
Test Generation using Reinforcement Learning for Delay-based
Side-Channel Analysis

Zhixin Pan, Jennifer Sheldon and Prabhat Mishra
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida, USA

ABSTRACT
Reliability and trustworthiness are dominant factors in designing
System-on-Chips (SoCs) for a variety of applications. Malicious im­
plants, such as hardware Trojans, can lead to undesired information
leakage or system malfunction. To ensure trustworthy computing,
it is critical to develop efficient Trojan detection techniques. While
existing delay-based side-channel analysis is promising, it is not
effective due to two fundamental limitations: (i) The difference in
path delay between the golden design and Trojan inserted design
is negligible compared with environmental noise and process vari­
ations. (ii) Existing approaches rely on manually crafted rules for
test generation, and require a large number of simulations, making it
impractical for industrial designs. In this paper, we propose a novel
test generation method using reinforcement learning for delay-based
Trojan detection. This paper makes three important contributions.
1) Unlike existing methods that rely on the delay difference of a
few gates, our proposed approach utilizes critical path analysis to
generate test vectors that can maximize the side-channel sensitivity.
2) To the best of our knowledge, our approach is the first attempt in
applying reinforcement learning for efficient test generation to de­
tect Trojans using delay-based analysis. 3) Our experimental results
demonstrate that our method can significantly improve both side­
channel sensitivity (59% on average) and test generation time (17x
on average) compared to state-of-the-art test generation techniques.

CCS CONCEPTS
• Security and privacy - Side-channel analysis; • Computing
methodologies - Machine learning algorithms.

KEYWORDS
Test Generation, Side-Channel Analysis, Reinforcement Learning

ACM Reference Format:
Zhixin Pan, Jennifer Sheldon and Prabhat Mishra. 2020. Test Generation
using Reinforcement Learning for Delay-based Side-Channel Analysis. 1n
IEEE/ACM International Conference on Computer-Aided Design (ICCAD '20),
November 2-5, 2020, Virtual Event, USA. ACM, New York, NY, USA, 7 pages.
https:/ /doi.org/10.l 145/3400302.3415710

1 INTRODUCTION
With the rapid development of semiconductor technologies coupled
with increasing demands of complex System-on-Chips (SoCs), the vast
majority of semiconductor companies utilize global supply chains.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD '20, November 2- 5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11.. .$15.00
https:// doi.org/ 10.1145/3400302.341571 0

A long and distributed supply chain provides opportunity for third­
party Intellectual Property (IP) vendors as well as service providers to
implant Hardware Trojans (HT) inside SoCs [8, 21, 23, 24]. Therefore,
Trojan detection is widely acknowledged as a major focus to enable
secure and trustworthy SoCs.

Existing Trojan detection techniques can be broadly classified
into two categories: logic testing and side-channel analysis. Logic
testing methods such as Automatic Test Pattern Generation (ATPG)
[2] or statistical test generation [4, 15] try to activate Trojans using
generated tests, but they have two major limitations: (1) They suffer
from high computational complexity for large designs. (2) Since it
is infeasible to generate all possible input patterns, the generated
tests are not effective in activating stealthy Trojans. The triggering
conditions for Trojans are usually crafted as a combination of rare
conditions, such that Trojan-implanted designs will retain exactly
the same functionality as golden designs until a rare condition is
satisfied to yield malicious behavior. Figure 1 shows a trivial example
from ISCAS'85 benchmark. In this design, both F and Gare signals
with 'o' as the rare value. The shaded AND gate with inverted inputs
will only be triggered if both F and G become 'O', and, once triggered,
the succeeding XOR gate will invert signal I, which is called an asset.

Figure 1: Example of HT triggered by rare signals

Side-channel analysis is a promising alternative since it compares
the difference of side-channel signatures (such as path delay, elec­
tromagnetic emanation, dynamic current, etc.) with the expected
(golden) values to detect Trojans. However, the effectiveness of side­
channel analysis depends on the HT's side-channel leakage. The
noise induced by the environment or process variation usually over­
shadows the Trojan footprint, which makes the detected difference
negligible. Recent efforts have tried to combine logic testing and
side-channel analysis [11, 12, 16, 18, 19] in order to improve side­
channel sensitivity. Specifically, their goal is to maximize activity in
suspicious regions while minimizing the activity in the rest of the
design. While existing approaches provide promising avenues, they
face two major challenges. First, the test generation time complexity
is exponential for these methods, which severely limits their usability.
Second, the side-channel difference achieved by these approaches is
not large enough to offer high confidence in HT detection results.

In this paper, we address these challenges by proposing a novel
test generation approach using reinforcement learning for delay­
based side-channel analysis. The remarkable success of machine

learning (ML) in a variety of hardware security tasks [5, 6, 10) has
inspired us to explore its potential in HT detection. This paper makes
three important contributions.

(1) We develop an automated and efficient test generation method
using reinforcement learning to maximize the difference in
path delay between the Trojan-implanted design and golden
design by exploiting critical path analysis.

