
Efficient Finite State Machine Encoding for
Defending Against Laser Fault Injection Attacks

Aruna Jayasena, Khushboo Rani and Prabhat Mishra
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida, USA

Abstract—Finite State Machines (FSMs) are widely used to
implement complex computation sequences and communication
protocols. An FSM may consist of different states with different
privilege levels, such as protected and non-protected. Ideally,
switching from a non-protected state to a protected state should
involve an authorization transition. However, with Laser-based
Fault injection (LFI), an attacker can bypass authorization by
flipping bits in the FSM’s state vector. In order to mitigate LFI
vulnerability, one can encode the FSM states with the objective
of maintaining a large Hamming Distance (HD) between each
pair of states. The existing FSM encoding algorithms are either
very slow, rely on the user’s mathematical ability to manually
generate certain state encodings, or lead to unacceptable area
overhead. In this paper, we propose an automated framework for
generating FSM encodings to defend against LFI attacks. The
proposed technique is a fast linear code-based heuristic to pro-
duce area-efficient results. We also propose an application-specific
simplification to further reduce the area overhead. Experimental
results demonstrate that our proposed method is several orders-
of-magnitude faster than the state-of-the-art approaches. Our
approach also significantly reduces the state code length (50%
on average) compared to state-of-the-art approaches.

Index Terms—Hardware Security, Laser Fault Injection, Fault
Tolerance, Coding Theory

I. INTRODUCTION
Modern electronic systems utilize System-on-Chip (SoC)

designs to provide the computing backbone to run diverse
applications. Finite State Machines (FSM) are widely used
to implement various computation sequences as well as com-
munication protocols while designing different components
of an SoC. A simple FSM can be implemented using a
state register and combinational logic, as shown in Figure 1.
The state register stores information about the current state.
The combinational logic performs computation based on the
current state and updates the state register (next state). The
number of states and state security categories are determined
by the specific application. The number of flip-flops used to
represent the state is determined by the bit-length of the FSM
state encoding, and the entire unit is called as State Register.
In Figure 1, the state register is implemented using four flip
flops to store the current state using the binary vector 0010.

A successful attack on the FSM can compromise the func-
tionality of the system revealing secret information [1], [2].
Since FSM controls various computations inside as well across
SoC components, a compromised FSM controller can lead to
catastrophic consequences in safety critical systems. It is vital
to secure FSMs to design trustworthy systems.

This work was partially supported by the DARPA/Synopsys AISS grant.

StateState Register
0010

LFI Attack
New State

Combinational
Logic Outputclk

Figure 1: FSM hardware implementation with a state register
and associated combinational logic.

A. Threat Model

Hardware-based attacks such as fault injection [3]–[8], side-
channel [9], [10], and malicious implants [11], [12] can com-
promise the security and integrity of an SoC [13]. One of the
fault injection attacks, Laser Fault Injection (LFI [14]–[16])
focuses on memory components such as flip-flops and SRAM
cells to flip the values. As shown in Figure 1, these memory
elements are essential for FSMs. An attacker can use LFI to
flip bits of the state register to bypass the authorization state
and gain access to a protected state. In this paper, we consider
the same threat model as in the existing literature [17]. The
attacker is capable of flipping a given number of state bits, and
the designer can predict the maximum Bit Flipping Capability
(BFC) of the attacker. Attackers have prior knowledge of the
FSM state layout, so they know which bits to flip to transition
from an accessible non-protected state to a desirable protected
state. Attackers also have a precise laser to flip individual bits
regardless of location (i.e., the attacker is not forced to flip
adjacent bits). Furthermore, flipping from a logical 0 to a
logical 1 is just as easy as flipping from a logical 1 to a logical
0. If the Hamming Distance (HD) between the accessible non-
protected state and the desired protected state is greater than
the BFC, the attacker fails to mount the attack.

