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Abstract—Input vector generation is an important step during
validation and debugging of hardware designs. Validation using
random and directed random tests are widely used today.
However, these methods can lead to unacceptable functional
coverage under tight deadlines. Concolic testing is a semi-formal
method to address this issue. It combines concrete simulation
guided by symbolic execution. Application of concolic testing in
hardware domain is still in its infancy due to the lack of effective
traversal strategies. In this paper, we present Qualifying Event
Based Search (QUEBS) heuristic for concolic testing. During
exhaustive concolic testing, same branch may be selected many
times for traversal. Our heuristic limits the number of times
a branch can be selected. By preventing repeated selection, it
facilitates wider coverage within limited time. Also, whenever a
previously uncovered branch is encountered, this limit is relaxed
to permit thorough exploration of the newly reached area. Our
experimental results demonstrate that this approach provides bet-
ter branch coverage than state-of-the-art test generation methods
in a given time budget. To further improve the performance of
QUEBS, we provide two optimization techniques - unsolvable
branch elimination and incremental solving by context reuse.

I. INTRODUCTION

Verification is a major bottleneck in modern chip design
life cycle. According to [1], more than 70% of the resources
and engineering time is spent in verification efforts. Industry
uses many forms of automation to speed up this process. One
of them is random testing - where a large number of random
input patterns are applied to the design, and corresponding
outputs are checked for correctness. While random testing
is scalable and can be applied to large designs, the random
nature of produced tests tends to give low coverage and usually
does not cover all corner cases. To cover these corner cases,
directed tests are written manually by verification engineers.
Writing directed tests are very difficult and time consuming,
especially for large and complex designs. Some formal and
semi-formal methods have been proposed to automate this test
generation process [2]–[5]. However, formal methods such as
model checking unrolls the whole design statically. This makes
such methods prone to state explosion, and their applicability
is limited to small designs [6].

On the other hand, semi-formal methods like concolic test-
ing uses concrete simulation along with symbolic execution.
It was first introduced in software domain [7] [8] and later
adopted into hardware domain [9]. In concolic testing, the
design is first simulated with an initial set of inputs. The
path that is taken by the simulation is called an execution
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path. All the logical expressions in an execution path can be
represented as path constraints. Now, one of the branches that
is adjacent to the execution path is chosen to be explored
next and path constraints leading to this branch are given to
a constraint solver. If the constraint solver comes up with a
solution, the generated input assignments can be used as a
test case to activate that branch. If the constraint solver fails
to come up with any solution, a different branch is chosen
to be explored next. This procedure is repeated until all the
branches are covered or some other terminating conditions
are met. Concolic testing method avoids state explosion by
exposing only a particular execution path to the constraint
solver, not all possible paths at once. This advantage made
concolic testing a widely used test generation technique in
software domain.

How to select the next branch in concolic testing is an active
research area. Many selection strategies have been analyzed
in the literature, including random, depth-first search (DFS),
breadth-first search (BFS), context guided, coverage guided
etc [9]–[13]. DFS and BFS are exhaustive search strategy -
they guarantee full coverage by exploring all possible paths.
However, as number of paths are exponential to the number of
branches, employing such exhaustive strategy is not practical
even for small designs [9]. Other search heuristics tackle
this path explosion issue by restricting which branches can
be selected. However, once restricted, these heuristics do not
consider these branches for exploration anymore, even when
exploring them might lead to unexplored territory.

In this paper, we present QUEBS - QUalifying Event Based
Search strategy for concolic testing. QUEBS maintains a bal-
ance between the exhaustive and restrictive search techniques.
Our proposed approach uses bounded DFS for traversing the
execution tree. However, unlike DFS, it sets a limit on how
many times a branch can be selected for exploration. Intuition
behind limiting is that unless the context is radically changed,
exploring the same search region many times will not be
beneficial. Events that indicate a change in context is defined
as qualifying events. In case of such a qualifying event, the
limit on branch selection is relaxed - permitting thorough
exploration. Specifically, QUEBS use limiting to prevent path
explosion and to quickly guide concrete simulation to a new
search region; and it uses relaxing to allow careful exploration
once that region has been reached. Additionally, this paper
presents two optimization methods for QUEBS. First opti-
mization method reduces failed calls to constraint solver by
eliminating many unsolvable branches beforehand. The second



optimization benefits by reusing overlapping contexts.
The primary contributions of this paper can be summarized

as follows:
• Proposes Qualifying Event Based Search heuristic

(QUEBS) for concolic testing. Proof of concept is pro-
vided by considering uncovering of new branch as an
qualifying event.