(2) To the best of our knowledge, our approach is the first at­
tempt in applying reinforcement learning for test generation
to detect Trojans using delay-based side-channel analysis.

(3) Our experimental evaluation applied on several benchmarks
demonstrates that our method outperforms the state-of-the­
art technique in both test generation time efficiency (17x on
average) and side-channel sensitivity (59% on average).

The rest of this paper is organized as follows. We survey related
efforts in Section 2. Section 3 describes our proposed method on effi­
cient test generation using reinforcement learning. Section 4 presents
experimental results. Finally, Section 5 concludes the paper.

2 RELATED WORK
2.1 Delay-based Side-Channel Analysis
There are various physical signatures of electronic devices suitable
for side-channel analysis, such as path delay [20), dynamic cur­
rent [19) and electromagnetic emanations [14). Among them, we
target path delay for three major reasons.

(1) Independence: The delay between any gates in the design can
be measured independently, which provides more comprehen­
sive information compared to other side-channel signals.

(2) Diversity: Implanted Trojans can impact path delay in multiple
ways. Let us consider the design in Figure 1 as an example.
There will be an increase of propagation delay for the gates
producing signals F and G, since they are connected to an
extra gate, which leads to increased capacitive load. Second,
since one XOR gate and one AND gate were inserted to deliver
the payload, the path delay will always have at least two gates
difference from the golden design for any paths through these
inserted XOR/ AND gates.

(3) Stability: Delay-based Trojan detection techniques provide
superior performance under parameter variations by leverag­
ing statistical techniques [22). This stability guarantees high
confidence of detection results from delay-based analysis.

However, crafting test vectors that can reveal the impact of im­
planted Trojans on path delay is not a trivial task. Traditional ap­
proaches utilize static analysis where they enumerate all possible
paths (removing unrelated paths) and exploit ATPG [7) to find feasi­
ble input patterns to trigger the desired path. There are two funda­
mental limitations of these approaches:

(1) The computational complexity grows exponentially with the
design size. It is time consuming and even impractical for
large designs due to exponential nature of possible paths.

(2) The detection result is extremely sensitive to environmental
noise since the differences in delay induced by these meth­
ods are often negligible. Without activation of the HT, the
difference is usually from a few gates (e.g., only two gates
in Figure 1). In fact, even with Trojan successfully triggered,
they are not guaranteed to generate a critical path from the
Trojan to an observable output for propagating the delay.

Our proposed approach addresses these challenges by utilizing
critical path analysis. It significantly increases the path delay differ­
ence induced by implanted HTs, and is able to achieve better results,
which is discussed in Section 3.

2.2 Reinforcement Learning
Reinforcement Learning (RL) has shown its potential in solving
complex optimization problems [13, 17, 26). Searching for optimal
test vectors in target designs to maximize the side-channel sensitivity
can be viewed as an optimization problem. RL is a branch of machine
learning, but unlike the commonly-known supervised learning, it is
closer to human learning. For example, although an infant baby is not
able to understand spoken words, it can still master language after a
period of exploration. This exploration process is actually a process
of gradually learning the rules (lexicon and grammar) of speaking
through trials and responding to feedback from the environment.
Similarly, RL also learns to find an optimal strategy through a series
of attempts and constantly adjusts its behavior based on the feedback.

~------i Agent 1--------.

state reward
S, R,

Environment

action
A,

Figure 2: The basic framework of reinforcement learning. At
time stamp t, state St and reward Rt are fed into Agent, which
produce action At with updated strategy. The agent interacts
with the environment to obtain new state St+i and reward
Rt+ 1, then starts the next round of learning process.

An overview of RL framework is shown in Figure 2. It consists of
five core components: Agent, Environment, Action, State and Reward.

• Agent refers to the object that can interact with the environ­
ment through actions. The agent of reinforcement learning is
usually the set of test cases to be optimized, which is continu­
ously updated through learning process.

• Environment is the receiver of the action, such as the opti­
mization problem itself.

• Action consists of all possible operations that may affect the
environment, such as using the current strategy for one-step
calculation.

• State refers to information about the environment that can be
perceived by the Agent, such as conditions and parameters.

• Reward is the feedback information from the environment
that describes the effect of the latest action. For optimization
problems, it often refers to the gain of objective function after
performing the current operation.

The process of reinforcement learning is a process of obtaining
feedback by interacting with the environment, and then adjusting the
actions based on the feedback in order to maximize the total reward.
The goal of reinforcement learning is to find an optimal strategy to
maximize the rewards obtained during the entire interaction process.
In terms of implementation, reinforcement learning is a process
of gradually optimizing the parameters of the algorithm through
multiple rounds to enhance the learning effect. To the best of our
knowledge, our work is the first attempt in utilizing reinforcement
learning for side-channel-analysis-aware test generation.

