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Abstract—Dynamic cache reconfiguration has been widely
explored for energy optimization and performance improve-
ment for single-core systems. Cache partitioning techniques
are introduced for the shared cache in multicore systems to
alleviate inter-core interference. While these techniques focus
only on performance and energy, they ignore vulnerability due
to soft errors. In this paper, we present a static profiling based
algorithm to enable vulnerability-aware energy-optimization for
real-time multicore systems. Our approach can efficiently search
the space of cache configurations and partitioning schemes
for energy optimization while task deadlines and vulnerability
constraints are satisfied. Our experimental results demonstrate
that our approach can achieve 19.2% average energy savings
compared with the base configuration, while drastically reduce
the vulnerability (49.3% on average) compared to state-of-the-
art techniques.

I. INTRODUCTION

Multicore architectures consist of multiple processor cores
to improve execution performance of application programs.
Multicore processor usually has on-chip caches to resolve the
performance bottleneck caused by the increasing gap between
processor and memory speed. In a typical multicore system,
each core maintains its private L1 caches while all cores share
the same L2 cache. There are many optimization techniques
for multi-level on-chip caches to improve performance and
energy consumption of the overall system [5], [6], [11]. With
the increasing demand for high reliability and availability,
vulnerability of caches due to soft errors is gaining increasing
importance. Data corruption caused by soft errors can change
the behavior of applications and may eventually result in a
system failure. As for performance and energy improvement,
it is beneficial to maintain a useful data longer in the cache.
However, longer data retention can negatively impact the vul-
nerability or probability of data corruption due to soft errors.
It is a great challenge to keep vulnerability under control
while we optimize the cache subsystem for improvement in
performance and energy consumption.

Application-based techniques on cache optimization have
been very effective in improving performance and energy
consumption. One of the most successful techniques for
cache energy optimization is dynamic cache reconfiguration
(DCR). The basic idea of DCR is to select a suitable cache
configuration to satisfy the specific data access behavior of
the application. By tuning the cache configuration (cache
size, associativity, and line size) at runtime, it is possible to
optimize the energy consumption and improve performance of

different applications. DCR has been well studied for energy
savings in both uniprocessor [3] and multicore systems [11].
Recent work by Huang et al. [15] studies the impact of
DCR on vulnerability in the L1 caches for a uniprocessor.
However, there are no existing efforts in vulnerability-aware
cache reconfiguration for multicore systems.

As for a shared L2 cache, it may cause performance degra-
dation because of data contentions among different cores.
Cache partitioning (CP) techniques are introduced to alleviate
this problem by judiciously dividing the shared cache and
mapping a dedicated partition of the cache to each core. CP
can improve the performance of independent tasks running
on different cores, by eliminating inter-task interference on
the shared cache. DCR and CP are both cache optimization
techniques to properly tune the cache subsystem based on the
data access pattern of applications. Previous work by Wang
et al. [11] explores the idea of combining DCR and CP for
energy optimization in real-time multicore systems. However,
their work does not consider vulnerability.

In this paper, we propose a vulnerability-aware energy
optimization technique which integrates cache reconfiguration
(DCR) of private L1 caches and cache partitioning (CP)
of the shared L2 cache. This paper makes four important
contributions: (i) We explore the inter-dependence of L1
DCR and L2 CP for performance, energy consumption as
well as vulnerability; (ii) We are able to minimize energy
consumption without violating both vulnerability and real-
time constraints; (iii) Our fast and scalable static profiling
algorithm can efficiently search the design space of L1
configurations and L2 partitions, making it feasible to find
the optimal result using dynamic programming; and (iv) Our
results demonstrate that our approach can provide significant
energy savings compared with the base configuration as well
as drastic reduction in vulnerability compared to the state-of-
the-art techniques.

The remainder of the paper is organized as follows. Related
approaches are discussed in Section II. The architecture model
and an motivational example are presented in Section III.
Section IV presents our approach for vulnerability-aware
optimization. Section V presents the experimental results.
Section VI concludes the paper.

