantum Circuit: A quantum circuit with a unitary
quantum gate U acting on n-qubits, all initialized to |0〉, is
expressed as:

|0〉⊗n U U(|0〉⊗n) (4)

The final state of a quantum circuit can be expressed as a
result of a time evolution from Equation 3:

|ψ(τ)〉 = e−iHSτ (|0〉⊗n) (5)

where the system Hamiltonian HS can now be found from
the quantum gate U by:

HS = i
logU

τ
(6)

Equation 5 and Equation 6 provide a mechanism to view a
quantum circuit as the action of a physical quantum evolution
driven by an effective system Hamiltonian.

3) Gate Accuracy: If the gate operation US is instead
implemented by unitary ŨS then the accuracy is defined as:

E(US , ŨS) = max
|ψ〉

∥∥∥(US − ŨS) |ψ〉∥∥∥ (7)

The defined accuracy captures the maximum difference
in probabilities for an outcome of measurement outcomes
between U and Ũ [12].

Moreover, if we have a series of quantum gates such as
U2U1 which is implemented by Ũ2Ũ1 then the following
holds:

E(U2U1, Ũ2Ũ1) ≤ E(U2, Ũ2) + E(U1, Ũ1) (8)

The consequence is that accuracy deteriorates in a series
of gates since the overall error depends on the summation
of the respective gate errors.

In addition to gate accuracy, we also use fidelity to
quantify how close two quantum states are. The fidelity
between quantum states |ψ〉 and |φ〉 is defined as:

F (ψ, φ) = | 〈ψ|φ〉 |2 (9)



An approximation of fidelity is achieved by measuring in
several basis on a quantum computer, and classical fidelity
is computed over the expected and obtained probability
distributions. If two states are equivalent, the fidelity F = 1.
On the other hand, if two states have absolutely no overlap,
the fidelity is F = 0.

4) Quantum Gates and Matrix Representation: Given a
basis, any quantum gate U can be represented as a unitary
matrix. Here we assume the standard computational basis
for a qubit: |0〉 =

[
1 0

]T
and |1〉 =

[
0 1

]T
. Hence the

matrix to describe a single-qubit gate is simply the action of
the gate on the two basis elements.

For representing multiple qubits we follow the standard
convention. The basis for a multiple-qubit system arises from
the tensor products of the single qubit-basis. For instance,
an example state of three qubits 1, 2, and 3 could be: |0〉1⊗
|1〉2 ⊗ |1〉3 = |011〉.

To algorithmically construct the matrix representation
of multiple-qubit gate, we use projection operators. For a
controlled-not gate operating on 3-qubits, where the first
qubit is control and third qubit is target, the construction
is as follows:
|0〉1 〈0|1 ⊗ (|0〉1 〈0|1 + |1〉1 〈1|1)⊗ (|0〉2 〈0|2 + |1〉2 〈1|2)

+

|0〉1 〈0|1 ⊗ (|0〉1 〈0|1 + |1〉1 〈1|1)⊗ (|0〉2 〈1|2 + |1〉2 〈0|2)
(10)

5) Open Quantum Systems: Equation 5 describes a per-
fect unitary evolution given by a Hamiltonian HS for a
closed system. In practice, the overall time evolution may be
imperfect. Hence, HS will have additional interactions with
the environment, which gives rise to a general Hamiltonian:

H̃ = HS +HB +HSB (11)

where HB is the evolution of the bath (environment), and
HSB is the interaction between the system and the bath.
Equation 11 defines an open quantum system.