3 PROPOSED METHOD
3.1 Motivation
The difficulty of delay-based side-channel HT detection comes from
designing proper test vectors to increase the observability of side­
channel differences. Specifically, the test vectors should be able to
reveal the impact of an inserted Trojan on path delay as much as
possible. Existing approaches have focused on passively enumerat­
ing possible paths affected by the HT. But if the HT is not triggered,
only a few gates difference can be obtained, which is hard to distin­
guish from environmental noise. Consequently, the detection results
are not promising. In contrast, our proposed solution focuses on
exploring the impacts through critical path analysis, which allows
us to actively change the critical path and magnify side-channel
differences.

Traditional Approaches
(delay difference is negligible due to the

same critical path with one XOR gate)
: ..
!
I

~: /":'", ,.,;,.
!
: L---------------------+

Proposed Approach
(s ignificant delay difference due

to different critica l path)

T=O

A

Trojan-inserted Design

A

Figure 3: Maximizing delay difference by changing critical
path [20] . By triggering T, the critical path from input layer
to A' is significantly changed.

Figure 3 shows that the activation of a trigger T is necessary for
maximizing the delay difference. The top part of the figure shows that
if the test vector fails to activate the Trojan (T = 0), the critical path
from the input layer towards the Trojan is exactly the same as that in
the golden design. Then the delay difference is limited to the inserted
gates themselves (e.g., only one XOR gate in the figure). The bottom
part of the figure indicates that the critical path will be drastically
different if the trigger can be activated. Note that the trigger signal
T has to switch between consecutive input patterns, otherwise there
will be no contribution from the Trojan to the path delay because
the related signals remain the same between two consecutive tests.
Once the above requirements are satisfied, a completely different
critical path from input layer to Trojan is obtained, so that we can
expect a huge difference between the measured delay differences.
Consequently, the big problem of test generation now is divided into
two sub-problems: how to find a good initial test for triggering the
Trojan, and how to efficiently generate proper succeeding tests to
switch triggering signals. Due to their stealthy nature, HTs are very
likely to be activated by rare triggered conditions, therefore, the two
sub-problems can be transformed into:

• Generate initial tests for triggering rare nodes
• Generate succeeding tests for triggering rare switches

There are major research challenges in solving the above two
sub-problems. If we shift focus to a succeeding path (a path from the
Trojan to the output layer in which the delay is propagated through
the design) starting from node A in Figure 3, there has to be a critical

path from A' to output layer to propagate the delay. Otherwise
the delay is cut off and hidden from all other nodes succeeding A'.
Unfortunately, creating such path is an NP-hard problem because, in
the worst-case scenario, every signal in the critical path has to be
taken into consideration. For example, in Figure 4, the trigger signal
T switches from O to 1. Signal C, whose original value is 0, can either
switch to 1 for propagating the delay induced by the switch through
the AND gate to E or remain unchanged to propagate it through the
XOR gate to D. This process will recursively continue for D and E
to calculate constraints if they are chosen to be added to the critical
path. The search space grows exponentially, bringing in numerous
constraints. Therefore, traditional SAT-based approach is not feasible
here, and we plan to apply reinforcement learning to tackle this issue.
We will discuss this application in detail in Section 3.4.

Ao---......
e.,.....-+--H
C

0 --+ 0 forD
0 --+ 1 forE

>-----<>D

E

Figure 4: When the trigger signal T switches, C has to make a
decision to propagate this change through either D or E. This
process continues since D and E have to consider how to prop­
agate their value changes to the output layer.

3.2 Overview
Figure 5 shows an overview of our proposed method. The primary
goal is to generate a sequence of test patterns (t1, tz, .. . , tn) such
that for every consecutive pair of tests (t;, t;+1), the delay-based
side channel sensitivity is maximized. For a given circuit design, we
first obtain a set of proper initial test cases to ensure triggering rare
nodes (Section 3.3). Next, those initial test cases in previous step are
fed into an reinforcement machine learning model as initial inputs,
which is trained with a stochastic learning scheme(Section 3.4) to
increase the probability of triggering rare switches. After sufficient
iteration of training, a well-trained RL model is exploited for auto­
matic test generation. It starts working with initial input patterns,
and utilizes the newly generated test vectors as input in the next
round to continuously generate a sequence of test patterns of the
desired amount.

3.3 Generation of Initial Vectors
As discussed in Section 3.1, it is important for test patterns to activate
trigger conditions because if the test pattern fails to activate the
Trojan, the delay of the golden design and the Trojan-inserted design
differs by, at most, one gate. Therefore, our goal is to maximize
the probability of activating trigger conditions. Since an attacker is
likely to construct trigger conditions based on rare nodes to avoid
detection, we need to generate initial vectors that can maximize
the activation of rare nodes. Algorithm 1 shows the major steps
in generating efficient initial vectors. It accepts the design (circuit
netlist), the list of rare nodes (R) as well as the number of test vectors
(n) as inputs, and produces n test vectors. The number of vectors
presents a trade-off - a larger number can lead to longer runtime, but
it is likely to improve the probability of activating trigger conditions
compared to a smaller number of initial vectors.