II. RELATED APPROACHES

Reconfigurable cache architectures are extensively studied
in [1], [16], [17]. Gordon-Ross et al. [2] utilizes DCR to



improve performance by online feedback and dynamic self-
tuning of the cache. An energy-efficient approach using DCR
is proposed in [3] for soft real-time systems by using static
profiling and dynamic reconfiguration. DCR in two-level
cache hierarchy in uniprocessor is studied in [4]. DCR for
multicore systems is studied in [5] for thread-fairness and
performance improvement. Wang et al. proposes an energy-
efficient approach for multicore systems in [11] by using
DCR on private L1 caches and cache partitioning (CP) on
the shared L2 cache. CP is a special case of reconfiguration
on the shared cache among multiple cores [6], [7]. Initial
works of CP aim at improving the performance of multicore
systems [7], [8]. Reddy et al. investigates energy-efficient CP
for multitasking embedded systems in [9]. However, none of
the above approaches takes vulnerability into consideration.

To combat the data vulnerability due to soft errors, error
correction codes (ECC) are used in lower levels of the
memory hierarchy [10]. However, ECC might not be suitable
for caches because of short access time constraints [12]. Cai
et al. [13] is the first to consider cache configuration (only
cache size selection) for energy and vulnerability in time-
constrained systems. Huang et al. [15] proposes a DCR ap-
proach for performance, energy and vulnerability trade-offs in
uniprocessor-based systems. To the best of our knowledge, the
proposed work is the first attempt in studying vulnerability-
aware optimizations in multicore systems in the presence of
reconfigurable caches.

III. MODELING SYSTEMS WITH
RECONFIGURABLE CACHES

In this section, we describe the modeling of multicore
systems with reconfigurable caches. First, we describe the un-
derlying multicore architecture. Next, we present the energy
and vulnerability models. Then, we provide an illustrative
example to motivate the need for the proposed exploration
framework. Finally, we present the problem formulation.

Fig. 1: A multicore system with reconfigurable L1 caches
and a partition-enabled shared L2 cache.

A. Multicore Architecture Model

Figure 1 shows a typical multicore system with a shared
on-chip L2 cache and private L1 caches for each core. In
this paper, we assume that the private L1 caches (both IL1
and DL1) are reconfigurable, and the shared L2 cache is
equipped with way-based partitioning. The L1 caches can
reconfigure its cache size, associativity, and line size. The
reconfigurable cache architecture is the same as [2], [3]. The
cache size is tuned by selectively shutting down the banks
with gated-Vdd techniques. The associativity is reconfigured
by logically concatenating ways. The line size can be changed
by fetching multiple unit-length blocks in one access. The
reconfigurable architecture is lightweight, which introduces
negligible overhead [3].

The shared L2 cache with way-based partitioning [7] is
illustrated in Figure 1. Each L2 cache set (8-way associativity
as in this example) is partitioned into four parts, each of
which will be assigned to one core. Each core will access
only the assigned portion of the cache sets and enforce the
LRU replacement policy among its individual group of ways.
The number of ways assigned to a core is referred to as its
partition factor. As shown in Figure 1, Core 1 has a L2 parti-
tion factor of 2. In this paper, we use dynamic reconfiguration
of the L1 caches and static partitioning of the shared L2
cache. In other words, L1 cache configurations can be tuned
for each application on each core during runtime. While L2
partition factors are pre-determined for each core and remain
unchanged during runtime, all applications running on that
core have the same L2 partition factor.

B. Energy and Vulnerability Models

The Energy Model is adopted from the one used in [3].
The cache energy consumption consists of static and dynamic
energy: E = Esta+Edyn. The static energy dissipation Esta
is computed as Esta = Psta×t, where Psta is the static power
of cache. Dynamic energy dissipation Edyn comes from both
cache accesses and cache misses.

Edyn = Accesses× Eaccess +Misses× Emiss (1)
Emiss = Eoffchip access + Eblock fill (2)

where Eaccess and Emiss are the energy required per
cache access and per cache miss, respectively. Eaccess and
Emiss are constant values for one specific configuration.
Eoffchip access is the energy for accessing the lower level
of the memory hierarchy, and Eblock fill is the energy for
filling the cache block with fetched data.

The Vulnerability Model is based on per-byte analysis of
cache data with respect to the sequence of operations during
its lifetime in the cache. Operations on a byte include “fill”,
“read”, “write” and “evict”. Similar to [15], the vulnerability
analysis divides the lifetime of a byte into vulnerable and
un-vulnerable intervals. The vulnerable intervals are of four
types: “fill-to-read”, “read-to-read”, “write-to-read”, “write-
to-evict”. We measure the vulnerability of cache as the
summation of vulnerable intervals of all bytes in all cache
blocks.
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Fig. 2: Inter-dependence of L1 DCR and L2 CP on (a) L2 Misses, (b) IPC, (c) Runtime, (d) Energy and (e) Vulnerability.