• Presents a novel optimization method for unsolvable
branch elimination using static transitive dependency
analysis.

• Proposes incremental solving by constraint context reuse.
We have considered two types of context reuse - intra
simulation and inter simulation.

• Provides experimental data supporting effectiveness of
QUEBS as well as the two optimizations methods.

The remainder of the paper is organized as follows. Prior
works on test generation techniques are discussed in Section II.
In Section III, necessary background on concolic testing is pro-
vided. Section IV describes QUEBS strategy in details. Section
V gives insight into our proposed optimization techniques. In
Section VI, experimental results compare our approach with
state-of-the-art methods. Finally, we conclude our paper in
Section VII.

II. RELATED WORK

Idea of concolic testing was first introduced in software
domain as DART [8]. Primary goal of DART was to au-
tomatically generate test cases for finding bugs in software.
It was then extended by CUTE and jCUTE, which added
more programming language constructs and support for multi-
threading [7] [12]. Later, Liu et al. proposed STAR, which
showed that same concept can be equally applicable for
verifying hardware designs [9]. However, all these methods
used DFS search strategy. Exhaustive strategies such as DFS
or BFS are prone to path explosion problem and does not scale
well with program size [14]. Also, as these strategies are very
thorough and localized, given a limited time budget, they can
explore only a narrow portion of the overall search space.

A wide variety of search heuristics have been proposed
to overcome this path explosion problem faced by concolic
testing. Authors of STAR recently proposed an enhanced
version which counters path explosion by utilizing the concept
of state caching [15]. In their approach, they cached the fully
explored states using bitmap encoding of branches. Whenever
a cached state is reached again, all the paths from that state is
skipped. In software domain, Burnim et al. proposed heuristics
based on random selection [10]. As these heuristics rely on
randomness, they have shown varying effectiveness in different
benchmarks. In the same article, authors proposed Control-
Flow Directed Search. In this approach, distance to a target
branch is calculated for all branches in the current execution
path and the one with minimum distance is selected. Intuition
behind this is - branch with minimum distance will most
likely lead to that target branch. HYBRO is a similar approach
for RTL designs, which uses static and dynamic analysis of
CFG [11]. In HYBRO, control dependency of all branches are

Original Code Instrumented CodeSimulateGenerate Input Generate path constraints:C = (c1, c2,..., cn)Negated path constraints:C' = (c1, c2,..., ¬ck) endSelectable branch?C'satisfiable?yes no yes no
Fig. 1. Typical flow for a concolic testing engine

determined statically from CFG. During runtime, a branch can
be selected only if it has uncovered control dependent child
branch. Qin et al. proposed a method similar to HYBRO, but
with added support for dynamic array references [16].

CarFast is another coverage guided search heuristic [17]. It
selects branches based on incremental coverage gain - where
coverage gain is determined by the number of uncovered
statements that can be reached by selecting that branch. A
similar technique is proposed by Li et al. [18]. In their
approach, each branch stores how many times its length-
n subpath is traversed. Here length-n subpath denotes the
preceding n branches. Branch with least frequently traversed
subpath is selected for exploration. An improved method is
proposed by Seo et al. named Context Guided Search (CGS)
[13]. It builds on the same concept of length-n subpath.
However, unlike prior approach, which only considered fixed
n, CGS dynamically increases n during runtime. Also, CGS
does not allow a branch to be selected if its subpath is traversed
before. CGS outperforms other search heuristics in software
domain with higher coverage in less iterations. However, in
case of hardware designs, same state can create different
contexts due to concurrency. This limits the effectiveness of
CGS for hardware designs.

III. BACKGROUND: CONCOLIC TESTING

Figure 1 shows the standard flow for concolic testing
engines. It starts by instrumenting the original code. Purpose
of instrumentation is to trace the execution path during sim-
ulation. One of the main criteria of instrumentation is that
it should not affect the functional behavior of the original
code in any way. The instrumented code is then compiled
and simulated with an initial input vector. As the compiled
code is instrumented, simulation will dump a trace of the
execution path. All of the execution paths together form the
execution tree. Now, a previously unexplored path is selected
from the execution tree - usually by negating one of the branch
conditions. All the path constraints up to that selected branch
along with the negated branch is then given to a constraint
solver (shown as C ′). If C ′ is satisfiable, same process is
repeated with the solution input set. If C ′ is not satisfiable,
a new branch is selected. The process is terminated if no
branch is left to be selected. Sometimes other terminating
conditions are also used, like a specific coverage goal, number
of iterations or timeouts.



