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ABSTRACT

Modern processors deliver high performance by utilizing ad-
vanced features such as out-of-order execution, branch pre-
diction, speculative execution, and sophisticated buffer man-
agement. Unfortunately, these techniques have introduced
diverse vulnerabilities including Spectre, Meltdown, and mi-
croarchitectural data sampling (MDS). Although Spectre and
Meltdown can leak data via memory side channels, MDS has
shown to leak data from the CPU internal buffers in Intel
architectures. AMD has reported that its processors are not
vulnerable to MDS/Meltdown type attacks. In this paper, we
present a Meltdown/MDS type of attack to leak data from the
load queue in AMD Zen family architectures. To the best of
our knowledge, our approach is the first attempt in develop-
ing an attack on AMD architectures using speculative load
forwarding to leak data through the load queue. Experimental
evaluation demonstrates that our proposed attack is successful
on multiple machines with AMD processors. We also explore
a lightweight mitigation to defend against speculative load
forwarding attack on modern processors.

1 INTRODUCTION

Modern processors provide high performance by using dif-
ferent techniques such as out-of-order execution, speculative
execution and utilizing microarchitectural structures (internal
buffers). Out-of-order execution utilizes execution units of a
CPU as much as possible allowing the CPU to execute instruc-
tions speculatively. Instead of executing all the instructions
in sequential order, the processor executes the instructions as
early as possible. Utilization of internal buffers such as caches
and load/store buffers have reduced the latency of fetching
data always from the main memory. Even though specula-
tive and out-of-order execution are valuable techniques to
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obtain high performance for modern processors, they have
also introduced serious security vulnerabilities.

Out-of-order and speculative behavior often leads the in-
structions to be executed out-of-turn, earlier than their ex-
pected in-order execution. Transient execution is when in-
structions executed out-of-order and erroneously changing
the microarchitectural states of a CPU. The reasons for tran-
sient execution may be a delay in exception handling, mispre-
diction or micro-code assisted event. The result of a transient
execution may not be architecturally visible, but it can change
the microarchitectural states such as cache, store buffers, load
buffers, etc. Attackers can gain advantage of these microar-
chitectural changes and leak valuable information using CPU
side-channel attacks such as Spectre [12, 13], Meltdown [14],
Foreshadow [21, 25] and microarchitecture data sampling
(MDS) [6, 18, 19, 22, 23]. Due to the high security risk im-
posed by these attacks, modern processors have developed
several mitigation techniques.

All major operating systems have implemented counter-
measures (KAISER [9], [17]) against transient execution at-
tacks that can introduce significant performance loss. Most
systems encourage programmers to use serialization such as
LFENCE [7], when needed to avoid transient execution. Intel
CPUs have been identified as vulnerable for most of the tran-
sient execution attacks. Therefore, Intel has introduced new
silicon with hardware mitigation to prevent Meltdown type
transient attacks while maintaining the expected high perfor-
mance. Unlike Intel processors, AMD processors are believed
to be resistant against Meltdown/MDS type attacks [2].
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Figure 1: AMD Zen family architecture

In this paper, we present a Meltdown/MDS type attack on
AMD processors to leak data from the load queue that stores
the previous loads to hide the latency of loading value from
memory. Specifically, this paper makes the following major
contributions.
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o We have identified a speculative load forwarding vul-
nerability in AMD Zen2 and Zen+ architectures.

e We present a Meltdown type attack that can lead to
information leakage through load queue in the same
user space.

e Experimental evaluation shows that our proposed at-
tack is successful on multiple machines with AMD pro-
Cessors.

e We explore potential lightweight mitigation methods
to defend against speculative load forwarding attacks.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the background and related efforts. Section 3
presents an overview of the proposed speculative load for-
warding attack. Section 4 describes our attack on AMD Zen
family architectures. Section 5 explores mitigation techniques.
Section 6 presents the experimental results. Finally, Section 7
concludes the paper.

2 BACKGROUND AND RELATED WORK

We first provide relevant background on AMD Zen family
architecture and out-of-order execution. Next, we survey re-
lated work on transient execution attacks as well as cache
timing attacks.