C. Illustrative Example

Figure 2 shows the impact of L1 DCR and L2 CP for
benchmark qsort from MiBench [20]. The L2 partition factor
can change from 1 to 7 in a 8-way associative L2 cache.
Four pairs of cache configurations1 for IL1 and DL1 are
randomly chosen. We observe that different L1 configurations
will lead to different L2 cache misses (Figure 2a) and pipeline
throughput (i.e. IPC in Figure 2b). This is expected since
L1 configuration determines the number accesses to the L2
cache, as well as the pipeline throughput. Secondly, as L2
partition factor w increases, L2 cache misses will decrease
and eventually converge (for w ≥ 4) for different L1 config-
urations. However, the IPC shows great diversity even when
L2 partition factor is large.

Figure 2c-2e show the runtime, energy consumption and
cache vulnerability of the benchmark, respectively. It is
interesting to see that they have different patterns as L2
partition factor w increases. Runtime will decrease drastically
as w increases, which is accordant with the pattern of IPC.
Energy consumption will decrease to a minimal point (for
w = 3), but it will increase when w becomes larger. This is
because dynamic energy (caused by a lot of cache misses)
dominates the total energy consumption when w is small,
while static energy dominates when w is too large. However,
vulnerability will increase with w. This is expected for two
reasons: (1) a large w means that L2 cache has more valid area
and is holding more data, which remains vulnerable to soft
errors; (2) the decrease in cache misses (data replacement)
also indicates that data are residing in the cache for longer
time, which means data will have longer vulnerable intervals.
While a large L2 partition facilitates performance, it might
jeopardize energy consumption and vulnerability. This shows
that performance, energy and vulnerability have very different
(often conflicting) cache requirements.

Given the above observations, both L1 DCR and L2 CP
have major impact on performance, energy consumption and
vulnerability. The interesting trade-offs between them is the
motivation of this paper to explore for optimization. We

1Here c18 and c9, for example, stands for the IL1 and Dl1 using the 18th

and 9th configuration, respectively.

exploit L1 DCR and L2 CP simultaneously for vulnerability-
aware energy optimization for real-time multi-core systems.

D. Problem Formulation

We model our multicore system as follows:

• The multicore processor has m cores P {p1, p2, ..., pm}.
• Each core has private IL1 and DL1, both of which can

be reconfigured to r configurations C {c1, c2, ..., cr}.
• The shared L2 cache is ω-way associative, which sup-

ports way-based partitioning.
• A set of n independent tasks T {τ1, τ2, ..., τn} with a

common deadline D.

Our optimization goal is to find a reconfiguration scheme R
for the private L1 caches and a partitioning scheme P for the
shared L2 cache such that the overall energy consumption E
is minimized without violating vulnerability constraints and
task deadlines. Assume that we are given the following:

• A task mapping scheme M: T → P, which assigns
tasks to each core. In this paper, we assume that the
task mapper M is given, which can ensure that the total
runtime on each core is comparable. ρk is the number
of tasks mapped to core k.

• A reconfiguration scheme R for L1 caches: CI , CD →
T, which assigns one IL1 and DL1 configuration to each
task.

• A partitioning scheme P for L2 cache: P = {w1, w2,
..., wm}, which allocates wk ways to core k.

For task τk,i ∈ T (the ith task on core k), ek,i(cI , cD, wk)
denotes the energy consumption of the cache subsystem
when the task is executed with L1 configurations (cI , cD)
and L2 partition factor wk. Similarly, let tk,i(cI , cD, wk)
and vk,i(cI , cD, wk) denote the execution time and the total
vulnerability. Our minimization problem can be formulated
as follows:

E =

m∑
k=1

ρk∑
i=1

ek,i(cI , cD, wk) (3)



is minimized subject to:

max
k=1..m

(

ρk∑
i=1

tk,i(cI , cD, wk)) ≤ D (4)

ρk∑
i=1

vk,i(cI , cD, wk) ≤ Vk,∀k ∈ [1,m] (5)

m∑
k=1

wk = ω;wk ≥ 1,∀k ∈ [1,m] (6)

Equation (4) guarantees that all tasks will meet the deadline
D. Equation (5) guarantees that the total vulnerability of the
tasks on each core is constrained by the threshold Vk, which
is chosen as the base case vulnerability. Equation (6) verifies
that the partitioning scheme is valid.