6) Noisy Quantum Circuits: In an ideal scenario, a quan-
tum circuit – defined as a series of quantum gates – will
take an initial state to a final desired state. In other words, a
final quantum state |ψf 〉 = U |ψi〉 is produced by applying a
quantum circuit U to an initial quantum state |ψi〉. Of course,
in reality, quantum gates are implemented as real quantum
systems that undergo time evolution, and are subject to the
cruel interactions with an environment. Specifically, a gate
and the environment evolve as an open quantum system:
Ũ = e−iH̃t. Tracing out the environmental degrees-of-
freedom from the composite evolution Ũ yields the effective
noisy quantum gate. Therefore, in general, the final state
of the system Ũ |ψi〉 differs from the ideal case |ψf 〉. The
amount by which the ideal and realistic gate differ is given
by average gate fidelity, or gate accuracy as introduced in
Section. II-A3.

Studying Ũ has given rise to various general situations
that are found in quantum computers today. For example,
a common assumption is that the gate’s interaction with
the environment is Markovian – that is, the evolution with
an environment is described in terms of a memoryless

dynamics which leads to an irreversible loss of characteristic
quantum features. Within this example of open quantum
systems, noisy quantum effects, such as decoherence can
be concretely defined as an irreversible loss of purity of the
quantum gate.

B. Related Work

Standard noise models studied during the mid-90s are suit-
able for small scale, computationally insignificant, quantum
computers. These models were first studied from a physics
point of view, where notions such as a dissipative envi-
ronment were introduced. Examples include the treatment
of two-level systems interacting with an effective harmonic
oscillator potential [13]. Over time, physicists developed
better techniques for studying quantum decoherence. These
methods include the master equation [14], the stochastic
Schrödinger equation [1], and the Belavkin equation [15].
These techniques allow for a study of a continuous time evo-
lution of a system with an environment. They include some
assumptions about the physical interaction, predominantly
assuming that the time evolution of the system will depend
solely on the previous state (Markovian). Even with such
thorough analysis of quantum decoherence, the complex
interaction between many independent two-state systems and
their interactions with an environment remains a challenging
problem.

In the late-90s, as quantum information matured, models
of small-scale noise on quantum algorithms were introduced
in terms of quantum channels [16]. For example, error
correction schemes, such as the Stabilizer code discussed
by Shor [17], assume a quantum channel where discrete
errors are from a Pauli group [18]. Recent work attempts
to unite the different viewpoints from physics and quantum
information, such as the work by Aurell [19].

Research on random matrix theory is vast. Stöckmann
succinctly covers the subject matter within the context of
quantum chaos [20]. There are initial efforts in using random
matrix theory to study quantum noise [21]–[23]. Roland et
al. study adiabatic quantum computing with noise modeled
using random matrix theory [24]. Entangled two qubit dy-
namics coupled to a random matrix environment has been
recently studied by Braus et al. [25]. The main novelty of
this paper is to directly apply quantum noise approximation
from random matrix theory to the quantum circuit model.

III. MODELING OF NOISY QUANTUM CIRCUITS

Within the physical sciences, modeling and defining a
complete quantum system with addition to the environment
is a difficult task. Such a task can be infeasible for a
complex system. However, such an approach can yield a
clear explanation to the behavior of the system. On the other
hand, using existing simplified quantum channels to model
noise is feasible, but limits the understanding of the actual
system, thus hindering development in algorithms and noise
mitigation. This section is organized as follows. First, we
provide a brief overview of random matrix theory and the



motivation for this work. Next, we describe our proposed
noise model. Finally, we discuss modeling of errors in a
single-qubit gate and multi-qubit gates using the proposed
noise model.

A. Random Matrix Theory Overview and Motivation

A random matrix is a matrix in which all elements are
random variables. In the context of modeling noisy quantum
circuits, the random matrices are symmetric matrices of size
N × N obtained as (A + AT )/2 where the entries for A
are sampled from the Gaussian distribution: N (0, σ2). An
ensemble of such matrices is referred to as the Gaussian
orthogonal ensemble (GOE). An important property of GOE
is that each matrix in the ensemble has orthogonal invariance.
Namely, for each random matrix, the norm will remain
invariant under orthogonal transformation. Therefore, given
orthogonal transformations Q1 and Q2, and a random matrix
A, ||Q1A|| = ||A|| = ||AQ2||.