 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: 18: 19: 20: 21: 22: 23: 24: 25: 26: 27: 28: always @(posedge clock) begin       if(reset) begin             out <= 0;             p <= 0;             q <= 0;             state <= A;       end else begin             case (state)             A: begin                   if (in == 0)                         p <= 0;                   else                         p <= 1;                   state <= B;             end             B: begin                   if (in == 0)                         q <= 0;                   else                         q <= 1;                   state <= C;             end             C:                   if (p==1 && q==0)                         out <= 1;                   else                         out <= 0;             endcase      end end   Input Constraint Stack /*clock edge 0*/ reset = 1 in = 0    /*clock edge 1*/ reset = 0 in = 0    /*clock edge 2*/ reset = 0 in = 0    /*clock edge 3*/ reset = 0 in = 0 /*stack bottom*/ reset[0] = 1 out[1] = 0 p[1] = 0 q[1] = 0 state[1] = A  not(reset[1] = 1) state[1] = A in[1] = 0 p[2] = 0 state[2] = B  not(reset[2] = 1) state[2] = B in[2] = 0 q[3] = 0 state[3] = C  not(reset[3] = 1) state[3] = C not(p[3]=1 and q[3]=0) out[4] = 0 /*stack top*/   (a)                                (b)  Fig. 2. An example showing constraint stack generation - (a) RTL code for
program under test, (b) Constraint stack for a particular input vector. Grayed
lines are branch constraints. Struck branches are pruned during optimization.

How the execution tree is explored defines the search strat-
egy and is a crucial performance determinant. Our proposed
method uses bounded DFS strategy at its core, like many
others [10]–[12], [16]. In software domain, depth is bounded
by number of branches in execution path. For RTL designs
however, it is usually done by bounding the number of unrolled
cycles. To facilitate depth-first search, a constraint stack is
maintained. An example constraint stack is shown in Figure
2(b). This particular stack is generated when the design is
unrolled for four clock cycles and executed with in set to zero.
For selecting next branch, bounded DFS starts with the branch
closest to the top and then proceeds towards the bottom. Search
ends if it reaches the bottom of the stack without finding any
explorable branch. QUEBS also follows bounded DFS, details
of which is discussed in the next section.

IV. QUALIFYING EVENT BASED SEARCH (QUEBS)

QUEBS modifies the standard bounded DFS by introducing
the idea of qualifying event, limit and limit relaxation. As
we already know, bounded DFS is exhaustive within the
bound. That means it will go through all possible execution
paths. It guarantees that if there exists any input vector for
which a branch can be reached within bounded clock cycles,
bounded DFS will find it. However, exploring all path becomes
infeasible when design size or bound increases. QUEBS avoids
this path explosion issue by employing limits on branches.
Limit can be defined as the maximum number of time a
branch can be selected for exploration. Limiting forces change
in search region. This limit can be changed to manipulate
how thoroughly a region will be searched before moving
onto a new region. However, employing limit can negatively
affect the coverage. To ensure high coverage, QUEBS uses

the idea of limit relaxation. Relaxation occurs when searching
a previously explored region might be beneficial. In case of
relaxation, all the branches are allowed to be selected again.
Events that trigger relaxation are defined as qualifying events.
In this paper, we have considered covering of an unexplored
branch as a qualifying event.

A. QUEBS Algorithm

Conceptually, algorithm of QUEBS is very simple. It main-
tains a counter for each branch. Before selecting a branch, it
checks whether the counter is less than the limit. If it is, then
it tries to generate input by invoking constraint solver. In case
solver also succeeds, counter value of that branch is increased
and next iteration follows with generated input. Furthermore, if
a qualifying event occurs, counter value of all branches except
the last selected one is reset to 0.