2.1 AMD Architecture

Figure 1 shows a high-level overview of AMD Zen family.
AMD Zen family microarchitecture contains three main stages:
Fetch/Decode unit, Execution unit, and Load/Store unit. The
Fetch/Decode unit fetches the instructions, decodes, and is-
sues the p-operations to the Execution unit. Execution unit
executes the instruction out-of-order while loading and stor-
ing values through the Load/Store unit. As shown in Figure 1,
Load/Store unit consists of Load Queue, Store Queue, L1 data
cache, and Translation Lookaside Buffer (TLB). TLB is a mem-
ory cache that stores the virtual to physical address mapping
of recently accessed addresses. TLB reduces the access time
of a memory location. According to [5], a TLB hit is required
for load speculation. Load Queue stores the previous loads
to hide the latency of loading value from the main memory.
Load Queue allows speculative load forwarding mechanism if
there is a TLB hit for the address.

2.2 Out-of-Order Execution

Modern processors implement out-of-order execution similar
to Tomasulo [20, 24] algorithm. Tomasulo algorithm consists
of a unified reservation unit commonly called as Reorder
Buffer (ROB), which preserve the original programming order
and stores the executed data internally without changing any
architectural states (actual registers). Out-of-order execution
units typically consist of three stages: (1) in-order register al-
location and renaming, (2) out-of-order instruction execution,

and (3) in-order retirement of instructions. In-order register al-
location unit eliminates the hazards such as Write-after-Read
(WAR) and Write-after-Write (WAW) by register renaming,
and sends the p-operations to the ROB. Out-of-order execution
unit eliminates Read-after Write (RAW) hazards by stalling the
p-operations, and issues the instructions to execution units
when all the operands are available. When the execution unit
returns the results of a p-operation, ROB and internal buffers
store the data and mark the instruction as completed. In-order
retirement unit retires instructions in-order irrespective of
the order the instructions actually got executed. Instructions
commit in the original program order, and the data values are
written to the actual registers. In the retirement stage if there
is a transient execution, ROB detects that retirement should
not happen. Hence all the executed instructions after the tran-
sient execution in the ROB will get flushed and the processor
will compute the instructions again without speculation.

2.3 Related Work

A vast majority of architectural attacks consist of two phases.
The actual attack is performed (leak is introduced) in the first
phase. The second phase performs the leak detection using
CPU cache side-channel attacks. We briefly describe these
two phases.

Transient Execution Attacks: Most of the microarchitec-
tural features trigger security violations in modern processors
leaking victims’ secret through transient execution. There are
several types of attacks such as Spectre, Meltdown and mi-
croarchitecture data sampling (MDS). Spectre [12] exploits the
speculative behaviour of branch prediction to read arbitrary
memory from the victims process. Meltdown [14] exploits
out-of-order execution and side-channel attacks on proces-
sors to read kernel memory from unprivileged user space.
MDS [6, 19, 23] is a Meltdown type attack to leak through in-
ternal buffers. MDS can leak in-flight data from CPU internal
buffers such as store buffer, line-fill buffers, and load ports
buffer. Table 1 shows a comprehensive comparison of existing
transient attacks with respect to different architectures (Intel
and AMD). All Intel and AMD processors are vulnerable to
Spectre attacks. Based on published results, only Intel CPUs
are vulnerable for Meltdown and MDS attack. There have been
prior efforts on conducting Meltdown/MDS type attacks on
AMD CPUs. The authors in [16] have introduced an MDS type
attack on AMD machines exploiting the store queue when
the secret is also presented in L1 cache. Our proposed attack
is different from [16] since we leak through the load queue
even when the secret is not in the cache.

Even though AMD and Intel are x86 based systems, their
architectures are different from each other [8]. AMD architec-
ture is less vulnerable to MDS/Meltdown type attacks, com-
pared to the Intel CPU. The key to classical meltdown is that



Table 1: Evaluating different transient attacks on Intel and AMD architectures.

Spectre | Meltdown | Store Buffer Related Attacks | Fill Buffer Related Attacks | Load Buffer Related Attacks
Intel [12] [14] [6, 16] [19, 23] [23], Our Approach
AMD [12] [16] Our Approach

Intel CPUs don’t flush under-privileged TLB hits. In contrast
to Intel, AMD’s load execution units / TLB are designed differ-
ently, with privilege checking for loads applied earlier or dif-
ferently. This makes the AMD architecture less vulnerable to
Meltdown. MDS tries to leak data through micro-architectural
structures. For Intel architectures, different techniques such
as microcode assists, simultaneous multithreading and TSX
faults are used for MDS attacks. However, AMD architec-
ture handles such errors differently making the MDS attack
much harder than Intel machines. Some of the techniques
that prevent MDS at AMD is the TLB flush across kernel and
userspace.