IV. VULNERABILITY-AWARE DCR+CP

In this section, we present our approach which utilizes the
static profiles of tasks to efficiently search the design space
for the optimal energy solution. Our three-step optimization
approach is illustrated in Figure 3, with the first step to profile
each task, the second step to use a dynamic programming
algorithm to optimize for all cache configurations on each
core, and the third step to combine the optimal solutions on
each core by trying out all feasible L2 partition schemes.

A. Task Profiling

Theoretically, we can do static profiling for the whole
task set T for all possible L1 reconfiguration schemes R
and all possible L2 partition schemes P. However, it is
not feasible to do this exhaustive exploration because of
excessive simulation time. Assume that we have a four-core
processor with an 8-way associative L2 cache. Each core is
assigned with three tasks and the IL1 and DL1 cache each
has 18 configurations [3]. The total number of architectural
simulations would be ((182)3)4∗35. To be specific, ((182)3)4

would be all L1 configurations (both IL1 and DL1) for the
tasks (three on each core) across four cores. This needs to
be multiplied by 35, which is the total number of valid
L2 partition schemes according to Equation (6) with m=4
and ω=8. If each simulation takes only 1 minute, the total
simulation time is longer than the age of the universe.

Fortunately, we can drastically reduce the complexity of
static profiling by exploiting the inherent independence in
our system. Tasks running on different cores are indepen-
dent (with no inter-task data sharing). After introducing L2
partitioning, each task is essentially isolated on a separate
core with private L1 caches and a dedicated L2 partition.
Therefore, we can profile each task as if it is executed
independently on a uniprocessor with a wi-way associative
L2 cache (with capacity equal to wi/ω of the original L2).
The total number of simulations required for the entire task set
would be r2·(ω−1)·n, where r2 is the number of IL1 and DL1
combinations, (ω− 1) is the number of possible L2 partition
factors, and n is the total number of tasks. Using the same
example above, it takes 182×7×12 simulations with 12 tasks.
For benchmarks used in our experiments, the static profiling

can finish within three days. We simulate each task with all
possible IL1 and DL1 cache configurations, along with all
possible L2 partition factors. After static profiling, each task
has a profile table with r2 · (ω − 1) entries, each of which
contains the runtime, energy consumption, vulnerability for
the specified L1 configurations and L2 partition factor.

Note that the profiling can be done off-line for one specific
input pattern for a program. In this work, we assume that
the input size remains the same but content can vary. This
is a reasonable assumption for real-time embedded systems.
We performed our offline analysis by varying input patterns
(data values) for all the benchmarks and observed that it has
minor impact on the footprint of data access. Since profile of
vulnerability and energy estimation for data pages depends on
the data access pattern, our static profiling will still remain
effective for different input patterns. Our observations are
consistent with the ones made by existing literature [3].

B. Optimization on Each Core

In order to find the optimal solution under deadline and
vulnerability constraints, we first optimize on each core (find
profitable L1 configurations), and then optimize across all
cores (find the best L2 partition scheme). In this subsection,
we explain our approach for optimization on each core. Since
static partitioning of L2 is used, tasks on the same core share
the same L2 partition factor wk. This fact enables us to
treat each core as a subproblem, which optimizes the energy
consumption for a given core under different L2 partition
factors. In other words, we find cache assignment R to
minimize Ek(wk) =

∑ρk
i=1 ek,i(cI , cD, wk) constrained by∑ρk

i=1 tk,i(cI , cD, wk) ≤ D and
∑ρk
i=1 vk,i(cI , cD, wk) ≤ Vk,

with k and wk fixed for ∀k ∈ [1,m] and ∀wk ∈ [1, ω − 1].
This subproblem is to choose L1 configurations for each

task so that the total energy is optimized with constraints.
The optimization goal is to minimize energy, which can be
discretized to simplify the problem. We can use a dynamic
programming algorithm to search for the optimal solution.
Let emink (wk) and emaxk (wk) denote the minimum possi-
ble energy (