Algorithm 1 first computes the logic equations for each rare node
by analyzing the cone-of-influence for each of them. Next, it gen­
erates n test vectors, one in each iteration. The test generated in

I --------------------1
I

Algorithml Input
I
I I

I -•

~ - -- ---- -- -- ---- -- -- -- -- -- -- -- -- -. ~---~· RL
1 Initialize

Model Training~ Algorithm2 I :
·- !

Figure 5: Our proposed framework consists of two major activities: initial test generation and reinforcement learning.

each iteration is expected to activate different rare nodes since we
randomize the order of the rare nodes. Algorithm 1 also tries to a
generate a test vector that can cover a large number of rare nodes.
We ensure this by adding as many rare nodes as possible without
making an invalid trigger. We use a SAT solver [9] to find a test
that would activate all the nodes in the trigger simultaneously. Since
an attacker is likely to create a trigger with the smallest possible
number of rare nodes to minimize the path delay footprint, tests
generated by our approach have a higher likelihood of detecting
small triggers. In other words, if we can find a test that can cover a
trigger with a large number of nodes, although we do not know the
actual trigger inserted by an attacker, the likelihood of activating
that Trojan goes up if we assume that the actual trigger will consist
of a small number of nodes because the small trigger signals are a
subset of the large trigger signals. These test cases will be used by
the reinforcement learning (RL) model to form the initial state. The
RL model is able to automatically search for the best succeeding test
patterns, as discussed in the next section.

Algorithm 1: Generation oflnitial Test Patterns
Input :Design (D), Rare nodes (R), Number of initial

vectors (n)
Output:Test Patterns

1 Compute logic equations for each rare node in D
2 Initialize Tests={}
3 i = 1
4 repeat
s Trigger TR= 0
6

7

8

9

11

12

Randomize the order of rare nodes R
for each rare node r E R do l if TR Ur is a valid trigger then

L TR=TRUr

Solve TR and get a testTR
Tests= Tests U testrR
i = i+ 1

13 until i > n;

14 Return Tests

3.4 Generation of Succeeding Vectors
There are two crucial requirements for a succeeding test vector (a
test vector produced by the RL model, which can then be used to
generate another succeeding, or consecutive, test vector). First, the
rare signals triggering Trojans have to switch between consecutive
test patterns. If there is no rare switch, the critical path will not
pass through the trigger signal. Second, the optimal succeeding test
vector should be able to produce a critical path from the Trojan to the
output layer which is completely different from the path in the golden
design. Otherwise, the delay difference created by a Trojan cannot
be propagated, and the maximum delay difference is suppressed.

For the first requirement, a SAT-based algorithm can solve for
possible vectors to satisfy the rare switches. But the second condi­
tion, creating a critical path from the Trojan to the output, is an
NP-hard problem, as discussed before. Traditional approaches have
failed to satisfy this demand because exploiting ATPG or SAT is ex­
pensive for large circuits. Moreover, strict conditions are required for
these approaches to function. One such condition is a rough estimate
on the actual Trojan payload. Even in the state-of-the-art method,
ATGD [20], the author circumvents this task by choosing to perform
a test reordering. The author generates a large number of test pat­
terns, and then performs a Hamming-distance-based reordering of
these patterns with the expectation that the large Hamming distance
increases the probability of signal switches in the cone area. This
approach introduces significant time complexity in both steps. The
first step is time-intensive since it needs to consider a large number
of initial vectors to produce reasonable results. The reordering step
requires quadratic time complexity in terms of the number of initial
vectors. The author makes several heuristic assumptions to increase
the probability of constructing a critical path between the Trojan
and output layer; some of these assumptions may not be valid in
many scenarios.

In order to address this fundamental challenge, we plan to apply
reinforcement learning (RL) to enable automatic succeeding test
generation. We explored the effectiveness of Hamming-distance­
based analysis for satisfying the requirements of succeeding test
vectors, and this analysis will be deployed as a component of the loss
function in our model. A prototype version of our basic workflow is
illustrated in Figure 6. This workflow is very similar to the scheme
illustrated in Figure 2.

states
(switches,
delay, etc ..)

s,

...-------1..i1 Current]
~----.. [Test Jt-------,
reward
R,

! R,. , (. . . l
----;:◄-,...s~·· •--1[C1rcu1t design 1---.....

action :
flip bits

A,

Figure 6: The reinforcement learning model for automatic
test generation. At time stamp t, the model takes action At on
current test case to flip its bits. Then the mutated test will in­
teract with the circuit design (environment), while feedback
St+1 and reward Rt+l are sent back to evaluate the new test
case. The RL model gradually learns the optimal strategy for
flipping bits of previous test vectors, so that the newly gener­
ated test pattern can maximize the reward received.

Here, the RL components are matched as:
• Agent: The current test vector.
• Environment: The circuit design.
• Action: Mutation of current test vector consisting of a se­

quence of bit flipping operations on each bit.