B. An Illustrative Example

Figure 2 illustrates a Point-of-Sale (PoS) system FSM. The
states in the FSM are categorized into protected (S3 to S9)
and non-protected states (S0 and S1). The data available in the
protected state is private to the user, whereas the information in
the non-protected state is available to all the users. To protect
the sensitive information, transitions from any non-protected
state to a protected state are restricted through an authorization
state (S2). The PoS system starts with the default state
Landing Page (S0) and requires the user’s input to navigate

S0 : 0000
Landing Page

S1 : 0001
Login

S2 : 0010
Dashboard

S3 : 0011
Deposit

S7 : 0111
Transfer

S9 : 1001
New Payment

S4 : 0100
Withdraw

S5 : 0101
History

S6 : 0110
Refund

S8 : 1000
Edit

POS Machine FSM

Figure 2: An example FSM for Point-of-Sale (POS) system.
The state number corresponds to the binary encoding of
each state. Green states represent non-protected states, purple
represents authorization state, and red shows protected states.

through the Login state (S1). A user enters a valid username-
password pair before transitioning into a secure dashboard
with potential point-of-sale options. The FSM guarantees a
secure PoS system by restricting any unauthorized transition
from a non-protected state to a protected state. However, a
single bit flip in the binary state vector can break the PoS FSM
security. For example, users are expected to always enter state
0010 through the (Username, Password) transition. However,
an attacker who accesses the Landing Page can flip the second
state bit (0000 to 0010) to enter the Dashboard page.

C. Limitations of Existing Methods

When implementing FSM in hardware, commercial hard-
ware synthesis tools do not take into consideration of the
current laser fault injection attacks. There are several attempts
to mitigate the LFI attacks in conventional FSMs. For example,
linear coding techniques [18] incur a high area overhead due to
the need for complex error-correcting circuitry. Zwanzger [19]
utilizes probabilistic prediction of the best possible code
extension to reduce the area overhead compared to linear
codes. A security-aware encoding proposed in [2] uses a
one-hot-based encoding where HD bits are concatenated for
every new state. This can lead to unacceptable overhead.
PATRON [17] and SPARSE [20] present promising directions
for FSM vulnerability analysis as well as layout-aware LFI-
resistant encoding techniques. These approaches assume that
the user will provide suitable encoding or use of existing
database optimal codes that they can check using binary de-
cision diagrams and provide recommendations. None of these
approaches present automated generation of state encoding for
given FSMs to defend against LFI attacks. Moreover, these
iterative refinement procedures do not guarantee fast encoding
generation time or the minimality of the encoding length.

D. Research Contributions

In this paper, we propose an automated framework to
generate state encoding to mitigate LFI vulnerability. The basic
idea is to generate encoding, which ensures hamming distances
among the states more than the bit flipping capability of the
attack. If a bit flipping attack is attempted to change the binary
state vector of the state register, it is guaranteed to fail since
there won’t be any matching state in the FSM with the new
state vector. This will stop an attacker from jumping to a
protected state and accessing sensitive data. Specifically, this
paper makes the following major contributions.

• We propose a greedy encoding scheme, AREST, which
outperforms state-of-the-art FSM encoding techniques in
terms of encoding generation time as well as encoding
length (area overhead) to defend against LFI attacks.

• We propose an efficient heuristic that specializes in the
state encoding problem based on application diversity to
further reduce the area overhead.

• Extensive experimental evaluation demonstrates that
AREST provides several orders-of-magnitude speedups
in encoding generation time as well as a significant
reduction in encoding length (50% on average) compared
to state-of-the-art approaches [19].

The remainder of the paper is organized as follows. Sec-
tion II provides relevant background and surveys related
efforts. Section III describes our proposed contributions. Sec-
tion IV presents the experimental results. Finally, Section V
concludes the paper.

II. BACKGROUND AND RELATED WORK

We first provide relevant background on linear coding and
a database of optimal codes since they have been used in the
literature for encoding FSM states. Next, we survey related
efforts to highlight the novelty of our proposed work.

A. Linear Coding

Linear codes are sets of codewords where each codeword
is a linear combination of other codewords. For example,
in the case of FSM encoding, it represents binary vectors.
Linear codes can be represented as generator matrices where
rows are codewords that form a basis for the given linear
code. Linear code construction has been studied extensively in
information theory to produce error-correcting codes. Similar
to FSM encoding, the codewords in error-correcting codes
must be at least some HD away from all other codewords
to detect errors. There are several existing heuristics that effi-
ciently generate generalized linear codes [19], [21]. Exhaustive
search [22] traverses through all possible scenarios and selects
the codewords that satisfy the HD constraint. The exhaustive
search does not scale for FSMs with a large number of states.