∑ρk
i=1min{ek,i(cI , cD, wk)}) and the maximum

possible energy (
∑ρk
i=1max{ek,i(cI , cD, wk)}) on core k,

respectively. The energy consumption Ek(wk) of core k using
partition factor wk is bounded by [emink (wk), e

max
k (wk)]. Let

SEi denote the current solution found for the first i tasks. It has
a cumulative energy consumption of E while the execution
time and vulnerability are minimized. The execution time
T [i][E] for SEi is stored in a two-dimensional table T . The
vulnerability for SEi is stored in another two-dimensional
table V . As we try out all possible (cI , cD) configurations, we
update the solution for SEi whenever runtime or vulnerability
can be improved. The dynamic programming process uses
the recursive formula shown in Figure 4 to update the two
tables. The solutions for the first i tasks (the ith row in
the two tables) are built upon the previous step, i.e., the
(i− 1)th row. All entries in T and V are initialized to some
very large value. Based on the above recursive formula, we
update the tables one row at a time for all energy values



Fig. 3: Three-step optimization: the first step statically profiles each task, the second step optimizes for each partition factor
on each core to find the best L1 cache configurations, the third step combines the optimal solution on all cores to find the best
L2 partition scheme.

If (T [i][E] > T [i− 1][E − ek,i(cI , cD, wk)] + tk,i(cI , cD, wk) &&
V [i][E] > V [i− 1][E − ek,i(cI , cD, wk)] + vk,i(cI , cD, wk))
{

T [i][E] = T [i− 1][E − ek,i(cI , cD, wk)] + tk,i(cI , cD, wk)
V [i][E] = V [i− 1][E − ek,i(cI , cD, wk)] + vk,i(cI , cD, wk)

}

Fig. 4: Recursive formula for dynamic programming

in [emink (wk), e
max
k (wk)]. When the ith row is calculated, all

previous (i−1) rows are already computed. The final optimal
energy consumption E∗k(wk) can be found by:
E∗k(wk) = min{Ek | T [ρk][Ek] ≤ D && V [ρk][Ek] ≤ Vk}

(7)
Equation 7 provides the solution for core k with partition
factor wk, which has minimum energy consumption with
deadline and vulnerability constraints satisfied.

C. Optimization Across All Cores

In this step, we combine the solutions found on each core
and search for the minimum total energy consumption E∗

of all cores within all L2 partition schemes P. For a given
partition factor wk on core k, the optimal energy E∗k(wk) is
already calculated in the first step. A valid partition scheme
{w1, w2, ..., wm} is one that complies with Equation (6). The
final total energy E∗ can be found by:

E∗ = min{
m∑
k=1

E∗k(wk)}, ∀{w1, w2, ..., wm} ∈ P (8)

Since the number of valid partition schemes is small (35
for 4-core processor with an 8-way associative L2 cache),
an exhaustive search on all partition schemes is feasible. In
our experiment, we assume that after the tasks on a core
finish execution the core along with its private L1 caches
and the designated L2 partition is turned off. Thus, E∗ will
be the final energy consumption for all cores running with
the optimal configuration and partitioning scheme.

Algorithm 1 shows the major steps of our cache re-
configuration and partitioning approach. In the first step
(line 1-6), for each task τk,i, we simulate the task with all
possible configurations [cI , cD, wk]. We collect the energy,
vulnerability and runtime numbers of the task using the
configurations and save them in its profile table. In the second

Algorithm 1: Vulnerability-aware DCR+CP
/* 1st step: Task profiling (Section IV-A) */

1 for k = 1 to m do
2 for i = 1 to ρk do
3 for wk = 1 to ω − 1 do
4 for cI , cD ∈ C do
5 Simulate task τk,i with config=[cI , cD, wk]
6 Collect tk,i(config) ek,i(config) vk,i(config)

/* 2nd step: Optimize on each core (Section IV-B) */
7 for k = 1 to m do
8 for wk = 1 to ω − 1 do
9 for e = emin

k (wk) to emax
k (wk) do

10 for cI , cD ∈ C do
11 if ek,1(cI , cD, wk) == e then
12 if tk,1(cI , cD, wk) < T [1][e] &&

vk,1(cI , cD, wk) < V [1][e] then
13 T [1][e] = tk,1(cI , cD, wk)
14 V [1][e] = vk,1(cI , cD, wk)

15 for i = 2 to ρk do
16 for e = emin

k (wk) to emax
k (wk) do

17 for cI , cD ∈ C do
18 e′ = e− ek,i(cI , cD, wk)
19 if T [i− 1][e′] + tk,i(cI , cD, wk)¡T [i][e]

&&V [i− 1][e′] + vk,i(cI , cD, wk)¡V [i][e]
20 then
21 T [i][e]=T [i− 1][e′] + tk,i(cI , cD, wk)
22 V [i][e]=V [i− 1][e′] + vk,i(cI , cD, wk)