Algorithm 1 Qualifying Event Based Search (QUEBS)
Input: Program under test, P
Output: Test vectors

1: Set of test vectors, T ← ∅
2: Set of unsolvable branches, BU ← branch elim(P )
3: Last selected branch, blast ← ∅
4: Input vector, I ← random()
5: repeat
6: T ← {I} ∪ T
7: Execution path trace, π ← simulate(I)
8: update coverage(π)
9: if coverage goal is met then

10: return T
11: else if new branch covered in π then
12: // qualifying event, reset branch selection count
13: for all branch, b ∈ P and b! = blast do
14: b.count← 0
15: end for
16: end if
17: Constraints stack, C ← build stack(π)
18: while C not empty do
19: top constraint, c← C.pop()
20: if c type is branch then
21: b← ¬c
22: if (b /∈ BU ) and (b.count < K) then
23: I = constraint solver(C + b)
24: if I is valid then
25: b.count = b.count+ 1
26: blast = b
27: break // execute with new input
28: end if
29: end if
30: end if
31: end while
32: until I is not valid
33: return T

Algorithm 1 shows this procedure. It takes the design
as input and provides a set of test vectors (T ) as output.



Initially, T is empty. A one-time static analysis is done at this
stage to determine a set of unsolvable branches, BU (line 2).
These branches are skipped during selection process to reduce
unnecessary solver calls. Details of this pruning technique is
deferred to Section V.

After the initialization and static analysis is done, QUEBS
goes through the standard procedure of bounded DFS concolic
testing (line 5-32) until the coverage goal is met or no valid
input set is found to continue iterations.

In each iteration, the design is simulated with current input
vector I and execution path trace π is generated (line 7). Next,
branch coverage is calculated for this path (line 8). If coverage
goal is met, then test vector set T is returned (line 9-10).
Otherwise, if a new branch is covered (indicated by increase in
coverage), it is considered as a qualifying event and selection
count of branches are reset (line 11-16). Last selected branch
(blast) is skipped from reset to prevent unnecessary exploration
of same execution path. In the next step, constraint stack C is
generated from π and searched in a depth-first manner for next
candidate branch (line 18-31). After such a branch is found (b
in line 21), two types of checking are done before giving it
to the constraint solver. First, it is made sure that the branch
under consideration (b) is not pruned during the optimization
stage (b /∈ BU ). Second, the selection count must be less than
predefined limit (b.count < K). Once these criteria are met,
path constraints leading up to b is given to the constraint solver
(line 23). If the constraints are unsatisfiable, I becomes invalid.
Otherwise, we found the input vector for the next iteration
and it is assigned to I . In this case, selection count of b is
increased, blast is updated, and loop within constraints stack
is terminated so that the next iteration can start (line 25-27).
If no satisfiable branch is found, condition in line 32 becomes
false and QUEBS ends by returning T .

B. Illustrative Example

Figure 3 explains how QUEBS systematically explore
branches with limit K set to 1. The CFG shown in Figure
3(a) refers to the example RTL code of Figure 2, unrolled
for three clock cycles after reset (total four). Each white node
represents a branch of that example. Left path of these nodes
are taken in case the branch condition is true and right path
is taken if false. This CFG does not contain reset branches
and pruned case statements to increase clarity.

The design is first simulated with a random input vector, as
shown in Figure 3(b). It goes through branch b9, b16 and b25
(solid line). Here bi refers to the i-th line in example code, and
count denotes how many times it is selected for exploration.
Generated constraint stack for this particular path is shown
in Figure 2(b). Now, as QUEBS uses DFS, it will start with
the last branch b25 and will go up in the tree to find the next
branch to explore. Opposite branch of b25 is b23. However,
b23 has been optimized (removed) during ‘unsolvable branch
elimination’ phase, and thus cannot be selected. Details of
this optimization is discussed in Section V. Even if b23 was
selected, it would have conflict with previous constraint p[1] =
0. Next branch in the path is b16 with opposite branch b18.

Since b18 has count less than limit K, it is selected for next
iteration. To see if this path is feasible, following constraints
are given to the solver: (out[1] = 0) ∧ (p[1] = 0) ∧ (q[1] =
0) ∧ (state[1] = 0) ∧ (in[1] = 0) ∧ (p[2] = 0) ∧ (state[2] =
1) ∧ ¬(in[2] = 0). This is satisfiable and solver returns new
input set for next iteration. Also, count of b18 is increased by
1. Execution path for this new input is shown in Figure 3(c).

Iteration 1 follows the same procedure as iteration 0.
However, branch b18 is a previously uncovered branch. Going
through it triggers relaxation of limit for all branches except
b18. As for iteration 2, branch b16 is selected and its count
is increased. Execution path for this iteration is shown in
Figure 3(d). During this iteration, b18 could not be selected,
because b18’s count value is no longer less than limit K of
1. Going further up, branch b11 does not cause any violation,
and is selected for iteration 3. Execution path of this is shown
in Figure 3(e). Here b11 is a previously uncovered branch -
triggering a relaxation of limit for b16 and b18. As count of
b16 becomes 0, now it can be selected for iteration 4. This
iteration is shown in Figure 3(f). Here branch b23 is finally
covered. As all branches are covered, the QUEBS algorithm
terminates at this point.