The distribution of eigenvalues of the random matrices
follow Wigner’s Semicircle Law as the size N → ∞ [26].
This is an important result as one can study the behavior
of the eigenvalues without ever having to compute the
eigenvalues directly. The density of eigenvalues of GOE
matrices is:

ρ(E) −−−−→
N→∞

1

4σ2π

√
4σ2N − E2 (12)

Within the quantum evolution setting, if we combine many
physical sources of errors, as a consequence of the central
limit theorem, we can view noise as sampling a random
Hamiltonian from a GOE. This is the primary motivation of
our proposed work in utilizing GOE to model noise within
a quantum circuit.

B. Noise Model

Suppose we have a quantum gate that performs the unitary
transformation U . From Equation 5 we can view U as being
part of a physical time evolution given by a Hamiltonian HS

for some time τ . To capture a physical noisy process, HS is
included as part of an open quantum system. To model the
imperfection, we assume a coupling with a GOE defined by
a diagonal matrix θθθ where each diagonal entry represents the
amount coupling for a given basis with the GOE. Since the
square-matrix elements in the GOE can be of arbitrary size,
additional zeros are added to the diagonal of θθθ. This diagonal
matrix representation of θθθ is used for convenience, but is
not a unique representation. Within GOE, all matrix entries
are independently and identically Gaussian distributed, hence
the probability of each column is only dependent on the
column vector’s norm. Since the norm of each column is
preserved due to the GOE property of orthogonal invariance,
the matrices are then basis-independent. Thus, rearranging
the columns of θθθ will be an equivalent representation. In
block-matrix form, the Hamiltonian is hence modeled as:

H̃ =

(
HS θθθ
θθθ GOE

)
(13)

(a) U = X (b) Re(Ũ) and Im(Ũ)

Fig. 2: Hinton plots of the original gate X (2a) and of the
real and imaginary components of the noisy gate Ũ (2b).
The difference between (a) and (b) is the introduced noise.

With Equation 2, we now evolve H̃ to obtain a unitary
operator that captures the evolution of both the original
quantum gate as well as the environment:

ŨSB = e−iH̃τ (14)

To view the new effective unitary operator Ũ , we disregard
the GOE subspace from ŨSB . The new operator will now
be unnormalized with the magnitude depending on both the
coupling strength and size of the random matrix.

C. Example: Single Qubit, Bit-Flip Gate

Assume we operate on a single-qubit with a bit-flip gate,
represented as follows:

U = X =

[
0 1
1 0

]
(15)

For time τ = 1, HS = i logX , and assuming the size of
matrices in GOE are, for example, 3 × 3 then the effective
H̃ is:

H̃ =


i logX

θ0 0 0
0 θ1 0
0 0 0

θ0 0 0
0 θ1 0
0 0 0

GOE

 (16)

The evolution e−iH̃ leads to interaction between the
single-qubit gate and environment. By ignoring the GOE
subspace, we obtain the noisy single-qubit gate Ũ as shown
in Figure 2b.

Now, increasing the GOE matrix size, beyond 3×3, brings
forth Wigner’s Semicircular Law. This limit conforms to
several observed and studied phenomena in physics [20]. The
relationship between the gate error E(X, Ũ) and coupling
strength, where the GOE matrix size is large (≈ 10, 000), is
shown in Figure 3. Moreoever, Figure 3 also compares with
one an often used noise model, the depolarizing channel,

E(ρ, p) 7→ (1− p)ρ+ p

2
I (17)

which use the density matrix ρ to represent uncertainty in
measurement outcome.

