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ABSTRACT 
Reliability and trustworthiness are dominant factors in designing 
System-on-Chips (SoCs) for a variety of applications. Malicious im­
plants, such as hardware Trojans, can lead to undesired information 
leakage or system malfunction. To ensure trustworthy computing, 
it is critical to develop efficient Trojan detection techniques. While 
existing delay-based side-channel analysis is promising, it is not 
effective due to two fundamental limitations: (i) The difference in 
path delay between the golden design and Trojan inserted design 
is negligible compared with environmental noise and process vari­
ations. (ii) Existing approaches rely on manually crafted rules for 
test generation, and require a large number of simulations, making it 
impractical for industrial designs. In this paper, we propose a novel 
test generation method using reinforcement learning for delay-based 
Trojan detection. This paper makes three important contributions. 
1) Unlike existing methods that rely on the delay difference of a 
few gates, our proposed approach utilizes critical path analysis to 
generate test vectors that can maximize the side-channel sensitivity. 
2) To the best of our knowledge, our approach is the first attempt in 
applying reinforcement learning for efficient test generation to de­
tect Trojans using delay-based analysis. 3) Our experimental results 
demonstrate that our method can significantly improve both side­
channel sensitivity (59% on average) and test generation time (17x 
on average) compared to state-of-the-art test generation techniques. 
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1 INTRODUCTION 
With the rapid development of semiconductor technologies coupled 
with increasing demands of complex System-on-Chips (SoCs), the vast 
majority of semiconductor companies utilize global supply chains. 
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A long and distributed supply chain provides opportunity for third­
party Intellectual Property (IP) vendors as well as service providers to 
implant Hardware Trojans (HT) inside SoCs [8, 21, 23, 24]. Therefore, 
Trojan detection is widely acknowledged as a major focus to enable 
secure and trustworthy SoCs. 

Existing Trojan detection techniques can be broadly classified 
into two categories: logic testing and side-channel analysis. Logic 
testing methods such as Automatic Test Pattern Generation (ATPG) 
[2] or statistical test generation [ 4, 15] try to activate Trojans using 
generated tests, but they have two major limitations: (1) They suffer 
from high computational complexity for large designs. (2) Since it 
is infeasible to generate all possible input patterns, the generated 
tests are not effective in activating stealthy Trojans. The triggering 
conditions for Trojans are usually crafted as a combination of rare 
conditions, such that Trojan-implanted designs will retain exactly 
the same functionality as golden designs until a rare condition is 
satisfied to yield malicious behavior. Figure 1 shows a trivial example 
from ISCAS'85 benchmark. In this design, both F and Gare signals 
with 'o' as the rare value. The shaded AND gate with inverted inputs 
will only be triggered if both F and G become 'O', and, once triggered, 
the succeeding XOR gate will invert signal I, which is called an asset. 

Figure 1: Example of HT triggered by rare signals 

Side-channel analysis is a promising alternative since it compares 
the difference of side-channel signatures (such as path delay, elec­
tromagnetic emanation, dynamic current, etc.) with the expected 
(golden) values to detect Trojans. However, the effectiveness of side­
channel analysis depends on the HT's side-channel leakage. The 
noise induced by the environment or process variation usually over­
shadows the Trojan footprint, which makes the detected difference 
negligible. Recent efforts have tried to combine logic testing and 
side-channel analysis [11, 12, 16, 18, 19] in order to improve side­
channel sensitivity. Specifically, their goal is to maximize activity in 
suspicious regions while minimizing the activity in the rest of the 
design. While existing approaches provide promising avenues, they 
face two major challenges. First, the test generation time complexity 
is exponential for these methods, which severely limits their usability. 
Second, the side-channel difference achieved by these approaches is 
not large enough to offer high confidence in HT detection results. 

In this paper, we address these challenges by proposing a novel 
test generation approach using reinforcement learning for delay­
based side-channel analysis. The remarkable success of machine 



learning (ML) in a variety of hardware security tasks [5, 6, 10) has 
inspired us to explore its potential in HT detection. This paper makes 
three important contributions. 

(1) We develop an automated and efficient test generation method 
using reinforcement learning to maximize the difference in 
path delay between the Trojan-implanted design and golden 
design by exploiting critical path analysis. 

(2) To the best of our knowledge, our approach is the first at­
tempt in applying reinforcement learning for test generation 
to detect Trojans using delay-based side-channel analysis. 

(3) Our experimental evaluation applied on several benchmarks 
demonstrates that our method outperforms the state-of-the­
art technique in both test generation time efficiency (17x on 
average) and side-channel sensitivity (59% on average). 