C. Complexity Analysis

Let n be the number of branches and K be the selection
limit. In the worst case, n branches can be selected at most
(n.K) number of times before being reset. Also, in the worst
case, there can be at most n resets. This simple analysis gives
an upper bound to the number of iterations to be O(n2K).
In each iteration, there can be (n − 1) unsatisfiable solver
calls. This makes the upper limit of constraint solver call to
be of O(n3K). An interesting point to note here is that the
upper limit is independent of the unroll cycle. However, actual
iterations will increase with unrolled cycles because previously
unreachable branches will be accessible. Since the number of
solver calls is polynomial in the worst case, QUEBS does not
suffer from path explosion problem and can be applied on
large designs.

V. OPTIMIZATIONS

A. Unsolvable Branch Elimination

This optimization method detects branches that, when given
to constraint solver, will always return unsolvable. Many
unsuccessful solver calls are thus avoided by skipping these
branches during exploration.

For better explanation, two types of variables are defined.
Variables that are transitively connected to functional input
ports are flexible variables. Others are strict variables. Also,
it can be observed that execution paths solely depend on
input at different clocks cycles. Thus constraint solver can
generate input for negated branch condition only by changing
flexible variables. If the branch condition does not contain
any flexible variables, constraint solver can not come up with
a solution. This insight is used to statically prune branches
that are not connected to any input variables. Note that non
functional inputs such as clock and reset signals belong
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Fig. 3. Iterating through the example using QUEBS strategy. Pruned reset and case branches are not shown for clarity.

to strict category, because they are not used for exploring
different paths. The basic idea of early pruning of reset
branches already exists in literature [16].

Algorithm 2 describes the procedure for unsolvable branch
elimination. It consists of several steps. Initially, all variables
representing functional input ports are marked as flexible and
all the other variables as strict (line 3 to 10). However, flexible
property can propagate to strict variables via assignments. For
example, in the assignment x = y + 1, if y is flexible, x
also gets that property. For propagation, we need to know
the dependencies of variables. Line 11 through 17 are used
for generating this dependency list by going through all
the assignments. After getting the dependency list, flexible
property is propagated to all connected variables using BFS
traversal (line 18 to 23). The last step is to check if a branch
is unsolvable or not. If all the variables in a branch condition
are strict, then it is marked as unsolvable (line 24 to 28).

For the example shown in Figure 2(a), initially in is marked
as flexible. clock, reset, p, q, state and out are marked as
strict. As in is not assigned to any of them, they remain as
strict variables after property propagation stage. This makes
branches at line 1, 6, 8, 15, 22, 23, 25 to be marked as
unsolvable. As shown in Figure 2(b), they are skipped during
branch selection procedure.

There are several advantages of this optimization technique.
First of all, this technique is generic and can be applied to other
search heuristics as well. As this technique is not dependent
on number of cycles unrolled, it is equally applicable for
unbounded search heuristics. Furthermore, this method uses
static analysis and only need to be done once during whole
test generation process. Most importantly, as the number of
possible execution paths is exponential with respect to the
number of branches, even pruning a few branches will have
significant impact on the number of solver calls and overall
runtime.

Algorithm 2 Detection of Unsolvable Branch
Input: Program under test, P
Output: Unsolvable branches

// initialization
1: Set of unsolvable branches, BU ← ∅
2: Queue of flexible variables, Qflex ← ∅
3: for all variables, v used in P do
4: Set of variables that depends on v, v.D ← ∅
5: if v is an input port then
6: mark v as flexible and insert it into Qflex

7: else
8: mark v as strict
9: end if

10: end for
// variable dependency resolution

11: for all assignments, a in P do
12: VR ← Set of variables on right side of a
13: VL ← Set of variables on left side of a
14: for all v ∈ VR do
15: v.D ← VL ∪ v.D
16: end for
17: end for

// transitive propagation of flexible property
18: while Qflex not empty do
19: vflex ← Qflex.pop()
20: for all v ∈ vflex.D do
21: mark v as flexible and insert it into Qflex

22: end for
23: end while

// evaluate branches
24: for all branches, b in P do
25: if all variables used in b are strict then
26: BU ← {b} ∪BU

27: end if
28: end for
29: return BU
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Fig. 4. Context reuse scenarios. (a)-(b) shows intra-simulation context reuse.
(b)-(c) shows inter-simulation.