• State: Activation of trigger nodes and rare switches.
• Reward: Evaluation that produced a succeeding test vector.

Training of proposed model faces three serious challenges:
(1) The possible number of actions is exponential. For a test vector

oflength n, there are 2n - 1 possible ways to flip its bits to
create a different test case.

(2) It is hard to determine the exact reward value of each opera­
tion. Because actions like "flipping the second bit" can either
increase the difference of path delay or do exactly the opposite
of another initial pattern.

(3) This naive learning framework cannot prevent an "infinite
loop" from happening. That is, throughout learning, the model
could consider vz as the best successor for v1. It could also
happen that v1 maximizes the reward if it follows vz. Then this
{v1, vz, v1, vz, ... } repetitive loop can continue forever. Finally,
the test set produced is useless since it only consists of two
individual test patterns.

We apply a stochastic approach to train our RL model to solve these
challenges. In traditional value-based reinforcement learning pro­
cesses, succeeding vectors are deterministic since the choice of action
is fixed for a given state to maximize the reward. But in our method,
a stochastic scheme is applied. First, for each step of learning, the
action is chosen randomly, i.e, for each bit of current test vector, a
probabilistic selection will determine whether to flip it or not. This
non-deterministic result is not completely arbitrary but determined
by a series of probability distributions. Second, the basic principle
of our method is to adjust these probability distributions based on
the expectation of reward. Specifically, when positive reward ex­
pectation is obtained, the probability of the corresponding action is
increased, and vice versa.

This stochastic approach not only ensures non-determinism but
also avoids blindness action reward scheduling, which is the key
barrier to the general training approach. In addition to the theoretical
advantages of dealing with optimization problems, this strategy also
possesses huge advantages in implementation since, for a test vector
oflength n, there is no need to encode all 2n - 1 possible mutations.
There is only a need to maintain a table consisting of n binomial
distributions.

As a result, all above-mentioned challenges are addressed properly.
There is no longer a time cost for redundant test generation in previ­
ous steps. Furthermore, the reward value is the expectation of action
rather than a fixed value. Consequently, the infinite loop problem
no longer exists since bit flipping is probabilistically determined.

The learning process is shown in Figure 7, which is basically a
strategy optimization process. At the beginning, randomly initialized
probability distributions are assigned to each bit of the test vector. Of
course, there is no guarantee for this strategy to generate promising
results, so the newly generated test case will likely to provide poor
performance and receive negative rewards. The goal of learning is
to improve the expected reward, which can be formulated in the
following way:

1(0) = -E,,.~p11 (R,,.), Pe(r) = P0(r1lrzl ... lrn)
R,,. = RS(t, t,,.) +A· Hamming(t, t,,.)

0* = argminl(0)

where action r is the union of probabilistic flipping action for each bit,
i.e {r1, rz, ... , Tn}. The rewardR,,. ofaction r is defined as a combination
ofrare switches RS(t, t,,.) and the Hamming distance Hamming(t, t,,.),
an idea which we adopted from [20]. A is a regularization factor. The
loss function l (0) is the expectation of reward since r is chosen by

T

t, 0 0

Simulate ♦
A

B

C

Benchmark Circuits

◄
Probabilistically

flipping bits

y

z

D

Reward

Probability
Distribution

Figure 7: Illustration of proposed stochastic reinforcement
learning method

probability distribution Pe parametrized by 0. A negative sign is
put ahead since we want to minimize this "loss" through gradient
descent. Also, to circumvent the non-differentiability of this objective
function, we resort to the standard REINFORCE learning rule[25]
which gives an alternative gradient of l (0) w.r.t. 0:

n n

Vel(0) = -Er~p11 [(L V0logp0(ri)) LR,,.i]
i=l j=l

For each iteration, the model starts learning, and the product of the
learning rate a and V el (0) is used to update the parameter until the
expected reward exceeds a certain threshold or no longer increases:
This training process is shown in Algorithm 2. The reinforcement
learning framework enables generation of efficient tests for delay­
based side-channel analysis, as demonstrated in the next section.

Algorithm 2: Stochastic training of RL Model
Input :Design(D), Model Parameter (0), Initial tests (T),

number of epochs k, learning rate a
Output: Optimal Model Parameter 0*

1 Initialize probability distributions P = Pe
2 Initialize RL Model Me = init(T, P)
3 i = j = 0, n = size(T)
4 repeat
s repeat
6 for each t E T do
7 l r = mutate(t, P)
s R,,. = ~S(t, t,,.) +A· Hamming(t, t,,.)
9 1(0) - -E,,.-p11 (R,,.)

Update parameter : 0 = 0 + aV el (0)
11 until j ~ n;

12 until i ~ k;
13 Return 0

4 EXPERIMENTS
This section is organized as follows: First, we describe our experi­
mental setup including implementation details as well as evaluation
criteria. Next, we present our experimental results.