Cache Timing Attacks: To reduce the memory latency,
the CPUs utilize memory buffers (caches) to store data based
on spatial and temporal nature of accessed data. There are
typically multiple levels of caches. Primary cache (e.g., L1)
is very fast but the cache size is small, whereas secondary
cache (e.g., L2 and L3) is relatively slower but more spa-
cious than the primary cache. The difference of access cy-
cles from cache and main memory has lead to CPU cache
timing attacks [15]. By timing the access time of a data, it is
easy to recognize whether the data is coming from the cache
or the main memory. There are several types of cache tim-
ing attacks such as FLUSH+RELOAD and PRIME+PROBE.
In FLUSH+RELOAD [10, 26], an attacker first flushes the
cache to evict the data already in the cache. Next, the attacker
reloads the data and calculates the access time for a cache
hit to identify whether any of the data has been accessed by
the victim. This does not work when the critical data is not
shared. In PRIME+PROBE [11], an attacker populates all cache
ways rather than flushing the cache. The attacker will calcu-
late the access time to identify a cache miss, which ensures
that the victim has accessed that data. In this paper, we use
FLUSH+RELOAD attack to identify the leak. To the best of our
knowledge, there are no prior efforts in leaking data using load
queue from AMD architectures.

3 OVERVIEW

The overview of our proposed speculative load forwarding
attack is shown in the Figure 2. Our attack involves five steps:
S1, Sz, Ss, S4, and Ss. The first step is initiated by a victim.
The victim has an address; which has the value secret. The
victim loads address; and this load information is populated
in the load queue. The goal of the attacker is to steal the secret
value loaded by the victim. The second step is initiated by the
attacker. The attacker first flushes the cache. Next, the attacker
tries to get the value secret by loading the address; in the third

step. The load of address2 will cause a transient execution and
the value of address; (secret) will be passed to the L1 cache
in the fourth step. Finally, the attacker performs a CPU cache
side-channel attack to identify the value of address;. In the
final step, the attacker reloads the entries from the cache to
identify the secret leaked through the load queue. Section 4
provides detailed attack describing how to transiently forward
the value of address; via address, load.

S4: Load address1

o ||

S3: Load address2

Attacker
[ Load Queue ]
S,4: Speculative iLoad Forwarding
v 32: Flush
[ L1 Cache 155: Reload

Figure 2: Overview of speculative load forwarding attack

4 LOAD FORWARDING ATTACK

Listing 1: Overall attack

1. Victim_Load ();

2. Initialize ();

3. for (int i = 0; ++1) |

4 for (int j = 0; j < Experiments; ++j) {
5. Flush ();

6. Attack_Load ();
7
8
9
1
1

i < Rounds;

Reload ();

}
Local_Wins ();

0.}
1. Winner ();

In this section, we present our speculative load forwarding
attack. Listing 1 shows the overall attack. As shown in line
1, in the victim space, the secret is stored in address; and
the victim loads this address. Next, the attacker generates the
address; and initializes required buffers in line 2. Lines 3-10
shows the outer ‘for’ loop to iterate through the rounds. Lines
4-8 shows the inner for loop for conducting several number of
experiments for each round. For each experiment, the attacker
performs three tasks. The first task is flushing the cache (line
5). The second task is loading address; (line 6). The third task
is reloading values from the cache (line 7). After running all
the experiments, the leak detection is executed and a local
winner is identified in line 9. This process is continued for
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Figure 3: Attack narrative of speculative load forwarding

all the rounds. Based on the local winners of each round, the
final winning candidate is identified in line 11.

Figure 3 shows a simplified flow diagram of our overall at-
tack that consists of six major steps: victim load, initialization,
flush, speculative load forwarding, reload and leak detection.
The remainder of this section describe these steps in detail.

4.1 Victim Load

In this attack primitive, victim space has an address; which
has the value secret. As shown in Listing 2, victim has allo-
cated memory for address; and then memset the value secret
for the address. This is equivalent to storing the value secret
in address;. The victim loads the address; as shown in the
line 3. This load will populate an entry in the load queue. As
shown in line 4, we flush address; to make sure that the secret
value is not in the cache. This also guarantees that the load
value does not have to be present in the cache for this attack
to be successful.