23 E∗k(wk) = min{ek |T [ρk][ek] ≤ D&V [ρk][ek] ≤ Vk}

/* 3rd step: Optimize across cores (Section IV-C) */
24 for all Pj = {w1, w2, ..., wm} ∈ P do
25 E∗j =

∑m
k=1 E

∗
k(wk)

26 E∗ = min(E∗, E∗j )

27 return E∗

step, our algorithm iterates to find the best L1 configurations
for all tasks in core k with partition factor wk. During each
iteration (line 9 to 23), all discretized energy values (e) and
all L1 cache configurations (1 to r2) for current task τk,i are
examined. The dynamic programming process of the first task
on a core is shown in line 9 to 14, and that of task 2 to ρk
is in line 15 to 22. Line 23 gets the optimal solution E∗k(wk)
for core k with partition factor wk. In the third step (line



24 to 26), our algorithm iterates over all valid partitioning
schemes to find the global optimal energy consumption. Line
25 gets the energy consumption for partition scheme Pj ,
and line 26 updates the final solution E∗ with the minimal
energy consumption. The time complexity for the first step is
O(m·ρk ·ω·r2), where m is the number of cores, ρk is number
of tasks on each core, ω is the number of ways in L2 cache,
r2 is the number of L1 configurations. The time complexity
for the second step is O(m ·ω ·ρk ·r2 · (emax−emin)), where
emax−emin is the energy range. The time complexity for the
third step is O(m · |P|), where m is the number of cores and
|P| is the number of partition schemes. In our experiments,
our proposed approach can find the optimal solution in less
than three days, which is mostly the time of the first step
for profiling. Since our approach is based on static (offline)
analysis and one-time effort, this is a reasonable time.

V. EXPERIMENTS

In order to evaluate the effectiveness of our approach, we
use the architectural simulator gem5 [18] in system emulation
(SE) mode to simulate the multicore system as shown in Fig-
ure 1. We enhanced the simulator to support reconfiguration
of L1 caches and way-based partitioning of the shared L2
cache. We also embedded our measurement for vulnerability
of caches in the simulator, while the energy estimation of the
cache subsystem is calculated with a script after simulation.
We configured our system with a four-core processor running
at 500MHz on each core with the TimingSimpleCPU model in
gem5. The shared L2 cache supports 32KB, 8-way associative
with 32-byte lines. There are 35 valid schemes to partition
the L2 ways among the four cores. The L1 caches have a
base configuration as 4KB, 2-way associative with 32-byte
lines, which offers effective size of 1KB, 2KB, and 4KB,
and associativity of 1-way, 2-way, and 4-way, and line size
of 16-byte, 32-byte and 64-byte. There are 18 configurations
in total for the L1 caches2. We used 20 applications from the
MiBench [20] and SPEC CPU2000 [21] benchmark suites as
our tasks for evaluation. Table I shows the task sets used in
our experiments. We choose 4 task sets which contain 2 tasks
running on each core, 3 task sets which contain 3 tasks on
each core, and 2 task sets which contain 4 tasks on each core.
The task assignment on cores is based on the rule that each
core will have comparable execution time and vulnerability.

In our results, we will compare the following three ap-
proaches:
• CP Only: the base configuration, which has L1 in base

configurations and uniform L2 cache partitioning among
cores.

• DCP+CP[11]: the energy-aware approach in [11] using
DCR on L1 and CP on L2.

• Our Approach: our vulnerability-aware energy opti-
mization approach using DCR on L1 and CP on L2.

Here CP Only refers to the base configuration of the system,
which has uniform L2 cache partitioning among the four

2It is fewer than 33 since not all combinations are valid [3].

cores with all the L1 caches in base configuration. For our
vulnerability-aware approach, the vulnerability threshold on
each core is set as that of the base system (CP Only). We
want to minimize the energy consumption while ensure that
the vulnerability be at least better than the base system.