B. Databases of Optimal Codes

There are tables showing maximum code sizes for certain
HDs and encoding lengths [23]. These tables can be extended
to include known optimal codes. Designers can search through
databases or files containing these codes to find appropriate

 LFI Resistant State Encoding

Design
(RTL)

Specification
(State information)

FSM
Extraction

Security Level (HD)
(LFI capability) States

Binary
Encoding

Group
Encoding

LFI Secure Design
(RTL)

Same
Group

Yes

No

Figure 3: An overview of our proposed framework to automatically generate LFI-resilient FSM encoding for RTL models.

encodings for their FSMs. However, This is an impractical
solution for the following reasons. The encoding selection time
can be high due to searching in a very large (online) database
of all possible combinations (see the exhaustive search times
in Figure 6). Most importantly, the database may be corrupted
or hacked. In fact, it may be easier for the attacker to hack an
online database than to perform an LFI attack.

C. Related Work

There are many promising efforts for designing secure
FSMs. Nahiyan et al. [2] propose an encoding scheme for
fault-tolerant FSMs which encodes protected states with one-
hot encoding and non-protected states with binary encoding.
While it automates all but the initial state encoding, the
one-hot encoding scheme assumes that an LFI attacker can
only flip one bit. Extending the one-hot encoding scheme
to HD-hot by concatenating HD bits for every new state is
unsuitable because it can lead to unacceptable area overhead.
While robust nonlinear codes [18] also incur area overhead in
the form of error-correcting circuitry, this overhead improves
security. Robust linear codes have limitations on the types
of possible codes (Punctured Cubic Code and Quadratic Sum
Code), which can be used in encoding generation.

PATRON [17] also categorizes states as protected and non-
protected but requires pre-encoded state values such that
HD > BFC. They suggest using Naı̈ve way or a database
of optimal codes. Then, they proceed to generate non-secure
encodings which are HD apart from all protected states but not
each other. This significantly reduces area overhead. However,
the applicability of PATRON is also limited because it does
not automate protected state encoding or consider the required
code size when generating non-protected states (the number
of generated states appears to depend on the vector length
of the input protected states). PATRON also assumes that
the protected states should remain the minimum HD apart
when this may not be the case due to design mistakes.
SPARSE [20] extends [17] to improve the area overhead
using integer linear programming. Similar to PATRON [17],
it also assumes the availability of pre-encoded state values
such that HD > BFC. As a result, it inherits all the inherent
disadvantages of PATRON [17].

Zwanzger [19] extends linear codes with an enforced mini-
mum distance by probabilistically predicting the best possible
code extensions. While the author does not explicitly identify
this as an FSM encoding scheme, the produced generator
matrix’s rows can be used as encodings. The minimum-length
encodings can be found by iterating through potential code

lengths and seeing which lengths generate results, and the
minimum HD can be directly given as the enforced minimum
distance. We consider this to be the state-of-the-art for com-
parison with our proposed algorithm for the following three
reasons. (1) Unlike the scheme in [18], it can be manipulated
to give minimized area. (2) Unlike the scheme in [2], it can
be extended to multiple HD values. (3) Unlike the scheme
in [17], [20], it does not require all protected state encodings
to be given as input. While this method is promising, it
also faces practical limitations due to its probabilistic nature.
We experimentally found that certain starting inputs yield no
results, sub-optimal results, or take an impractically long time
to finish, while others take significantly shorter times and yield
better results. In other words, this approach is not reliable for
generating efficient state encodings.

III. AREST: LFI ATTACK RESISTANT FSM ENCODING

Figure 3 shows an overview of our proposed approach,
AREST. AREST consists of three major tasks: (i) FSM state
extraction, (ii) FSM state encoding, and (iii) grouping of states.
The first task needs to extract an FSM from Register-Transfer
Level (RTL) models to determine the number of states and the
security requirements of each state. The second task performs
a greedy encoding of the FSM states. The third task will
generate potential state encodings while identifying security
simplifications to reduce area overhead. The input to an LFI-
secure FSM generation framework would be an RTL model
with labeled protected states. The output would be LFI-attack
resistant RTL design. The remainder of this section describes
these tasks in detail.