4.1 Experimental Setup
RL Implementation: The model training was conducted on a host
machine with Intel i7 3.70GHz CPU, 32 GB RAM and RTX 2080 256-
bit GPU. We developed Python (3.6.7) code using PyTorch (1.2.0)
with cudatoolkit (10.0) as the machine learning library. The training
process consisted of 200 epochs where we updated the learning rate
a starting with 0.01, pushing it up to 0.2, and lowering it again to
0.02.

Hardware Implementation: For test simulation, we compiled each
benchmark design (golden and Trojan-inserted) using Quartus Prime
18.0 Lite Edition in order to generate SDO (timing annotation simi­
lar to SDF) files associated with each benchmark design. Each SDO
file was generated with the Cyclone IV-E FPGA to ensure that Ver­
ilog code constructs appearing in each benchmark were associated
with the same hardware for timing. Next, we generated Verilog test­
benches using the test vectors produced by our framework. The
testbenches initialized the scan chains with suitable values from the
test vectors, and then applied the primary inputs. We ran the tests
sequentially with two clock cycles between test applications. We
ran the testbenches using ModelSim version SE-64 2020.l's timing
simulation capabilities with the Verilog benchmark and testbenches
as well as the Quartus-generated SDO files. We recorded each simu­
lation's data by generating an associated event list file in ModelSim.

Benchmarks: To demonstrate the test vectors' effect on different
designs, we carried out the experiment on five benchmarks from
ISCAS-89 [1].

Path Delay Computation: ModelSim event list files provide initial
signal values and changes in signal values over the course of the
simulation. To compute path delay, we subtracted the time between
changes of the same signal for each application of a test.

Evaluation Criteria: To quantify the efficacy of test vectors, we
collected the path delay data for simulated golden designs and de­
signs with inserted Trojans. We then used this data to quantify the
effect of the inserted Trojan on the path delay with the given test
vector using the difference, here defined as:

difference= rr:_r(ldelaifvuT(t) - delaifgo1it)I) (1)

where f is the set of all registers in the tested benchmark and t is
the set of all tests in the analyzed test vector. The difference is the
maximum path delay difference between golden and Trojan-inserted
designs (designs under test or DUTs). We also adopt the "sensitivity"
from [20] as a metric, which refers to the scaled delay difference
between the DUT and golden design. The sensitivity is defined as:

sensitivity= difference/delay{;1it*)) (2)

where f* refers to the register producing the maximum delay
difference, and t* refers to the test producing the maximum delay
difference.

4.2 Evaluation Results
To demonstrate the quality of tests compared to existing approaches,
we evaluate the following three different test generation schemes.

• Random: Random test generation, applied as the baseline.
• ATGD: State-of-the-art algorithm proposed in [20).
• Proposed: Our proposed method.

We generated 1000 random test vectors using all three approaches
for each benchmark, and Table 1 summarizes the results of perfor­
mance evaluation. We present the difference of delay and the average
sensitivity for each configuration. From the results, we can see that
our proposed method provides the best performance. For random

test generation, there is a significant decrease in sensitivity with the
increase of benchmark size. For example, when it comes to relatively
large benchmark like s38417, the sensitivity is only around 4%, which
can hide in typical environmental noise. The ATGD [20] is better
than random simulation with an average sensitivity of 73.38%. Our
proposed method provides superior results for all these benchmarks
with an average sensitivity of 132.92%, which grants 60% extra sen­
sitivity than ATGD. Also, ATGD cannot guarantee the stability of
test quality. For s15850 (2812 gates), the sensitivity drops below 30%,
while for s13207 with same level of scale (2335 gates), it achieved
72.24% sensitivity. This is expected since ATGD relies on a simple
heuristics. In contrast, our proposed method consistently provides
high sensitivity (e.g., 97.28% and 133.45% for these cases).

The benefit of improving sensitivity is directly reflected by the
results of HT detection. We apply these delay number for HT detec­
tion by following the threshold criteria: when the delay difference
between DUT and golden design exceed certain threshold, we claim
the existence of HT inside the DUT. We use a 7% threshold in this
paper based on the study [3] that provides an estimate on process
variations and environmental noise margins. Figure 8 presents the
rate(%) ofHTs detected in each benchmark.

0.8

~ Jo.6
er:
C
0
t3 0.4
Q)

Q)
0

0.2

• ----*-----*----- ----* ..
. _::..,__

, --- ■

' ' ' ' '' ', '• ',
\ -- --- -• \

---e- Random \

--- ATGD[21]
-+- Proposed

\
\

\

' \ •--
s1196 s1423 s13207 s15850 s38417

benchmarks

Figure 8: The performance of HT detection rate for all ap­
proaches on each benchmark.