B. Incremental Solving by Context Reuse

Search strategies utilizing DFS have significant common
path between consecutive solver calls and also between it-
erations. Based on this observation, we introduce two types of
context reuse schemes: inter-simulation and intra-simulation.
Figure 4 illustrates both scenarios. In Figure 4(a), a concrete
simulation with execution path (p → q → r) is shown.
When applying DFS strategy on top of it, branch b2 will be
negated first, and path constraints of (p → q → r) ∧ ¬b2
will be given to the constraint solver. Lets assume that it
is unsatisfiable. Next, branch b1 will be negated and path
constraints of (p → q) ∧ ¬b1 will be given to the constraint
solver (shown in Figure 4(b)). It is evident that path (p→ q) is
common in both cases. As all the constraints of path (p→ q)
is given to solver before, a model is already available and
can be reused. This way all the previous learnings can be
effectively utilized. We need to save the context before each
branch, which is (p→ q) for this example, and restore it when
required. This is defined as intra-simulation context reuse.

Context reuse is applicable even between simulations. For
example, consider the case in Figure 4(b). If negation of
branch b1 was successful, next iteration will start with the
generated input. Execution path for this input is shown in
Figure 4(c). Since path (p → q → r) is same for both (b)
and (c), we can reuse the contexts that were created during
(b). This idea is defined as inter-simulation context reuse.
However, due to concurrent procedural blocks of RTL, the
sequence in which they will be executed is non-deterministic.
This introduces an issue where path (p → q → r) in
(c) is not exactly same as in (b). To solve this problem,
trace of consecutive simulations are matched to make sure
they are same up to the negated branch. Context of previous
simulation is reused only when the path matches. Otherwise,
path constraints are built from scratch. From now on, this
recovery mechanism will be referred as context recovery.
Less invocation of context recovery will result in more inter-
simulation context reuse.

Algorithm 3 presents procedure for intra and inter-
simulation context reuse. DFS portion of it is same as Al-
gorithm 1. However, it omits the QUEBS specific details and
focuses on context reuse part. In this algorithm, Sctx is the
solver context. It is the internal data structure maintained
by the solver for all the added constraints. During building
the stack, constraints are added to this context (build stack(),

Algorithm 3 Intra- and Inter-Simulation Context Reuse
Input: Program under test, P
Output: Test vectors

1: Set of test vectors, T ← ∅
2: Input vector, I ← random()
3: Solver Context, Sctx ← ∅
4: Trace position marker, τ ← 0
5: repeat
6: T ← {I} ∪ T
7: Execution path trace, π ← simulate(I)
8: if π changed from previous iteration before τ then
9: Sctx ← ∅ // Context is changed. Recover context

10: τ ← 0
11: end if
12: Constraints stack, C ← build stack(π, τ, Sctx)
13: while C not empty do
14: top constraint, c← C.pop()
15: if c type is branch then
16: Sctx ← pop context()
17: I ← constraint solver(Sctx + ¬c)
18: if I is valid then
19: τ ← position of c in π
20: break // execute with new input
21: end if
22: end if
23: end while
24: until I is not valid
25: return T

build stack(π, τ, Sctx)

1: Constraints stack, C ← ∅
2: for i = τ to π.end do
3: if π[i] is of branch type then
4: push context(Sctx) // Save context for reuse
5: end if
6: C.push(π[i])
7: add assertion(Sctx, π[i])
8: end for
9: return C

line 7). Whenever a branch is encountered, a snapshot of
the context before adding that branch is saved for later reuse
(build stack(), line 3-5). At the step where a negated branch
is given to constraint solver, instead of rebuilding the whole
context, previously saved context up to that branch is restored
(main procedure, line 16). This is intra-simulation context
reuse. On the other hand, for inter-simulation, position of the
negated branch in trace file is saved (line 19). In the next
iteration, trace up to that saved position is matched (line 8).
In case of mismatch, context recovery mechanism is applied
(line 9-10).

While context reuse could speed up the test generation pro-
cess by significant amount, solver tools must support push/pop
mechanism for saving and restoring contexts. We have used
Yices 2.5.1 SMT solver in our experiments, which supports
this function [19]. Other popular SMT solvers such as Z3 and
boolector also supports this feature [20] [21].