A. FSM State Extraction

FSM state extraction involves exploiting coding guidelines
required by synthesis tool vendors (shown in many released
synthesis tool guides [24]). These guidelines generally rec-
ommend defining a state signal (usually a binary vector) and
switching between FSM states using a case statement or if-
else block with the encodings of each state as the condition
of each statement. The state encodings can be changed by
modifying the conditional values in the FSM case statement.
If an FSM does not follow vendor guidelines, we do not
consider it as vulnerable because it is likely unsynthesizable
and cannot be deployed in the field. We utilize the Yosys
synthesis tool that allows automated FSM extraction [25].
These synthesis tools also provide encoding options such
as one-hot or binary encoding. However, they do not take
individual states’ security requirements into account when

Algorithm 1 GenerateEncodings

n: Number of states
b: Bit flipping capability
C: Generated encoding set
codeLength: Intermediate binary state vector length
A: Set of all binary encoding for codeLength

1: C ← 0
2: if n > 1 then
3: codeLength← max(b + 1, ⌈log(n)⌉)
4: while n > |C| do
5: A← all binary encoding for codeLength
6: ▷ |A| = 2codeLength

7: for ∀a ∈ A do
8: for ∀c ∈ C do
9: if HammingDistance(a, c) ≤ b then

10: Reject a
11: end if
12: end for
13: if a is not rejected then
14: C ← C ∪ a
15: end if
16: if |C| ≥ n then ▷ Enough encodings found.
17: Return C
18: end if
19: end for
20: codeLength← codeLength+ 1
21: end while
22: end if

encoding states. Our proposed solution can be incorporated
into these frameworks if a protected state labeling system is
added.

While our proposed approach makes FSM secure, it may
increase the size of the encoding. As a result, it implicitly
increases the number of undefined states, which in turn can
create security vulnerabilities. A simple and straightforward
way to address this problem is to ask the designer to always
use a default case statement. In fact, it is a common coding
guideline in the industry to add a default scenario since
designers typically do not enumerate all possible states.

B. Automated Encoding of FSM States

Our proposed method for generating FSM encodings
(AREST) is presented in Algorithm 1. We always start with
0 as the initial encoding because 0 requires the minimum
number of flip-flops to represent. We then iterate through
possible encoding lengths, search the space within that length,
and check each new value against all previous encodings. If
the value does not violate the distance requirement for any
encoding in the set, we add the new value to the set.

Definition 1: Hamming bound [26]
Let n(l,d) be the maximum number of binary encodings of
codelength l that is separated by the Hamming distance of at
least b. Then,

n(l,b) ≤
2l∑t

k=0

(
l
k

) (1)

where the upperbound t is,

t = ⌊b− 1

2
⌋ (2)

Definition 2: Perfect Code
An encoding that attains the Hamming bound is known as
perfect code.
Lemma 1: When we increase the codeLength by 1, we can
add at least one more encoding to the set.

Proof: From the Hamming bound we can prove that as
long as b < l − 2, incrementing codeLength l by 1 will
always increase the Hamming bound with a value greater than
1 (∆n(l,b) > 1). Since we start the codeLength l from max(b
+ 1, ⌈log(n)⌉), if we have already attained the Hamming
bound (which means a perfect code) and still want to add
another state to the encoding set, we should find the encoding
with codeLength+ 1 (l + 1).
Proof of Correctness for Algorithm 1: Suppose we have to
find the best state encoding set for the n number of states with
a BFC of b.
Let A2(n, b) = {(0, 1)c1, ..., (0, 1)cn} be the solution given by
the AREST algorithm and let O = {(0, 1)q1, ..., (0, 1)qn} be the
optimal solution. Here (0, 1)ij represent the jth state encoding
with the code length of i. We have to prove that c ≤ q.
• For the base case when n = 2,
A2(2, b) = {(0, 1)b1, (0, 1)b2} and q = b+ 1.
Therefore, c = q = b+ 1.

• For p > 2, assume that the above statement is true for n =
p− 1 where c ≤ q for n = p− 1 such that A2(p− 1, b) =
{(0, 1)c1, ..., (0, 1)cp−1}.

• When n = p, we have to add another state to the solution
from n = p− 1.
– Case 1: If we can find another encoding that sat-

isfies the Hamming distance b with other encod-
ings in same codeLength, which means A2(p, b) =
{(0, 1)c1, ..., (0, 1)cp}.
Therefore , c ≤ q for n = p.