As shown in Figure 8, when we consider tiny benchmarks, all ap­
proaches achieved a decent detection rate. Because the path between
the input layer and the output layer in smaller designs is very short,
even if these methods do not activate the Trojan, the extra inserted
gates and change in capacitive load can still produce certain degrees
of delay difference. However, when it comes to large benchmarks,
the random test generation completely failed to detect most of the
HTs. The ATGD performs better than random test generation, but it
still faces the problem of decreasing detection rate with increasing
design scale. In the worst case, over 50% ofHTs successfully bypass
detection by ATGD in s15850 and s38417, which is unacceptable. By
comparison, the rate of detection by our proposed method is always
above 80%. It also achieved a very high detection rate (88.54%) in the
largest tested benchmark (s38417).

Another important factor of approach evaluation is the time com­
plexity. Table 2 compares the running time between ATGD and our
proposed approach deployed on each benchmark (Random approach
is out of consideration since it is definitely the fastest one due to
its no-calculation nature). The results show that our method can
generate test vectors much faster than ATGD. The huge difference of
time efficiency comes from the following reasons: In our experiment,
the desired task is to generate 1000 test vectors for each benchmark.
If case of ATGD, we need to exploit an SAT-based method to generate
1000 test vectors, then perform a reordering algorithm on these 1000

Table 1: Performance comparison with existing approaches

Random ATGD [20]
bench golden difference sensi- golden difference

delay(ps) (ps) tivity delay(ps) (ps)
s1196 1302 698 53.60% 982 1237
s1423 1625 275 19.23% 666 1368
s13207 1911 143 7.48% 1621 996
s15850 2340 111 4.74% 2398 703
s38417 33319 1520 4.56% 12580 9088

Average 8099 549 6.76% 3649 2678

vectors to sort them. For an RL based approach, on the other hand,
the SAT method is only applied to generate several vectors as candi­
dates for initial states to be fed into the learning model. Meanwhile,
the model training is composed of 200 iterations where each iteration
is basically a one-step succeeding test generation and evaluation.
When the model is well-trained, it can generate the remaining test
vectors. So, as we can see, assuming k is the desired number of test
vectors, our approach finishes the task with linear O(k) time com­
plexity, while, for ATGD, the reordering process requires a quadratic
(O(k2)) time complexity.

5 CONCLUSION
Hardware Trojans are a serious threat to designing trustworthy
integrated circuits. While side-channel analysis is promising, exist­
ing delay-based techniques are not effective in detecting hardware
Trojans. Specifically, existing approaches introduce high time com­
plexity requiring extra computation resources, and are therefore not
suitable for large designs. Most importantly, these approaches lead
to small differences in path delay between the golden design and
the Trojan-inserted design; this makes the approaches unreliable
in the presence of environmental noise and process variations. In
this paper, we proposed reinforcement-learning-based test genera­
tion for effective delay-based side-channel analysis. We generated
a set of efficient initial patterns through SAT-based approach. We
utilized reinforcement learning using stochastic methods to generate
beneficial succeeding patterns. Our approach is fast, automatic, and
significantly improves the side-channel sensitivity compared with
existing research efforts. Specifically, our method takes, on average,
94% less time for generating 1000 test cases for each benchmark, and
it is able to detect most implanted Trojans in all tested benchmarks.
The state-of-the-art method, on the other hand, failed to detect 58%
of Trojans on large designs.

Table 2: Comparison of Test Generation Time.

bench #gates #wires ATGD [20] Proposed Speedup
s1196 550 568 35.2s 7.4s 4.75x
s1423 456 502 36.8s 7.3s 5x
s13207 2335 2504 203.7s 28.ls 7.3x
s15850 2812 3004 492s 66.9s 7.4s
s38417 23815 23844 6022.6s 282.6s 21.3x

Average 8015 8128 1358s 79s 17x

ACKNOWLEDGMENTS
This work was partially supported by the National Science Founda­
tion (NSF) grant CCF-1908131.

REFERENCES
[1] [n. d.]. ISCAS89 Sequential Benchmark Circuits. https://filebox.ece.vt.edu/-mhsiao/

iscas89.html.

Proposed
sensi- golden difference sensi- impro. impro.
tivity delay(ps) (ps) tivity /Random /ATGD

125.96% 1224 1590 129.99% 2.5x 1.lx
205.40% 618 1840 297.73% 15.7x 1.46x
70.09% 1254 1382 111.20% 14.9x 1.6x
29.31% 2209 2149 97.28% 20.5x 3.4x
72.24% 16579 22126 133.45% 20x 1.9x
73.38% 4377 5818 132.92% 15x 1.9x

[2] Alif Ahmed, Farimah Farahmandi, Yousef Iskander, and Prabhat Mishra. 2018.
Scalable Hardware Trojan Activation by Interleaving Concrete Simulation and
Symbolic Execution. In IEEE International Test Conference, ITC 2018.1-10.

[3] Bharathan Balaji, , et al. 2012. Accurate Characterization of the Variability in
Power Consumption in Modem Mobile Processors. In Workshop on Power-Aware
Computing and Systems.