VI. EXPERIMENTS

A. Experimental Setup

Experiments are carried out on a machine with Intel Core
i7 6700k processor and 32GB RAM. Concolic testing frame-
work is implemented using C++. Open-source Icarus Verilog
target API is used for parsing, elaborating and flattening
of Verilog RTL [22]. It removes some of the structurally
unreachable branches during elaboration. Icarus Verilog is also
used for simulation. Yices 2.5.1 SMT solver is used as the
constraint solver [19]. We have evaluated our approach on
several RTL benchmarks from ITC99 [23], OpenCore [24]
and TrustHUB [25]. Most of these benchmarks contain hard
to reach branches. As QUEBS is not exhaustive, coverage and
runtimes might vary depending on the initial random input.
All values reported in this paper are average of 10 simulations
with different starting inputs.

B. Branch Coverage Evaluation

We have evaluated our approach against CGS [13], HYBRO
[11] and [16]. CGS is one of the most prominent search
heuristics in software domain. As demonstrated in [13], CGS
outperforms other heuristics such as random, CarFast, gener-
ational, CFG-directed etc. However, being a software domain
concolic testing method, CGS does not directly work on RTL
benchmarks. For this reason, we have implemented CGS for
comparison. On the other hand, HYBRO is a concolic testing
platform for RTL designs. It uses branch coverage guided
bounded DFS as search strategy. The last method we will be
comparing against is proposed recently by Qin et al. [16],
which uses a modified bounded DFS strategy.

Table I presents the results of branch coverage evaluation.
The third, fifth, seventh, and ninth columns show the branch
coverage obtained by CGS [13], HYBRO [11], Qin et al. [16],
and our approach (QUEBS), respectively. We used the limit of
1 in QUEBS. The fourth, sixth, eighth and tenth columns indi-
cate the runtime of the respective test generation methods. As
it can be seen, coverage of QUEBS exceeds other approaches
in most cases. [16] reports slightly higher coverage for b11 and
b14, and HYBRO gives higher coverage for or1200 DCache.
However, both required significantly more runtime. Overall,
QUEBS provided high coverage (avg. 97.39%) with small
runtime (avg. 2.77s) - demonstrating its applicability on a wide
variety of designs.

C. Effect of Optimizations

1) Effect of Unsolvable Branch Elimination: Figure 5
shows number of branches before and after applying this
pruning technique on seven benchmarks. On average, this
method reduced effective branches by 30.62%. While some
benchmarks like b14 have limited reduction in number of
branches, it can lead to exponential reduction in runtime and
solver calls. This will be more clear from Table II, which
provides a comparison between QUEBS with and without
branch elimination technique. Here, column 3 and 5 show the
number of unsatisfiable calls to constraint solver - with and
without applying branch elimination. Column 4 and 6 show

   050100150200250 or1200ICache or1200DCache or1200Exception RS232-T100 i2c b14 usb_phyTotal Branch Branch after pruning
Fig. 5. Number of selectable branches before (left column) and after (right
column) applying unsolvable branch elimination optimization.

corresponding runtime. Last two columns give the improve-
ment factor.

As we can see, both unsatisfiable calls and runtimes are
greatly benefited from this optimization. For b14 benchmark,
which has the least branch elimination of only 1%, number
of unsatisfiable calls to solver changes from over 20k to
less than 2k. This effect is most prominent for RS232-T100
benchmark, where it reduced unsatisfiable solver calls from
26k to only 2. Similar improvement can be observed for
runtimes also. Effectiveness of branch elimination technique
depends on the rarity of eliminated branches. If these branches
occur abundantly in execution paths, elimination will be much
more effective than if they were rare.

2) Effect of Context Reuse: Table III presents the effec-
tiveness of context reuse optimization. This table provides
comparison before and after applying context reuse optimiza-
tion on top of branch elimination. Column 3 and 5 gives
total number of constraints given to solver over all iterations
- before and after applying this optimization. This number
is affected by both inter- and intra-simulation context reuse.
Overall improvement factor is shown in last two columns.
Column 6 shows context recovery percentage. Low recovery
means that context between consecutive simulations are same
most of the time. Thus low recovery increases inter-simulation
context reuse. RS232-T100 benchmark have very high recov-
ery rate, indicating that it does not benefit much from inter-
simulation context reuse. For this benchmark, improvement
in number of constraints comes mostly from intra-simulation.
However, overhead of high recovery lead to worse runtime in
this case. Selectively applying only intra-simulation context
reuse for such designs with high recovery percentage might
lead to better performance. Other benchmarks, even the ones
with moderate recovery percentage, have profited from context
reuse.