– Case 2: When codeLength is not enough to add an-
other encoding which satisfies the Hamming distance
b with other encodings, which means A2(p, b) =
{(0, 1)c1, ..., (0, 1)c+1

p }. Since for n = p− 1 we had q as
the optimum value and c ≤ q, we cannot add one more
encoding to the the codeLength = q without violating
the Hamming distance b due to it being a perfect code.
Therefore, by using Lemma 1, we will find the encoding
set with codeLength+ 1.
Therefore, c+ 1 ≤ q + 1 for n = p

Example 1: If a designer wants to encode the FSM described
in Figure 2 using Algorithm 1, they will take the number
of states (assume 10 states) and the minimum required HD
(assume a BFC of 3 bits) as inputs. The encodings would be
produced as follows. The first encoding would be 0 by default.
The algorithm would then count through all numbers, which

can be represented using 4 bits (1 through 24 − 1). In each
iteration, the algorithm would check whether the current value
fulfills the minimum HD requirement for each encoding in the
set (containing only 0 in the first iteration). If the requirement
is fulfilled for all encodings, then the new value would be
added to the set of encodings. Once the size of the encoding
set is equal to the required number of encodings, the algorithm
returns the set. If no set of 4-bit encodings could be found,
then the algorithm moves on to trying 5-bit encodings. In this
case, the final result would be the following set where each
pattern represents the encoding of one of the 10 FSM states
(0000000, 0000111, 0011001, 0011110, 0101010, 0101101,
0110011, 0110100, 1001011, 1001100). ■

C. Efficient Encoding with Grouping of FSM States

To the best of our knowledge, previous works split their state
encoding schemes into protected and non-protected groups
and maintained a minimum distance between each protected
state and all other states. Real-world applications may have
more complex privilege-level structures. Designers may decide
to ignore potential LFI jumps between two protected states
because entering one protected state implies authorization to
enter another (e.g., once a user logs in, they can access
any page associated with their account). Designers may also
identify an indefinite number of state groups that should be
protected from each other but not from members of the same
group (e.g., user A can access any of its own pages, and user
B can access any of its own pages, but neither can access the
other’s pages). Previous works assume that all protected states
belong to different groups when this may not be the case.
This assumption leads to unnecessary area overhead because
members of each distinct group must fulfill the minimum
distance requirement from the members of all other groups.

To generate minimum-length encodings with state groups
taken into consideration, we propose Algorithm 2. This heuris-
tic generates a minimum distance encoding for each protected
state group and appends binary encodings to represent the
states within the group. First, we encode all the groups
considering each group as one state [Algorithm 2, line 2]
using Algorithm 1. Then, based on the most extended group’s
size, we create binary encoding for each state inside each
group [Algorithm 2, line 4 - 6]. The algorithm concatenates
⌈log2(largest group size)⌉ bits encoding to the states of all
the groups to create the final state encoding [Algorithm 2,
line 6]. This process repeats till all the states in the FSM are
covered.
Example 2: Assuming the attacker has a BFC of 2, if a
designer wanted to split the non-protected states into a group
and all protected states into distinct groups, they would run
Algorithm 2 with two groups (one protected group for each
protected state and one non-protected group), an HD of three,
and the largest group size of two (the number of non-protected
states). The algorithm would then generate nine group vectors
HD apart and concatenate the ceiling of log2(largest group
size) bits to these vectors to represent all members of the
largest group (one bit in this case). The end result would be the

Algorithm 2 State Grouping

b: Bit flipping capability
G: Set of Groups
C: Generated encoding set

1: n = max(|gi|),∀gi ∈ G
2: D ← GenerateEncodings(|G|, b)
3: if n > 1 then
4: for ∀j in ⌈log(n)⌉ do
5: for ∀di ∈ D do
6: C ← di.[j

⌈log(n)⌉] ▷ Concatenate with binary
encoding.

7: end for
8: end for
9: end if

10: Return C

set (00000000, 00000001, 00001111, 00110011, 00111101,
01010101, 01011011, 01100111, 01101001, 10010111) in
which the first two encodings correspond to the non-protected
states. ■

Example 3: If, however, the same designer wanted to split
the protected states into groups by varying security levels (Edit
Account, Deposit Funds, Withdraw Funds, and Transfer Funds
in one high-security group and all other protected states in a
normal-security group), then they would run Algorithm 2 with
three groups (non-protected, normal-security, high-security),
an HD of three, and the largest group size of four (the normal-
security group’s size). In line 3 of Algorithm 2, this would
essentially run Algorithm 1 with three states (one for each
group) and an HD of three. The rest of the members of each
group would be represented by concatenating binary counts
to the results of 1. Binary counting ensures that members
of a group are as close together as possible. The resultant
encodings would be (0000000, 0000001, 0011100, 0011101,
0011110, 0011111, 1100100, 1100101, 1100110, 1100111).
Note that the encoding lengths dropped from eight to seven
when making this change. ■