Listing 2: Victim_Load()

address1 with value secret. =/
malloc (20 = PG_SIZE);
20 « PG_SIZE);

/+ Initialize

char raddress1 =
2. memset(addressl, secret,
/+ Victim loads addressl. «/
3. int val = addri[offset];

/+ Flush address1l. «/
4. flush(&addr[offset]);

4.2 Initialization

In the attacker space, attacker needs to generate address,
with last 48 bits of the address matching the last 48 bits of
the address;. This bit-level matching of the two addresses are
important because only the last 48 bits are checked through
the TLB and load queue in AMD architectures. The loading
of address, should trigger an exception, generating a window
to load the secret speculatively. We are using non-canonical
address violation as this exception [3]. A non-canonical ad-
dress means the upper bits from 49 to 64 should not be all
0’s or 1’s. If all the upper bits are neither 1 or 0, the access of
this address create a non-canonical address violation. Since
the non-canonical violation is detected later in the instruction
pipeline, it provides a window of opportunity to load the se-
cret speculatively creating a transient execution. We generate
the address; fulfilling the requirements as shown in Listing 3

(line 1). Listing 4 shows illustrative examples of address; and
address;.

Listing 3: Initialize()

/+ Initialize address2 with last 48 bits

matching addressl and non canonical error. «/

1. char +address2 = address1|0xff00000000000000 ;

/+ Initialize buffers «/

2. char scacheAccessArray = malloc(256+«PG_SIZE);

3. uint64_t numberOfWins[256];

4. uint64_t totalAccessTime [256];

5. memset(numberOfWins, 0x0, 256);

/+ Initialize Exception Handler =/
Catch_Segmentation_Fault ();

As shown in Listing 3 (line 2), we allocate a buffer cacheAccess
Array to load the secret to the cache. To calculate the num-
ber of wins for all the rounds, numberO fWins buffer is al-
located and initialized in line 3 and line 5, respectively. In
order to calculate the total access time of buffer elements,
total AccessTime buffer is initialized in line 4. Since the address;
has the non-canonical violation error, accessing this address
should throw an exception. When the execution pipeline iden-
tifies the exception, it will terminate the program. We avoid
the program termination by catching the exception as shown
in line 6.

Listing 4: Example of address; and address;

addressl - 0x0000562419f9a000
address2 - 0xff00562419f9a000

4.3 FLUSH

In the attack narrative, we are using FLUSH+RELOAD as the
cache timing attack to identify the secret. The first step of
FLUSH+RELOAD is to flush the cache so that all the values
already in the cache will get evicted. The cacheAccessarray,
which is initialized and allocated in Listing 3, is used for the
FLUSH+RELOAD. As shown in the Listing 5, we first flush
the cache to remove any cache line with cacheAccessarray.

Listing 5: Flush()

entries. «/
i<256; i++) {

+ Flush buffer
. (int i=0;
. cacheAccessArray [i«PG_SIZE] = 0;

. flush(&cacheAccessArray [i+*PG_SIZE]);
-}

/
1. for
2
3
4




4.4 Speculative Load Forwarding

In this step, the attacker tries to load the address; as shown
in the Listing 6. For this load, only the last 48 bits will be
checked in the TLB and the load queue. First, there will be
a TLB hit because the address; entry is already in the TLB.
Next, the address; load will speculatively get the value of
address; from the load queue with the last 48-bit match. Since
the non-canonical violation is not detected at the time of the
48-bit match, secret will be speculatively forwarded through
address,.

Note that the secret value is not yet disclosed to the cache.
To get the secret value in the cache, cacheAccessArray is
used. From the transient execution cacheAccessArray gets
the secret as the computation of address;[of fset] and that
buffer (cacheAccessArray[PG_SIZE«secret]) element will be
loaded into the cache. When the non-canonical violation is de-
tected, all the execution will get reverted. However, the secret
will be already in the cache through the cacheAccessArray.
Once the exception is detected, the program will throw the
exception and our exception handler avoids the termination
of the program.

Listing 6: Attack_Load()

/+ Attacker loads address2. =/
cacheAccessArray [PG_SIZE » addr2[offset]];

4.5 RELOAD

Once the secret is loaded to the cache through the cacheAccess
array buffer, we perform the second step of FLUSH+RELOAD
attack to identify the secret by analyzing the access time. First,
we discuss access time analysis. Next, we describe several
noise reduction techniques.