VII. CONCLUSION

We have proposed a novel search heuristic for concolic
testing based test generation engines. Our search heuristic
(QUEBS) prevents path explosion by limiting the number of
times a branch can be selected. It also ensures high coverage
by relaxing the limit whenever a qualifying event occurs.
Overall, it combines the advantages of both exhaustive and
restrictive approaches. We also presented two optimization



TABLE I
COVERAGE AND RUNTIME OF CONCOLIC TESTING METHODS

Benchmark
Unroll
cycles

CGS, k=5 [13] HYBRO [11] Qin et al. [16] QUEBS
Bran cov Time(s) Bran Cov Time(s) Bran cov Time (s) Bran cov Time (s)

b01 10 100.00% 0.01 94.44% 0.07 96.30% 0.55 100.00% 0.01

b06 10 100.00% 0.02 94.12% 0.10 96.30% 0.46 100.00% 0.01

b10
10 93.02% 0.03 87.10% 4.56 - - 100.00% 0.02
30 100.00% 0.07 96.77% 52.14 96.67% 24.61 100.00% 0.14
50 100.00% 0.18 96.77% 180.42 - - 100.00% 0.38

b11
10 40.00% 0.01 78.26% 0.28 81.82% 0.67 91.43% 0.01
50 91.43% 0.11 91.30% 326.85 94.44% 270.28 94.29% 0.19

120 91.43% 0.78 - - - - 97.14% 0.95

b14 15 95.38% 0.92 83.50% 301.69 98.95% 257.59 95.38% 0.98

or1200 I-Cache
50 89.29% 0.55 93.75% 37.73 - - 96.43% 0.56

100 89.29% 1.95 93.75% 191.82 - - 96.43% 2.14

or1200 D-Cache
50 81.25% 9.13 96.30% 21.90 - - 95.83% 3.88

100 81.25% 64.16 96.30% 92.15 - - 95.83% 23.05

or1200 Exception 10 98.63% 3.34 96.61% 287.62 - - 98.63% 0.50

TABLE II
EFFECT OF UNSOLVABLE BRANCH ELIMINATION

Benchmark
Unroll
cycles

Without
optimization

With branch
elimination

Improvement

Unsat Time(s) Unsat Time(s) Unsat Time

b14 50 20877 18.81 1821 13.41 11.46 1.40

RS232-T100
100 17169 10.04 2 0.03 8584.50 334.67
200 26228 41.13 2 0.34 13114.00 120.97

i2c 20 33194 13.55 9291 4.73 3.57 2.86

usb phy 20 30349 11.68 2131 1.13 14.24 10.34

or1200
I-Cache

100 22040 8.44 1096 2.52 20.11 3.35

or1200
D-Cache

50 19857 29.42 2474 8.14 8.03 3.61
100 84467 533.84 11122 113.35 7.59 4.71

TABLE III
EFFECT OF CONTEXT REUSE

Benchmark
Unroll
cycles

With branch
elimination

With branch elimination
and context reuse

Improvement

Cnst Time(s) Cnst Recovery Time(s) Cnst Time

b14 50 4346k 13.41 267k 0.27% 8.71 16.28 1.54

RS232-T100
100 5k 0.03 4k 100% 0.05 1.25 0.60
200 229k 0.34 215k 96.67% 0.40 1.07 0.85

i2c 20 7540k 4.73 120k 3.05% 1.00 62.83 4.73

usb phy 20 3229k 1.13 172k 68.52% 0.32 18.77 3.53

or1200
I-Cache

100 1535k 2.52 585k 57.37% 2.14 2.62 1.18

or1200
D-Cache

50 2184k 8.14 445k 61.17% 3.88 4.91 2.10
100 16130k 113.35 1829k 58.84% 23.05 8.82 4.92

techniques to further improve the performance of QUEBS.
One of them is a static analysis to prune unsolvable branches.
It statically detects branches for which constraint solver cannot
generate satisfiable input set - which greatly reduces unsatis-
fiable solver calls. Another optimization is intra- and inter-
simulation context reuse based on the similarity of execu-
tion path. Compared to state-of-the-art approaches, QUEBS
provided higher coverage in most RTL benchmarks with
significantly reduced runtime.
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