[4] Raja! Subhra Chakraborty et al. 2009. MERO: A Statistical Approach for Hardware
Trojan Detection. In Cryptographic Hardware and Embedded Systems. 396-410.

[5] Mingsong Chen and Prabhat Mishra. 2010. Functional Test Generation Using
Efficient Property Clustering and Learning Techniques. IEEE Trans. on CAD of
Integrated Circuits and Systems 29, 3 (2010), 396-404.

[6] H. Choo et al. 2020. Register-Transfer-Level Features for Machine-Learning-Based
Hardware Trojan Detection. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
103-A, 2 (2020), 502-509.

[7] Jonathan Cruz, Farimah Farahmandi, Alif Ahmed, and Prabhat Mishra. 2018. Hard­
ware Trojan Detection Using ATPG and Model Checking. In International Confer­
ence on VLSI Design. 91-96.

[8] Jonathan Cruz, Yuanwen Huang, Prabhat Mishra, and Swarup Bhunia. 2018. An
automated configurable Trojan insertion framework for dynamic trust benchmarks.
In Design, Automation & Test in Europe Conference (DATE). 1598-1603.

[9] Leonardo Mendon~a de Moura and Nikolaj Bj0rner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS. 337-340.

[10] Rana Elnaggar and Krishnendu Chakrabarty. 2018. Machine Learning for Hardware
Security: Opportunities and Risks. J. Electronic Testing 34, 2 (2018), 183-201.

[11] Farimah Farahmandi, Yuanwen Huang, and Prabhat Mishra. 2017. Trojan local­
ization using symbolic algebra. In 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC). 591- 597.

[12] Farimah Farahmandi and Prabhat Mishra. 2019. Automated Test Generation for
Debugging Multiple Bugs in Arithmetic Circuits. IEEE Trans. Computers 68, 2
(2019), 182-197.

[13] Anna Goldie and Azalia Mirhoseini. 2020. Placement Optimization with Deep
Reinforcement Learning. CoRR abs/2003.08445 (2020).

[14] Yi Han, Sriharsha Etigowni, Hua Liu, Saman A. Zonouz, and Athina P. Petropulu.
2017. Watch Me, but Don't Touch Me! Contactless Control Flow Monitoring via
Electromagnetic Emanations. In Proceedings of the 2017 ACM. 1095-1108.

[15] Yuanwen Huang, Swarup Bhunia, and Prabhat Mishra. 2016. MERS: Statistical Test
Generation for Side-Channel Analysis based Trojan Detection. In ACM SIGSAC
Conference on Computer and Communications Security. 130-141.

[16] Yuanwen Huang, Swarup Bhunia, and Prabhat Mishra. 2018. Scalable Test Genera­
tion for Trojan Detection Using Side Channel Analysis. IEEE Trans. Information
Forensics and Security 13, 11 (2018), 2746-2760.

[17] Sarni Khairy, Ruslan Shaydulin, Lukasz Cincio, Yuri Alexeev, and Prasanna Bal­
aprakash. 2019. Reinforcement-Learning-Based Variational Quantum Circuits
Optimization for Combinatorial Problems. CoRR abs/1911.04574 (2019).

[18] Yangdi Lyu and Prabhat Mishra. 2018. A Survey of Side-Channel Attacks on Caches
and Countermeasures. J. Hardware and Systems Security 2, 1 (2018), 33-50.

[19] Yangdi Lyu and Prabhat Mishra. 2019. Efficient Test Generation for Trojan Detec­
tion using Side Channel Analysis. In Design, Automation & Test in Europe Conference
(DATE). 408-413.

[20] Yangdi Lyu and Prabhat Mishra. 2020. Automated Test Generation for Trojan
Detection using Delay-based Side Channel Analysis. In Design, Automation & Test
in Europe Conference (DATE).

[21] M. Pecht and S. Tiku. 2006. Bogus: electronic manufacturing and consumers
confront a rising tide of counterfeit electronics. IEEE Spectrum 43, 5 (2006), 37-46.

[22] Devendra Rai and John Lach. 2009. Performance of Delay-Based Trojan Detec­
tion Techniques under Parameter Variations. In IEEE International Workshop on
Hardware-Oriented Security and Trust, HOST. 58-65.

[23] Mohammad Tehranipoor and Farinaz Koushanfar. 2010. A Survey of Hardware
Trojan Taxonomy and Detection. IEEE Des. Test Comput. 27, 1 (2010), 10-25.

[24] John Villasenor and Mark Tehranipoor. 2013. Chop shop electronics. Spectrum,
IEEE 50 (10 2013), 41-45. https://doi.org/10.1109/MSPEC.2013.6607015

[25] Ronald J. Williams. 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Mach. Learn. 8 (1992), 229- 256.

[26] Chunyi Wu et al. 2019. Explore Deep Neural Network and Reinforcement Learning
to Large-scale Tasks Processing in Big Data. Int. J. Pattern Recognit. Artif. Intel/. 33,
13 (2019), 1951010:1-1951010:29.