Access Time: As shown in the Listing 7 (lines 1 - 6), the
access time for all the 256 buffer entries are calculated. If the
buffer entry is already in the cache, access time will be fast.
However, if the buffer entry is not in the cache, this entry
has to be fetched from the main memory and it will lead to
significantly longer access time compared to accessing an
entry in the cache. This drastic time difference to access from
cache and main memory is used to identify the secret value
speculated through the attacker load. If the secret value is
successfully speculated and loaded to the cache, the access
time of the secret value should be faster than the other buffer
elements.

Listing 7: Reload()
/+ Calculate the time access of each entry in
buffer «/
1. for (int i=0; i<256;
tl1 = rdtscp ();
«(cacheAccessArray + PG_SIZE « i);
t2 = rdtscp () - t1;
totalAccessTime[i] += t2

i++) {

N U s W

Noise Reduction Techniques : In FLUSH+Reload at-
tacks, prefetching introduces noise, since some of the buffer
elements can be loaded to cache through prefetching. To re-
duce the latency of accessing frequently used memory lo-
cations, CPUs typically use software/hardware prefetchers.
Prefetchers preload instruction and data into cache based on
the current data being loaded. Software prefetchers improve
the performance by automatically inserting loads through the
compiler for instances such as for loops.

When performing FLUSH+RELOAD, it will be hard to iden-
tify the secret due to the noise. The noise will be present
because the prefetcher will try to add values to the cache
based on the spatial locality. When looping through the buffer,
prefetcher will try to load the nearby entries of the buffer
understanding the pattern of accessing value increasing one
by one or simply by the compiler for the loop. This will in-
crease the noise in FLUSH+RELOAD attack. We can avoid
prefetching by removing the access pattern of the buffer. So
we used a simple hash which will load all the 256 entries but
not in the increasing order of one. This is shown in line 1 of

the Listing 8. Listing 8: Avoiding prefetcher

for (int i=0; 1<256; i++) {
/+ A simple hash to prevent prefetching «/
1. int hash = ((j +«167)+13 & (0xff));

2. t1 = rdtscp ();
3. «(cacheAccessArray + PG_SIZE » hash);
4. t2 = rdtscp() - tl;
}
4.6 Leak Detection

Once the secret is in the cache, we can identify the leak by cal-
culating the access time for each entry in the cacheAccessArray.
There are several ways to identify a leak. One way is using a
threshold and checking whether the access time is less than
the threshold. If the access time of an entry of the buffer is
less than the threshold that entry can be considered as com-
ing from the cache. This threshold value can vary based on
the processors as well as the system specification. If using a
threshold as an identifier, attacker first need to understand
the best threshold to use depending on the scenario.
Listing 9: Local_Wins()

}
}

0. ++numberOfWins[localWinner ];

/+ Calculate minimum average access time =x/
1. uint64_t min, avgAccessTime = 0;

2. int localWinner = -1;

3. for (int j = 0; j < 256; ++j) {

4 avgAccessTime=totalAccessTime [j]/Experiments
5. if (avgAccessTime <= min) {

6 min = avgAccessTime;

7 localWinner = j;

8

9.

1




There are ways to identify the secret without using a thresh-
old. One way is to calculate the average access time for all the
buffer elements and to find the minimum average time. The
buffer element with minimum average time can be considered
as the secret. In our attack, we are calculating the minimum
average access time to identify the leak. As shown in Listing 9
(line 4), average access time is calculated for each entry in the
cacheAccessArray by dividing the totalAccessTime by num-
ber of experiments. If the calculated average access time is
less than or equal to the minimum average access time, that
buffer entry will be marked as a local winner (line 7).

An attacker should ensure that the leak is accurate and con-
sistent - an attack should always return the secret irrespective
of the noise. To guarantee that the leak is consistent, the attack
should be performed for different number of rounds and check
how many number of rounds the secret can be identified. After
the attack is conducted for all the rounds, winner is calculated
as shown in Listing 10 (lines 3 - 7). The cacheAccessArray
buffer element with the highest number of wins from all the
rounds will be selected as the winner (secret).

Listing 10: Winner()

/+ Calculate winner =«/.

1. int winner;

2. int64_t max = -1;

3. for(int 1 = 0; i < 256; ++i){
4. if (numberOfWins[i] > max) {
5. max = numberOfWins[i ];
6. winner = i;

7.

