
Hardware-Assisted Malware Detection using
Explainable Machine Learning

Zhixin Pan, Jennifer Sheldon and Prabhat Mishra
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida, USA

Abstract—Malicious software, popularly known as malware, is
widely acknowledged as a serious threat to modern computing
systems. Software-based solutions, such as anti-virus software,
are not effective since they rely on matching patterns that can
be easily fooled by carefully crafted malware with obfuscation
or other deviation capabilities. While recent malware detection
methods provide promising results through effective utilization
of hardware features, the detection results cannot be interpreted
in a meaningful way. In this paper, we propose a hardware-
assisted malware detection framework using explainable machine
learning. This paper makes three important contributions. First,
we theoretically establish that our proposed method can provide
interpretable explanation of classification results to address the
challenge of transparency. Next, we show that the explainable
outcome can lead to accurate localization of malicious behaviors.
Finally, experimental evaluation using a wide variety of real-
world malware benchmarks demonstrates that our framework
can produce accurate and human-understandable malware de-
tection results with provable guarantees.

Index Terms—Malware Detection, Explainable Learning

I. INTRODUCTION

Malicious software (malware) is any software designed to
harm a computer, server, or computer network and cause
severe damage to the target system. Malware detection is a “cat
and mouse” game where researchers design novel methods
for malware detection, and attackers develop devious ways to
circumvent detection. Signature-based detectors compare the
signature of a program executable with previously stored mal-
ware signatures. However, signature-based anti-virus software
(AVS) is not effective even for known malware with poly-
morphic or metamorphic features. Also, they are computation
intensive, and as a result, they are not suitable for resource-
constrained systems such as IoT edge devices that operate
under real-time, power and energy constraints.

Recent research efforts explored designing hardware-
assisted malware detection with the hardware as a root of
trust. The underlying assumption is that although AVS can be
fooled by variations in malware code, it is difficult to subvert
a hardware-based detector since the malware functionality will
remain the same. There are some promising directions for
hardware-assisted malware detection using embedded trace
buffer (ETB) and hardware performance counters (HPC). ETB
based malware detection [1] shows advantages over HPC
based methods [2] in terms of classification accuracy. Despite
all these advantages, exploiting hardware components for

This work was partially supported by the NSF grant CCF-1908131.

malware detection is still in its infancy - there is no strong the-
oretical basis. Machine learning has been successfully used for
malware detection [3]. However, none of the previous works
on machine learning based malware detection are explainable.
Therefore, the detection results cannot be interpreted in a
meaningful way. A major objective of our proposed approach
is to provide transparency in malware detection.

In this paper, we propose a hardware-assisted malware
detection that takes advantage of explainable machine learning.
This paper makes the following major contributions:

1) To the best of our knowledge, our approach is the first
attempt in developing hardware-assisted malware detec-
tion using explainable machine learning, which leads to
interpretable detection results.

2) The interpretation sheds light on why the classifier makes
incorrect decisions, which leads to malware localization.

3) Our experimental evaluation demonstrates the effective-
ness of our proposed method in accurate classification of
benign and malicious programs, as well as interpretation
of detection results.

The rest of this paper is organized as follows. We survey
related efforts in Section II. Section III describes our proposed
method on malware detection. Section IV presents experimen-
tal results. Finally, Section V concludes the paper.

II. RELATED WORK

In the early days, the focus of detection was on static analy-
sis [4] by utilizing software filters for malware detection. Un-
fortunately, this naive approach can be circumvented by obfus-
cation [5]. Dynamic detection techniques try to defend against
obfuscation [6] by keeping track of the runtime behavior of
software and reporting any malicious behavior such as illegal
access. However, both static and dynamic detection methods
run on the software level, which is unable to detect malware
with deviation capabilities. Recent research efforts [1] turned
interest into hardware-based detection approaches due to their
robust resistance. While existing approaches are promising,
they inherits two fundamental limitations: (i) expensive pre-
processing to eliminate useless benign cycles, and (ii) user gets
only the final decision without understanding how the decision
was made or where to locate the infected area.

The demand for explainable machine learning has been
steadily increasing ever since machine learning algorithms
were adopted in many fields, especially in security domains.
Explanation schemes in machine learning aim at tackling

this issue by reasonably demonstrating the reason for making
predictions [7]. This task is performed by sorting the input fea-
tures ordered by their contribution towards the final decision.
By analyzing values of top features with highest weights, an
human-understandable illustration can be obtained. However,
existing approaches can not be naturally extended to malware
detection since almost all of them focus on static pixel images
while we need to handle input data that are time-sequential
records. To the best of our knowledge, our proposed approach
is the first attempt in applying explainable machine learning
for hardware-assisted malware detection.