D. Handling Nested FSMs

Nested FSMs are designed to simplify the modeling process
of FSMs based on the hierarchy of the abstraction level.
Figure 4 represents an autonomous car FSM with five main
states on the parent FSM. Inside state S4 (Change Lane),
there is a child FSM which consists of another three states.
Designers can use two methods when implementing this on
behavioral models on hardware designs.
1) Implement flag signals inside parent states and trigger the

child FSMs using the flag signal. Figure 5 shows the
corresponding hardware implementation. In this case, the
proposed technique AREST can be directly applied to child
and parent FSMs separately, and LFI-resistant hardware
implementation can be obtained since the child FSM is
isolated from the parent FSM.

S1 : 001
Idle

S0 : 000
Start

S4 : 100
Change Lane

s0 : 00
Indicate s1 : 01

Observe

s2 : 10
Act

S2 : 010
Cruize

S5 : 101
Limp Mode

S3 : 011
Stop

Autonomous Car

Figure 4: An example nested FSM in an autonomous car.

SX
Parent Reg

100

SX+1

Outputclk
Sx

Child Reg
01

sx+1

Figure 5: Hardware implementation of an external flag trig-
gered child FSM. Here, the child FSM resides inside the parent
FSM’s logic circuit.

2) Considering child FSM as a part of the parent FSM
and consider it as a separate group. Here the proposed
algorithm can be applied with state grouping, and LFI-
resistant implementation can be obtained.

IV. EXPERIMENTS

This section demonstrates the effectiveness of our proposed
framework. We first describe the experimental setup. Next, we
present the experimental results.

A. Experimental Setup

We ran all our experiments on a host with an Intel Core i7
2.7 GHz CPU and 16 GB of RAM. We developed our proposed
work AREST and Exhaustive algorithm using Python 3.8.10
code. The author provided the code for the Probabilistic [19]
approach. We compared our proposed approach AREST with
existing methods: Probabilistic [21] and Exhaustive [22].
We evaluate AREST with different performance parameters
such as encoding time with a different number of states
and BFC values, length of the generated binary state vector,
and hardware area overhead for FSMs. We have used both
Yosys [25], an open-source tool, and Pyverilog [27] python
library kit for extracting FSM. For hardware overhead analysis,
we have selected several cryptographic hardware designs from
OpenCores [28] and synthesized two implementations (with
and without our technique) using Yosys.

B. Comparison of Encoding Time

Figure 6 represents the runtime comparison of AREST

with Probabilistic and Exhaustive with different BCF values.
In [19], the author explains that their method is more suitable
for large HDs because the large distance allows additional
pruning of possible matrix extensions. In case of LFI-resilient
encoding, the attackers can accurately flip only few bits (up
to 3 bits due to limited access to precise lasers [17], [20]).
Therefore [19] experimentally appears to be unsuitable for this
heuristic. In Figure 6a and 6b, we see that the Probabilistic
heuristic is slower than an Exhaustive algorithm for BFC of
1 and 2. As BFC grows, the Probabilistic approach starts
outperforming Exhaustive searches. AREST outperforms both
the Exhaustive (3076 times faster on average) and Probabilistic
(2114 times faster on average) approaches in terms of encoding
generation time. To evaluate the scalability, we have explored
the runtime behavior of AREST in Figure 8 for large and
complex FSMs. The increment of encoding vector generation
time compared to the number of the states is negligible (in
milliseconds).

C. Comparison of Encoding Length

Figure 7 compares the code length in terms of binary state
vector size. The size of the vector in state encoding directly
impacts the number of flip-flops in the FSM system. Hence,
lesser flip-flops will result in a system design with a smaller
area on the chip. As it is evident from the graphs, our proposed
work AREST significantly outperforms Probabilistic encoding
in reducing the vector size by more than 50% on average.
As expected, our approach provides the same (smallest) code
length as Exhaustive. Note that Exhaustive is not a scalable
solution since it requires exponential time as demonstrated in
Figure 6.