8.

——

5 MITIGATION METHODS

In this section, we explore different mitigation techniques for
our speculative load forwarding attack on AMD Zen family
architectures. We have reported the vulnerability to AMD and
they suggested that the LFENCE [4] can be used as a miti-
gation against our proposed attack. The LFENCE instruction
serializes load instructions, such that the speculative execu-
tion will stop until the load instruction is committed. The ideal
mitigation for the attack should reside in the victim space af-
ter the victim load. However, the use of LFENCE immediately
after the victim load (as shown in Listing 11) does not mitigate
the attack.
Listing 11: LFENCE mitigation after victim load

/+ Victim Load =/
1. int vall = addressl[offset];
2. LFENCE;
/+ Attacker Load «/
cacheAccessArray [PG_SIZE « address2[offset]];

In the Listing 11, line 3 can be broken down into two pieces,
a load from address, and a (transient) load from cacheAccess

Array. If an LFENCE is added between those two loads (as
shown in Listing 12), it would allow the processor to recognize
the non-canonical address violation before the cache line from
cacheAccessArray is loaded.

The mitigation of using LFENCE is only working on the
attacker space. This is unrealistic since we cannot expect an
attacker to use LFENCE while writing the attack code. An
actual mitigation should reside in the victim space where the
victim should be able to protect valuable information by pre-
venting speculation. For MDS attacks, Intel has introduced
VERW mitigation which will clear the internal buffers pre-
venting any speculation on loads or stores [1]. The VERW
mitigation can be applied on the victim space as well. We
suggest a mitigation similar to VERW should be implemented
by AMD if the mitigation to be applied in the victim space.

Listing 12: LFENCE mitigation after attacker load

/+ Victim Load «/

1. int vall = addressl[offset];

/+ Attacker Load «/

2. int val2 = address2[offset];

3. LFENCE;

4. cacheAccessArray [PG_SIZE « val];

6 EXPERIMENTS

This section demonstrates the effectiveness of the proposed
attack. First, we describe our experimental setup. Next, we
present the results for the attack including noise reduction
and attack accuracy. Finally, we discuss the mitigation results.

6.1 Experimental Setup

Our experimental setup consists of different AMD Zen family
machines as shown in Table 2. The attack code outlined in
Listing 1 is written using C and compiled using zero optimiza-
tion with gcc. In the experimental setup, the victim loads the
value 0x88 (decimal value 136) and the attacker tries to leak
the value 0x88. Table 2 provides the details of the machines
where we are able to reproduce the leak. These results elab-
orate that this vulnerability is exploitable in Zen2 as well as
Zen+ architectures.

Table 2: Details on machines/microarchitectures

CPU Year | Microcode | p Architecture
AMD Ryzen 5 PRO 1600 | 2017 | 0x8001137 | Zen2
AMD Ryzen 5 3500U 2019 | 0x8108109 | Zen+
AMD Ryzen 5 3600U 2019 | 0x8701021 | Zen+

6.2 Attack Results

We have verified that we can leak information through the
load queue in several AMD machines. In the attack we con-
ducted, victim loads some secret. Attacker speculatively leaks



this value in the same user space, then use FLUSH+RELOAD
techniques to expose the secret value as described in Section 4.
We have created a covert channel and was able to leak 100
bytes/s. For the rest of the results in this section, we only
consider the leak of one byte (0x88).
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As described in the Section 4, we used noise reduction tech-
niques to achieve high accuracy in the leak. Figures 4 and 5
show the average access time (cycles) of the 256 elements in
the cacheAccessArray after running the attack for five rounds
and 100,000 experiments per round, with and without noise
cancellation respectively. Figure 4 (with noise cancellation) il-
lustrates that only for value 0x88, the access time is drastically
small compared to the other values in the buffer. Therefore, it
is easy to recognize the leak. According to Figure 5 (without
noise cancellation), the access time of most of the buffer ele-
ments are low since most of the values are prefetched to the
cache by the prefetcher. These results illustrate that the use
of noise reduction techniques in transient execution attacks
is vital to improve the accuracy of the attack.
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We found that even without noise cancellation techniques,
we can achieve improved accuracy by increasing the number
of rounds and number of experiments. Table 3 and Table 4
show the number of rounds (first column), number of experi-
ments per round (second column), average access time (cycles),
and number of wins per rounds of the secret value with and
without noise cancellation. The number of rounds and experi-
ments in the two tables corresponds to the ‘Rounds’ (line 3)

and ‘Experiments’ (line 4) in the Listing 1. One win means
that for one round, the secret value has the lowest average
access time and the secret is identified successfully.