D. Multi-Qubit Gates

The primary focus of this section is to define the con-
struction of U , which represents the matrix that is applied
to the state of all qubits. This is not straightforward, since



Fig. 3: Gate error, using Equation 7, of X subject to the GOE
noise model with varying coupling parameter as well as the
accuracy subject to the simplified depolarizing noise channel.
Smaller values means better gate accuracy. Hence, the GOE
model predicts a larger gate error at low coupling strength,
while the depolarizing channel gives better accuracy at the
lower parameters.

restrictions resulting from time-based ordering, or assump-
tions imposed by physical devices, lead to limitations. For
example, an operation on one qubit might restrict simul-
taneous operation on another qubit. After imposing specific
assumptions, the matrix U will then be used to find a system
Hamiltonian HS , followed by the procedure outlined in
Section III-B to introduce noise and obtain an accuracy.

Within the context of the circuit model, we may have gates
in sequence, in parallel, or in a combination of both. For
simplicity, we assume that the qubits are fully-connected –
any arbitrary qubit can interact with any other arbitrary qubit.
Although at the moment this is not a physically realistic as-
sumption, the results remain insightful, as quantum compil-
ers can remap a circuit description to a limited-connectivity
qubit layout via an additional overhead of gates. In addition,
we decompose any multi-qubit gate into the action of single-
qubit unitary gate with two-qubit entangling controlled-not
(CX) gates. This is a realistic decomposition as quantum
processors are usually fixed to a basis set consisting of
single-qubit gates and one or two entanglement gates. We
use staq to synthesize a circuit written in openQASM to a
circuit that only contains single-qubit gate operations and
CX gates.

In order to accommodate the different scenarios seen in
a quantum circuit, we view the absence of a gate as the
action of the identity matrix. We couple all gates, including
the identity, if they are applied in parallel. This now yields
a set {U (i)}L−1i=0 , which contains L-instances of Equation 5,
each denoting a distinct step in the time when applying a
set of gates in parallel. After doing so, we use Equation 13
to construct a set of system Hamiltonians {H(i)

S } for gates

from time t = τi to t = τi+1, where i denotes an ordered
slice of the circuit sequence. For example, following from
Figure 4, there are 3-sequences: {Ul, I⊗Ui⊗Uj , I⊗I⊗Uk}
with the ordering i = 1, 2, 3. Each element in the sequence
is then made into a system Hamiltonian.

|0〉

Ul|0〉 Ui

|0〉 Uj Uk

Fig. 4: An example configuration consisting of both sequen-
tial and parallel application of gates.

Figure 5 shows the overall framework. The set of system
Hamiltonians (as discussed above) are combined with GOE
for validation and evaluation of our proposed model, as
described in the next section.

IV. CASE STUDIES

A one-qubit case study was performed in the previous
section by comparing GOE with the standard depolarizing
channel. This section looks at a specific algorithm to assess
several qubits and multi-qubit gates. The study highlights
some of the differences between our model and built-in
noise models as found in popular software packages. First,
we describe our experimental setup. Next, we outline the
limitation of existing noise models using QFT algorithm.

A. Experimental Setup

To represent a quantum circuit we use openQASM [27],
an intermediate- to low-level language with similarities to
classical hardware description languages. It provides a small
number of programming features: declaration of registers,
definitions of unitary gates, gate application, and measure-
ment. Specifically, we use staq [28] – a C++17 toolkit
that is designed to be minimalistic and includes the latest
state-of-the-art methods in quantum compiling. We use staq
to parse openQASM, perform desugaring and inlining, and
traverse the abstract syntax tree to inject noise. In addition,
we use Qiskit [3] for high-level circuit generation as well
as simulating circuits with built-in noise models. Figure 5
outlines the overall approach.