III. MALWARE DETECTION USING TRACE ANALYSIS

Our proposed approach enables a synergistic integration of
hardware trace analysis and explainable machine learning for
efficient malware detection. We utilize existing design-for-
debug architecture, such as embedded trace buffer, for trace
collection. Such traces can be viewed as a w×d table X, where
w is the width, d is the depth. It represents the recorded values
of w traced signals over d clock cycles. We split each column
as a single feature component, i.e values of all traced signals
within one single cycle. Next, we apply explainable machine
learning for malware detection.

Figure 1: Proposed malware detection framework consisting of
three major activities: training, regression, and interpretation.

Figure 1 shows an overview of our proposed method that
consists of three major tasks. The first task is model training,
where we train a machine learning classifier M using collected
traces. The second task performs linear regression. For an
input instance x we want to explain, perturb x randomly to
generate artificial input dataset X = {x1, x2, ...} and feed
them to M to obtain corresponding model output Y =
{M(x1),M(x2), ...}, based on which we further compute a
linear regression function. The goal of the last task is to
perform outcome interpretation. Specifically, the top features
ranked by the magnitude of coefficients will provide users the
crucial timing information of malware. The remainder of this
section describes these three tasks in detail.

A. Model Training

As discussed in Section II, hardware-assisted malware de-
tection techniques should monitor the behavior of software
at run-time. Therefore, relying on single-cycle data is not
effective since malicious behavior usually consumes several
sequential cycles. Moreover, single-cycle based strategies are
likely to mispredict a benign software as malicious. This is due
to the fact that malware also contains normal operations, and
considering these benign operations as important features of

malware can lead to misclassification. A well-designed pre-
processing strategy can mitigate this by filtering overlapped
common behaviors shared by both malicious and benign
programs. However, the difficulty of designing such a strategy
is very high, and there is no guarantee that it can be performed
in all cases. Therefore, an ideal machine learning model for
our task should satisfy the following two properties:

(1) Ability to accept time series type data as input.
(2) Ability to make decisions utilizing potential information

concealed in consecutive adjacent inputs.
We propose to utilize Recurrent Neural Network (RNN)

training to tackle this problem. Algorithm 1 outlines the
training procedure.

Algorithm 1 RNN training with Penalty

1: for each iteration of SGD do
2: σ = 0
3: for i = 1 to t do
4: compute adjacent difference ∆h = |hi − hi−1|
5: σ+ = ∆h
6: end for
7: Add σ to loss function
8: Compute gradient of modified loss function
9: Update parameters by back propagation

10: end for

B. Regression

Once we have the well-trained model, we can start to
perturb the target input to generate corresponding perturbed
output dataset. Applying linear regression will lead to a linear
prediction model to fit our artificial dataset. Note that a linear
prediction model can always be expressed by a polynomial,
then we can utilize the expression to extract weight informa-
tion. Formally, given a data set {y, x1, x2, ..., xn}, where n is
the number of samples, linear regression takes the following
form by appending error variable ε:

y =

n∑
i=1

aixi + ε

where ais are model parameters, and the goal is to minimize
ε as much as possible. In our case, the input is the w ∗ d
trace table X as mentioned before. Since we treat each
column of this table as an individual input feature, we have
X = [x1 x2 ... xd], where each xi is a vector in the size of w∗1.
We choose y as the output of last hidden state, this leads to
an optimization problem:

arg min
a
||Xa− y||2

where a ∈ Rd is [a1 a2 ... ad]T , i.e, coefficients to be solved.
This is a common convex optimization problem and its so-
lution can be obtained by a = (XtX)−1Xty. Unfortunately,
this method cannot be directly applied to solve our task. First,
this theoretical solution exists only when XtX is invertible
(full rank), which may not be true most of the time. Second,
even when XtX is full rank, linear regression assumes input
vectors are independent, otherwise it will produce unreliable
results when any two of xi (columns) are highly correlated.
Specifically, assume that the regression function is computed

to be ŷ = ax1 + bx2 + cx3 + d, where x1 and x2 are highly
related features and they are very close to each other. Then
there is a canceling effect between a and b. Increasing a by
certain amount while decreasing b by the same amount at the
same time will not lead to drastic change in ŷ. The problem
becomes ill-posed since absolute value of a and b can vary
significantly under different computing procedure or initial
conditions. Then the comparison between |a|, |b| and |c| is
not useful, therefore, the interpretability of the model is greatly
reduced. Since adjacent columns in trace table are sequential
records of signal values within a short duration, violation of
this independence assumption is likely to happen.