A. Deadline and Vulnerability Threshold

It is meaningful to see how deadline and vulnerability
threshold affect the optimization process. Figure 5 shows the
optimal energy consumption (i.e. E∗1 (w1) as in Equation 7)
of core 1 using partition factor (w1 = 2) for task set 9, under
different deadline and vulnerability constraints. In Figure 5a,
as we gradually vary the deadline from 4600 ms to 3600
ms, the optimal energy found by the dynamic programming
algorithm will become worse. When the deadline is shorter
than 3690 ms, there is no feasible solution. In Figure 5b,
as we gradually reduce the vulnerability threshold from
8.4 × 1012 to 7.2 × 1012 bytes-cycles, the optimal energy
solution will also become worse. There is no solution when
vulnerability threshold is set smaller than 7.3 × 1012 bytes-
cycles. In this example, we can get a converged optimal
energy solution (2753 mJ) with a deadline larger than 4300
ms and a vulnerability threshold larger than 8.0×1012 bytes-
cycles. Note that in Figure 5a we removed the vulnerability
constraint (i.e. set vulnerability threshold as infinity) to solely
investigate the effect of deadline and vice versa for Figure 5b.
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Fig. 5: Effects of Deadline and Vulnerability Threshold.

This example suggests that the choice of deadline and
vulnerability threshold can affect the optimal energy solution.
In our experiments, the deadline is chosen in a way so that
each core can reach the converged minimum energy under the
base configuration setting. The vulnerability threshold on each
core is also same as the base system which runs with uniform
L2 partition and the base configuration for L1s. These settings
are performed under the assumption that our approach should
not be more vulnerable than the base system while improving
the energy profile. This assumes that our system should be
at least less vulnerable than the base system. In other words,
we want our energy optimization process to be vulnerability-
aware.

B. Vulnerability-aware Energy Reduction

Figure 6 illustrates the comparison of vulnerability and
energy consumption of the nine task sets in Table I. Here the



TABLE I: TASK SETS FROM THE MIBENCH [20] AND SPEC CPU2000 [21] BENCHMARKS

Task set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9

Core 1 qsort
vpr

mcf
sha

applu
lucas

mgrid
FFT

mcf
toast
sha

mgrid
parser

gcc

vpr
sha
FFT

sha
mcf

untoast
toast

gcc
stringsearch

parser
dijkstra

Core 2 parser
toast

gcc
bitcount

dijkstra
swim

dijkstra
parser

gcc
parser

stringsearch

toast
FFT
mcf

CRC32
lucas

untoast

applu
gcc

bitcount
ammp

untoast
mcf

ammp
bitcount

Core 3 untoast
swim

patricia
lucas

ammp
FFT

CRC32
swim

patricia
qsort
vpr

bitcount
ammp
applu

mgrid
bitcount

qsort

lucas
FFT

CRC32
patricia

lucas
patricia
qsort
vpr

Core 4 dijkstra
sha

basicmath
swim

basicmath
stringsearch

applu
bitcount

basicmath
CRC32
ammp

qsort
dijkstra
patricia

applu
parser

stringsearch

vpr
basicmath

mgrid
swim

basicmath
toast
applu

CRC32
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Fig. 6: Comparison of vulnerability and energy consump-
tion for the cache hierarchy.

vulnerability is the maximum vulnerability among four cores
while energy consumption is the total energy consumption of
all L1 caches and L2 partitions. The maximum vulnerability
provides an indication of the overall reliability of the cache
subsystem since all the cores are independent with its private
L1 caches and designated L2 partition.

Figure 6a shows the results for vulnerability reduction.
Compared with CP Only, our approach reduces vulnerability
by up to 25.2% and on average 8.8%. Compared with [11],
our approach achieves up to 73.9% reduction in vulnera-
bility and 49.3% on average. Figure 6b shows the energy
savings. Compared with CP Only, our approach reduces

energy consumption by up to 22.2% and 19.2% on average.
Compared with [11], our approach consumes on average 5.6%
and up to 9.5% more energy. In summary, our vulnerability-
aware energy optimization can significantly reduce energy (on
average 19.2%) compared with the base system. Compared
with the state-of-art approach for energy optimization, we
gain significant vulnerability reduction (on average 49.3%)
with minor energy overhead (on average 5.6%).

In order to understand the rationale of above improvement,
we would like to analyze the optimal solutions returned by
Algorithm 1 for two different tasks sets. Table II and Table III
show the results of L2 partition factors and [IL1, DL1] cache
configurations found by our approach for task set 1 and task
set 9, respectively. Task set 1 has two tasks on each core, with
a partition scheme of [2,2,1,3] ways dedicated for each core.
Task set 9 has four tasks on each core, with a partition scheme
of [2,2,2,2]. We can see that different tasks have very different
L1 configurations, which shows the necessity of DCR to suit
the unique needs of a task. For a certain task, the best [IL1,
DL1]configurations depend not only on the task itself (i.e.
its data access patterns), but also the L2 partition factor as
well as the deadline and vulnerability threshold. There are a
few tasks appearing in both Set 1 and Set 9. For benchmarks
qsort, vpr, parser, and toast, they have the exact same L2
partition factor and L1 configurations for the two sets. For
benchmark untoast, Set 1 and Set 9 have chosen different
L1 configurations when Set 1 (Core 3) uses a partition factor
of 1 and Set 9 (Core 2) uses a partition factor of 2. Because
Set 9 assigns a larger partition factor, untoast can execute
with smaller L1 cache sizes ([1KB, 1KB]) for reducing energy
under the deadline and vulnerability constraints.