D. Encoding under State Grouping

In Figure 9, we demonstrate how AREST affects binary
state vector length and area with state-grouping. To show the
maximum difference, we considered two extreme scenarios:
(Case 1) where all states are considered to be in the same
group, and (Case 2) where all states are considered distinct
as groups. We can observe that the generated encoding length
increases when the number of groups increases for the same
number of states in an FSM. The red line in the graphs shows
the maximum possible generated encoding length when we
split states into individual groups. The area overhead increases
with the number of states since increasing the number of
groups increase the number of states from which every other
state must maintain a minimum required HD for a secure FSM.
For example, AREST requires 50% longer encoding for Case
2 over Case 1 when the number of states for the FSM is 20.
The difference in the generated encoding grows as the number
of states grows in the FSM.

E. Area Overhead

For overhead analysis, we have selected several cryptog-
raphy designs from OpenCores [28] to find the area overhead

(a) BFC = 1 (b) BFC = 2

(c) BFC = 3 (d) BFC = 4

Figure 6: Runtime comparison of AREST with Exhaustive [22] and Probabilistic [21] techniques for four different BFC values

(a) BFC = 1 (b) BFC = 2

(c) BFC = 3 (d) BFC = 4

Figure 7: Generated encoding length comparison of proposed work AREST with Exhaustive [22] and Probabilistic [21] techniques
for four different BFC values

of the proposed work AREST. We have extracted the state
machines, which were encoded using binary encoding from
the selected designs and counted the number of protected and
non-protected states. Table I shows the result for the extra
overhead added with our proposed solution on synthesized
design (column 5) compared to binary encoding. The column
4 and 5 show the code length values produced by Algorithm
1 and 2, respectively. The results highlight the fact that
the proposed encoding mechanism adds negligible hardware

overheads compared with the original size of the design with
respect to the number of gates. Note that the number of gates
for the overhead calculations was calculated by removing the
FSM optimization pass during synthesis.

V. CONCLUSION

Finite State Machines (FSMs) are widely used to implement
various computation sequences and communication protocols
while designing different components of a System-on-Chip

Figure 8: Runtime graph of the proposed policy AREST with
different FSM size and BFC values

Figure 9: Comparing the vector lengths for different protected
state grouping schemes.

(SoC). The security and integrity of an SoC can be compro-
mised if the security of the FSM is bypassed. Laser Fault
Injection (LFI) attacks are used to target FSMs by flipping
bits of the flip-flops to transition to a protected state. In
this paper, we proposed a method for automatically encoding
LFI-Attack-Resistant FSMs, AREST. AREST performs state
encoding, ensuring that the hamming distance is more than
the bit-flipping capability of the LFI attack. Our proposed
work demonstrated two major advantages compared to state-
of-the-art approaches: significant reduction in code length
(50% on average) and drastic improvement (several orders-
of-magnitude) in encoding generation time. We have also
explored optimization opportunities in real-world applications
by grouping states with compatible privilege levels.

REFERENCES

[1] Farimah Farahmandi and Prabhat Mishra. FSM anomaly detection using
formal analysis. In IEEE International Conference on Computer Design
(ICCD), pages 313–320, 2017.

[2] Adib Nahiyan et al. Security-aware fsm design flow for identifying and
mitigating vulnerabilities to fault attacks. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 38(6), 2019.

[3] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. Shaping
the glitch: optimizing voltage fault injection attacks. IACR Trans. on
Cryptographic Hardware and Embedded Systems, pages 199–224, 2019.

[4] Philippe Maurine. Techniques for em fault injection: equipments and
experimental results. In 2012 Workshop on Fault Diagnosis and
Tolerance in Cryptography, pages 3–4. IEEE, 2012.

[5] Mahmoud A Elmohr, Haohao Liao, and Catherine H Gebotys. Em fault
injection on arm and risc-v. In 2020 21st International Symposium on
Quality Electronic Design (ISQED), pages 206–212. IEEE, 2020.

[6] Haohao Liao and Catherine Gebotys. Methodology for em fault
injection: Charge-based fault model. In Design, Automation & Test in
Europe (DATE), pages 256–259. IEEE, 2019.

[7] Jörn-Marc Schmidt and Michael Hutter. Optical and em fault-attacks
on crt-based rsa: Concrete results. na, 2007.

Table I: Synthesized area overhead against binary encoding
comparison for selected hardware designs with and without
state grouping for BFC of 2 (HD = 3). Here |PS| represents
the number of protected states, and |NPS| represents the
number of non-protected states.