B. Quantum Fourier Transform

The quantum Fourier transform (QFT) follows from the
familiar Fourier transform, but makes use of superposition
to encode the phase information directly in qubits. As with
the Fourier transform, QFT performs the mapping:

|x〉 7→ 1√
N

N−1∑
k=0

ykω
xk
N |k〉 (18)

where ωnN is the N th root of unity. Via standard treatment,
the mapping is then decomposed into a quantum circuit con-
sisting of Hadamard gates and controlled-phase gates. Using
staq the circuit is then further transformed into single and



Fig. 5: Qiskit is used to generate initial openQASM code from a high-level description of a quantum algorithm. The code is
then passed to modified libraries from Staq, which produces an array of Hamiltonians. The Hamiltonians are then coupled
with GOE and evolved in time. An array of effective unitaries is then extracted, and the overall accuracy is calculated.

two qubit gates. Since the quantum gates cannot be applied
all at once, using the fully-connected layout assumption and
procedure outlined in Section III-D, the number of time steps
required to perform all the gates is 26.

Using staq, the gates are then mapped to their corre-
sponding matrix representation, leading to 26-matrices of
size 24×24. These matrices are then coupled with GOE, and
the noisy gate is then stored. A state is then initialized and
passed through the noisy quantum circuit. The fidelity of the
state is computed by comparing with a noiseless simulation.
Figure 6 shows the fidelity, between the expected state and
the noisy state, after each matrix from the 26-matrices.

We have also evaluated the same quantum circuit on a
quantum computer ibmq valencia [3]. The classical fidelity
of the final output probability distribution is computed
against the expected output probability. Similarly, the quan-
tum circuit is simulated using the noise model fitted for
ibmq valencia. As shown in Figure 6, the quantum computer
had close-to-perfect accuracy, while the associated noise
model under-predicted the accuracy. Our proposed GOE
model with θ = 0.01 aligned with the real computation
accuracy. Due to the inconsistency in existing noise models,
these results motivate the need for a circuit-level noise
model that follows from underlying assumptions of the
quantum hardware. In our proposed model, with large GOE
matrix size, the collective effect of noise is encoded via
Wigner’s Semicircle Law which represents the action of
several random sources of quantum interaction. In other
words, for quantum devices where the interaction with
several environmental sources can be sufficiently sampled,
the GOE model can quickly predict a gate error.

V. CONCLUSION

Quantum computers provide a promising avenue to solve
many real-world problems in a reasonable time that requires
exponential time in conventional computers. Development
of quantum algorithms critically depends on an accurate
noise model of the physical quantum computer. Unfortu-
nately, the current practice considers simplified noise models
while developing quantum algorithms, which can lead to
inconsistencies. In this paper, we developed a quantum
noise model driven by random matrix theory that aims to
compromise between the difficulty in modeling quantum
systems and the simplified noise models used in quantum
information science. Based on this noise model, we have
developed error models for both single-qubit and multi-
qubit gates in order to model noise in quantum circuits.

Fig. 6: The state fidelity over the course of the QFT algo-
rithm with varying coupling strength θ to GOE. It compares
with the final-state fidelity from the quantum computer
ibmq valencia as well as the final-state fidelity as produced
by the noise model of ibmq valencia. The ibmq valencia
uses simplified noise models that have been specifically fitted
with large accuracy for single-qubit gates and a multi-qubit.
The disadvantage is that when combined to a larger quantum
system, the custom fitted models do not sufficiently cover
other sources of noise. Instead quantum process tomography
must be done to obtain a complete noise model, which
requires exponential resources. Our proposed GOE model
can provide a reasonable first guess to the extent of noise
by fitting one parameter to an appropriate system.

Our case studies connected physical assumptions about noise
behaviors in physical quantum computer with simplified
noise model considered by algorithm developers today. Our
work highlighted the weak approximations of existing noise
models where modeling many-qubit noise is difficult, and
motivated the need for developing realistic circuit-level noise
models based on physical assumptions.

This work can be extended to analyze larger quantum
systems. The noise modeling can be improved by employing
quantum process tomography techniques to investigate the
contribution of random sources of errors, and more generally,
to discern the differences in simplified noise models with
real quantum results. Future work includes investigating and
benchmarking quantum algorithms under the influence of
noise, and developing appropriate encodings for quantum
error correction that optimize overhead with respect to the
noise models.
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