Vulnerability-constrained systems can tolerate up to certain
vulnerability level due to its implemented mitigation solution.
Therefore, existing energy-optimization techniques (such as
[11]) are not applicable on them. For example, if a system can
tolerate up to 20% more vulnerability compared to the base
configuration, most of the energy savings (except for Set 1
and Set 7) are meaningless since they crossed the vulnerability
threshold. In other words, apparent energy benefit of [11]



is not useful in practice. Therefore, our vulnerability-aware
energy optimization approach is vital for multicore systems
with vulnerability constraints.

TABLE II: TASK SET 1: CACHE CONFIG ([cI , cD, wk])

Set 1 Core 1
w1 = 2

Core 2
w2 = 2

Core 3
w3 = 1

Core 4
w4 = 3

Task 1
[4KB 4W 16B,
2KB 2W 32B]

qsort

[2KB 2W 64B,
4KB 4W 16B]

parser

[2KB 2W 32B,
2KB 2W 16B]

untoast

[2KB 2W 64B,
2KB 2W 16B]

dijkstra

Task 2
[1KB 1W 64B,
4KB 4W 16B]

vpr

[4KB 1W 64B,
1KB 1W 16B]

toast

[4KB 4W 32B,
2KB 2W 32B]

swim

[1KB 1W 64B,
1KB 1W 32B]

sha

TABLE III: TASK SET 9: CACHE CONFIG ([cI , cD, wk])

Set 9 Core 1
w1 = 2

Core 2
w2 = 2

Core 3
w3 = 2

Core 4
w4 = 2

Task 1
[1KB 1W 64B,
2KB 2W 16B]

gcc

[1KB 1W 64B,
1KB 1W 16B]

untoast

[4KB 4W 16B,
2KB 2W 32B]

lucas

[1KB 1W 64B,
4KB 4W 16B]

basicmath

Task 2
[4KB 1W 32B,
4KB 4W 16B]

stringsearch

[1KB 1W 32B,
1KB 1W 16B]

mcf

[1KB 1W 64B,
1KB 1W 16B]

patricia

[4KB 1W 64B,
1KB 1W 16B]

toast

Task 3
[2KB 2W 64B,
4KB 4W 16B]

parser

[1KB 1W 64B,
1KB 1W 16B]

ammp

[4KB 4W 16B,
2KB 2W 32B]

qsort

[1KB 1W 64B,
1KB 1W 16B]

applu

Task 4
[2KB 2W 64B,
2KB 2W 16B]

dijkstra

[1KB 1W 32B,
1KB 1W 32B]

bitcount

[1KB 1W 64B,
4KB 4W 16B]

vpr

[2KB 1W 32B,
2KB 2W 16B]

CRC32

VI. CONCLUSION

Cache vulnerability is a major concern in embedded sys-
tems design due to increasing cache size and soft errors.
While both vulnerability and energy optimization have re-
ceived considerable attention in recent years, there are no
existing works on vulnerability-aware energy optimization for
multicore systems. In this paper, we presented a vulnerability-
aware energy optimization technique for real-time multicore
systems. Our approach integrates dynamic cache reconfig-
uration (DCR) of private L1 caches and cache partitioning
(CP) of the shared L2 cache. L2 CP is effective in reducing
inter-core interference, while applying L1 DCR can further
reduce the energy consumption under the performance and
vulnerability constraints. Our task profiling technique based
on the independence between tasks can drastically reduce the
complexity of design space exploration. Our proposed algo-
rithm uses dynamic programming by discretizing the energy
values, which can efficiently search the space to find optimal
L1 cache configurations for each task and L2 cache partition
factors for each core. Experimental results demonstrated that
we can achieve 19.2% average energy savings compared with
the base system, while drastically reduce the vulnerability
(49.3% on average) compared to the existing approaches.
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