In our study, we applied ridge regression, which is an
improved least squares estimation method, and the fitness
of correlated data is stronger than general regression. Ridge
regression is achieved by appending one extra penalty term to
the optimization problem:

arg min
a
||Xa− y||2 + λ||a||2

Intuitively, a size constraint is imposed to restrict the
absolute value of all coefficients, which alleviate the problem
of high variance of coefficients. Moreover, notice

arg min
a
||Xa− y||2 + λ||a||2 → arg min

a
||(X− λI)a− y||2

Replacing X with X−λI is a general way to avoid the prob-
lem for X being singular matrix. Also, data was centralized
and the problem of high variance is alleviated. Therefore, with
ridge regression, coefficients obtained is more reliable and fit
better for our dataset, which has high correlation.

C. Outcome Interpretation

Once coefficients of regression are obtained, we can derive
the importance ranking, then interpret it into meaningful infor-
mation in the context of malware detection. The top features
come with large coefficients that are likely to be related to
the malicious behavior. Next, we can check the clock cycle
distribution of these top features. It is expected to provide
us with extra information about the malware. For example, if
we observe adjacent cluster of top features, then the time slot
within which they reside shall provide a general indication
of time information about when malicious behavior happened.
Similarly, if clock cycle numbers are periodically separated,
the detected malware is likely to repeat its malicious activity
periodically. Typical malware acting like this usually works
in a client-server mode, where client program steals private
data and sends message to the hacker’s server in a periodic
interval. For a closer look, we can split the table into rows and
go through the same process. This will lead to identification of
trace signal values that are most likely relevant to the malicious
behavior, which in turn will lead to malware localization.

IV. EXPERIMENTAL EVALUATION

A. Experimental Platform

We ran malicious and benign programs on the Xilinx Zynq-
7000 SoC ZC702 evaluation board as shown in Figure 2.
We consider a wide variety of malware families [8] including
the following three popular ones: BASHLITE Botnet, PNScan
Trojan and Mirai Botnet. Our benign programs include system

(a) ZYNQ SoC Board (b) Platform Layout

Figure 2: Experimental Platform

binaries such as ls,mkdir, ping, netstat1. The traced values
gathered by running both malware and benign programs on
the hardware board are utilized as inputs to our classifier.

B. Evaluation: Accuracy

We compare the accuracy of our approach with the state-
of-the-art hardware-assisted malware detector, PREEMPT [1].
PREEMPT utilizes two types of implementation, random
forest (PREEMPT RF) and decision tree (PREEMPT DT).
We run both malicious and benign software on our hardware
platform. We executed a total of 367 programs (including both
malicious and benign ones) and all the traced data were mixed
up and further split into training (80%) and test (20%) sets
after labeling. Total training epochs are 200 for every model
and we plot test accuracy every 10 epochs. The performance
of all methods are depicted in Figure 3.

Figure 3 compares the prediction accuracy of our approach
with PREEMPT RF and PREEMPT DT. As we can see, our
proposed method provides the best malware detection accu-
racy. The PREEMPT appeared fragile in the face of PNScan,
with an average of 62.7% accuracy for DT and 76.9% for RF,
while the proposed method provided an average accuracy as
high as 91.4%. For BASHLITE, both proposed method and RF
performed well and the best accuracy of our method is 98.9%.
For Mirai, our proposed method achieved 97.5% accuracy
while PREEMPT attained a maximum accuracy of 92.5% with
RF. Note the inferior performance of PREEMPT DT in Mirai.

If we omit malware and test models on traced data gathered
from benign software only, Figure 3(d) shows the false positive
rate (FPR) of all three methods. The diagram illustrates the
major drawback of PREEMPT, it possesses an average FPR
as high as 25.9% with RF, and 31.6% with DT. In other words,
it is very likely to mispredict a benign software as malware.
Tested benign software samples also execute Linux system
binaries like netstat and ping, which are also frequently exe-
cuted by botnet malware. Since the PREEMPT cannot analyze
time sequential data, it failed to recognize benign execution
of these binaries with the help of context and produced wrong
predictions. In contrast, our framework obtained FPR as low
as 3.4%.