Design |PS| |NPS|
CodeLength Synthesized

Area overheadState Grouping
Without With

ECC 4 9 9 7 ≈ 0.001%
AES 2 3 7 6 ≈ 0.001%

SHA256 3 4 7 6 ≈ 0.002%
RSA 4 3 7 6 ≈ 0.002%

MIPS 5 14 9 9 ≈ 0.01%
MEMORY 8 58 11 11 ≈ 0.03%

[8] Mohammad Eslami, Behnam Ghavami, Mohsen Raji, and Ali Mahani.
A survey on fault injection methods of digital integrated circuits.
Integration, 71:154–163, 2020.

[9] Hasini Witharana and Prabhat Mishra. Speculative load forwarding
attack on modern processors. In International Conference on Computer-
Aided Design (ICCAD), 2022.

[10] Yuanwen Huang, Swarup Bhunia, and Prabhat Mishra. Scalable test
generation for trojan detection using side channel analysis. IEEE Trans.
on Information Forensics and Security, 13(11):2746–2760, 2018.

[11] Yangdi Lyu and Prabhat Mishra. Scalable activation of rare triggers
in hardware trojans by repeated maximal clique sampling. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 40(7):1287–1300, 2020.

[12] Yangdi Lyu and Prabhat Mishra. Maxsense: Side-channel sensitivity
maximization for trojan detection using statistical test patterns. ACM
Transactions on Design Automation of Electronic Systems (TODAES),
26(3):1–21, 2021.

[13] Farimah Farahmandi, Yuanwen Huang, and Prabhat Mishra. System-on-
Chip Security. Springer, 2020.

[14] Joaquin Rodriguez, Alex Baldomero, Victor Montilla, and Jordi Mujal.
Llfi: Lateral laser fault injection attack. In Fault Diagnosis and Tolerance
in Cryptography (FDTC), pages 41–47, 2019.

[15] Shahin Tajik et al. Laser fault attack on physically unclonable functions.
In Fault diagnosis and tolerance in cryptography, pages 85–96, 2015.

[16] Brice Colombier et al. Multi-spot laser fault injection setup: new
possibilities for fault injection attacks. In International Conference on
Smart Card Research and Advanced Applications, pages 151–166, 2021.

[17] Muhtadi Choudhury, Domenic Forte, and Shahin Tajik. Patron: A
pragmatic approach for encoding laser fault injection resistant fsms. In
Design, Automation Test in Europe Conference, pages 569–574, 2021.

[18] Victor Tomashevich, Yaara Neumeier, Raghavan Kumar, Osnat Keren,
and Ilia Polian. Protecting cryptographic hardware against malicious
attacks by nonlinear robust codes. In IEEE DFT, pages 40–45, 2014.

[19] Johannes Zwanzger. Computergestützte Suche nach optimalen linearen
Codes über endlichen Kettenringen unter Verwendung heuristischer
Methoden. PhD thesis, Bayreuth, 2011. msc: 51C05; msc: 94B05.

[20] Muhtadi Choudhury, Shahin Tajik, and Domenic Forte. Sparse: Spatially
aware lfi resilient state machine encoding. In International Workshop
on Hardware and Architectural Support for Security and Privacy, 2021.

[21] Sunghyu Han. Finding good linear codes using a simple extension
algorithm. IEEE Transactions on Information Theory, 57(10), 2011.

[22] Stephan Mertens. Exhaustive search for low-autocorrelation binary
sequences. Journal of Physics A, 29(18), 1996.

[23] M. Best, A. Brouwer, F. MacWilliams, A. Odlyzko, and N. Sloane.
Bounds for binary codes of length less than 25. IEEE Transactions on
Information Theory, 24(1):81–93, 1978.

[24] Intel® quartus® prime pro edition user guide, Jun 2021.
[25] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.
[26] Thi Ngoc Giau Le and Thanh Toan Phan. A simple proof of the

improved johnson bound for binary codes. Bulletin of the Korean
Mathematical Society, 56(2):391–397, 2019.

[27] Shinya Takamaeda-Yamazaki. Pyverilog: A python-based hardware
design processing toolkit for verilog hdl. In Applied Reconfigurable
Computing, pages 451–460, Apr 2015.

[28] Opencores. https://opencores.org/.