Table 3: Average access time of secret and number of wins per
round with fixed number of experiments (100) and increasing
number of rounds.

Rounds | Experiments Withc?ut Noise' With Noise -
AccTime | Wins | Acc.Time | Wins
1 100 116 1/1 116 | 0/1
2 100 85 2/2 78 | 0/2
3 100 92 3/3 71 | 0/3
4 100 69 4/4 70 | 0/4
5 100 69 5/5 84 | 1/5
6 100 64 6/6 64 | 1/6

In the Table 3, we increase the number of rounds while
maintaining a fixed number of experiments (100), and observe
the number of wins per round of the secret value with and
without noise cancellation. With noise cancellation, even with
one round and 100 experiments the leak is identified. However,
without noise cancellation, it is hard to guarantee the leak
with 100% accuracy even with 6 rounds and 100 experiments.

Table 4: Average access time of secret and number of wins
per round with fixed number of rounds (5) and increasing
number of experiments.

Rounds | Experiments Withgut Noise' With Noise -
AccTime | Wins | Acc.Time | Wins

5 10 83 5/5 140 0/5

5 100 95 5/5 65 1/5

5 1000 96 5/5 76 1/5

5 10000 67 5/5 74 2/5

5 100000 63 5/5 61 5/5

In the Table 4, we increase the number of experiments while
maintaining a fixed number of rounds (5), and observe the
number of wins per round of the secret value with and without
noise cancellation. With noise cancellation, the secret is al-
ways identified with 100% accuracy even with 10 experiments.
When we increase the number of experiments to 100,000, we
are able to identify the leak successfully for all five rounds
even without noise cancellation. This is because for all the
experiments the secret will have a lower access time but the
access time of the other values will depend on the behavior
of the prefetcher. This shows that by using a large number of
experiments we can get accurate results even without noise
cancellation.
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Figure 6: Average time taken to execute load followed by load with and without LFENCE between them.

6.3 Mitigation Results

As discussed in Section 5, we explored two mitigation tech-
niques: (1) LFENCE after victim load, and (2) LFENCE after
attacker load. Figure 7 shows the average access time for the
buffer values with respect to the two mitigation techniques.
Clearly, LFENCE after victim load (blue) does not stop the leak.
We can observe that the secret value (0x88) has the lowest
average access time. The LFENCE after attacker load (red)
stops the leak. This is expected because using LFENCE after

attacker load serializes the loads and stops the speculation.
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Figure 7: Average access time with LFENCE mitigation

To evaluate the performance impact of applying LFENCE
between loads, we conducted an experiment on AMD ma-
chine (AMD Ryzen 5 3500U) and the results are shown in
Figure 6. We calculated the average time (cycles) taken to
execute load followed by load with and without LFENCE in
between loads, while increasing the number of loads using
rounds. As shown in the figure, LFENCE between two loads
increases the execution time compared to normal execution.
According to the experiment, the average performance impact
is 2.86 times. Note that overall performance impact would be
less since approximately 20% of all instructions are load in
typical programs. In other words, assuming 20% load instruc-
tions in a program, the overall performance penalty would

be approximately 50%. Either way, using LFENCE between
all the loads to prevent our attack is not feasible due to the
performance impact. Therefore, the insertion of LFENCE must
be done appropriately with manual supervision by identifying
most vulnerable load forwarding scenarios.

7 CONCLUSION

Modern processors utilize out-of-order and speculative exe-
cution to deliver high performance. However, these advanced
features have made the systems vulnerable to transient ex-
ecution attacks and CPU side-channel attacks. Most of the
security analysis studies are carried out on Intel processors,
and there is a need for similar studies on other processors
such as AMD and ARM. While Intel processors are vulnerable
to many transient execution attacks, AMD is believed to be
resistant against Meltdown/MDS type attacks. In this paper,
we challenge that belief and present a Meltdown/MDS type
attack on AMD Zen family architectures. Our experimental
results demonstrate that a speculative load forwarding attack
through the load queue is possible for Zen architectures. We
also evaluate different mitigation techniques to defend against
speculative load forwarding attacks.
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