C. Evaluation: Outcome Interpretation

We also evaluated the performance of our method by
interpreting the contribution factor for the classification results.

1ping and netstat are important since our malware are botnets.

(a) Performance on BASHLITE (b) Performance on PNScan (c) Performance on Mirai (d) False Positive Rate (FPR)

Figure 3: Performance of machine learning models: (a) - (c) for various malware, and (d) for benign benchmarks

For clock-cycle related analysis, an example of executing
BASHLITE’s client on host machine is shown in Figure 4.

Figure 4: Interpretation of BASHLITE client’s traced signals

Figure 4 shows a snapshot of the trace table, where each
row represents the values in a register in specific clock
cycles (each column represents a specific clock cycle). Our
proposed method computed the corresponding contribution
factor of each clock cycle towards the RNN output using linear
regression, which is shown as weights in the last (colored)
row. As we can see, the weight of C4 is significantly larger
than the others. This immediately indicates the clock cycle
of malicious behavior. By tracing the execution, we find
that C4 points to the timestamp before the start of function
“processCmd” in BASHLITE, which is the most important
function of BASHLITE to perform its malicious functionality.
In other words, this is the starting point and exact reason for
recognizing this program as malware.

Another example of outcome interpretation is shown in
Figure 5, where we measure the contribution of each traced
register signal. The given data is the trace table of executing
Mirai’s bot on host machine. This time we evaluate the
contribution row-by-row, and the result is listed on the right
side of the trace table.

Figure 5: Interpretation of Mirai bot’s traced signals

As we can see, register R3 is recognized as the most
important factor. Here R3 is storing the variable “AT-
TACK VECTOR” in Mirai. This variable records the identity
of attack modes, based on which the bot takes relative actions

to perform either a UDP attack or DNS attack. This attack-
mode flag is the most important feature of a majority of
malware bot programs, and our proposed method successfully
extracted it from the traces to illustrate the reason for making
this prediction.

V. CONCLUSION

Design of trustworthy systems needs to eliminate malicious
software (malware) as well as malicious hardware. Detec-
tion of hardware Trojans utilize an effective combination of
simulation-based validation [9], [10] and side-channel analysis
[11], [12]. State-of-the-art malware detection methods have
several limitations including limited prediction accuracy and
lack of transparency. Our proposed approach addresses these
limitations by developing a regression-based explainable ma-
chine learning algorithm. Our approach is able to find the
major contributors among all input features by perturbation
and linear regression. Experimental results demonstrated that
our approach significantly outperforms (with average accuracy
of 98.9%) state-of-the-art approaches on three most popular
malware families. Unlike existing approaches, our approach
provided transparency in prediction results, which is vital for
outcome interpretation as well as malware localization.

REFERENCES

[1] Kanad Basu et al. PREEMPT: preempting malware by exam-
ining embedded processor traces. In DAC, page 166, 2019.

[2] Xueyang Wang et al. Hardware performance counter-based
malware identification and detection with adaptive compressive
sensing. ACM TACO, 13(1):3, 2016.

[3] Joshua Saxe and Konstantin Berlin. Deep neural network
based malware detection using two dimensional binary program
features. In 10th MALCON, pages 11–20, 2015.

[4] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis
for malware detection. pages 421–430, Dec 2007.

[5] Malware Obfuscation Techniques: A Brief Survey. IEEE Com-
puter Society, 2010.

[6] Jacob et al. Behavioral detection of malware: from a survey
towards an established taxonomy. JCV, 4(3):251–266, 2008.

[7] Marco Ribeiro et al. ”why should I trust you?”: Explaining the
predictions of any classifier. In SIGKDD, 2016.

[8] Kishore Angrishi. Turning internet of things(iot) into internet
of vulnerabilities (iov). CoRR, 2017.

[9] Yangdi Lyu and Prabhat Mishra. Automated trigger activation
by repeated maximal clique sampling. In ASP-DAC, 2020.

[10] A.Ahmed et al. Scalable trojan activation by interleaving
concrete simulation and symbolic execution. In ITC, 2018.

[11] Zhixin Pan et al. Test generation using reinforcement learning
for delay-based side-channel analysis. In ICCAD, 2020.

[12] Huang et al. Scalable test generation for trojan detection using
side channel analysis. TIFS, 13(11):2746–2760, 2018.