The rest of this paper is organized as follows. We survey related 
efforts in Section 2. Section 3 describes our proposed method on effi­
cient test generation using reinforcement learning. Section 4 presents 
experimental results. Finally, Section 5 concludes the paper. 

2 RELATED WORK 
2.1 Delay-based Side-Channel Analysis 
There are various physical signatures of electronic devices suitable 
for side-channel analysis, such as path delay [20), dynamic cur­
rent [19) and electromagnetic emanations [14). Among them, we 
target path delay for three major reasons. 

(1) Independence: The delay between any gates in the design can 
be measured independently, which provides more comprehen­
sive information compared to other side-channel signals. 

(2) Diversity: Implanted Trojans can impact path delay in multiple 
ways. Let us consider the design in Figure 1 as an example. 
There will be an increase of propagation delay for the gates 
producing signals F and G, since they are connected to an 
extra gate, which leads to increased capacitive load. Second, 
since one XOR gate and one AND gate were inserted to deliver 
the payload, the path delay will always have at least two gates 
difference from the golden design for any paths through these 
inserted XOR/ AND gates. 

(3) Stability: Delay-based Trojan detection techniques provide 
superior performance under parameter variations by leverag­
ing statistical techniques [22). This stability guarantees high 
confidence of detection results from delay-based analysis. 

However, crafting test vectors that can reveal the impact of im­
planted Trojans on path delay is not a trivial task. Traditional ap­
proaches utilize static analysis where they enumerate all possible 
paths (removing unrelated paths) and exploit ATPG [7) to find feasi­
ble input patterns to trigger the desired path. There are two funda­
mental limitations of these approaches: 

(1) The computational complexity grows exponentially with the 
design size. It is time consuming and even impractical for 
large designs due to exponential nature of possible paths. 

(2) The detection result is extremely sensitive to environmental 
noise since the differences in delay induced by these meth­
ods are often negligible. Without activation of the HT, the 
difference is usually from a few gates (e.g., only two gates 
in Figure 1). In fact, even with Trojan successfully triggered, 
they are not guaranteed to generate a critical path from the 
Trojan to an observable output for propagating the delay. 

Our proposed approach addresses these challenges by utilizing 
critical path analysis. It significantly increases the path delay differ­
ence induced by implanted HTs, and is able to achieve better results, 
which is discussed in Section 3. 

2.2 Reinforcement Learning 
Reinforcement Learning (RL) has shown its potential in solving 
complex optimization problems [13, 17, 26). Searching for optimal 
test vectors in target designs to maximize the side-channel sensitivity 
can be viewed as an optimization problem. RL is a branch of machine 
learning, but unlike the commonly-known supervised learning, it is 
closer to human learning. For example, although an infant baby is not 
able to understand spoken words, it can still master language after a 
period of exploration. This exploration process is actually a process 
of gradually learning the rules (lexicon and grammar) of speaking 
through trials and responding to feedback from the environment. 
Similarly, RL also learns to find an optimal strategy through a series 
of attempts and constantly adjusts its behavior based on the feedback. 
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Figure 2: The basic framework of reinforcement learning. At 
time stamp t, state St and reward Rt are fed into Agent, which 
produce action At with updated strategy. The agent interacts 
with the environment to obtain new state St+i and reward 
Rt+ 1, then starts the next round of learning process. 

An overview of RL framework is shown in Figure 2. It consists of 
five core components: Agent, Environment, Action, State and Reward. 

• Agent refers to the object that can interact with the environ­
ment through actions. The agent of reinforcement learning is 
usually the set of test cases to be optimized, which is continu­
ously updated through learning process. 

• Environment is the receiver of the action, such as the opti­
mization problem itself. 

• Action consists of all possible operations that may affect the 
environment, such as using the current strategy for one-step 
calculation. 

• State refers to information about the environment that can be 
perceived by the Agent, such as conditions and parameters. 

• Reward is the feedback information from the environment 
that describes the effect of the latest action. For optimization 
problems, it often refers to the gain of objective function after 
performing the current operation. 

The process of reinforcement learning is a process of obtaining 
feedback by interacting with the environment, and then adjusting the 
actions based on the feedback in order to maximize the total reward. 
The goal of reinforcement learning is to find an optimal strategy to 
maximize the rewards obtained during the entire interaction process. 
In terms of implementation, reinforcement learning is a process 
of gradually optimizing the parameters of the algorithm through 
multiple rounds to enhance the learning effect. To the best of our 
knowledge, our work is the first attempt in utilizing reinforcement 
learning for side-channel-analysis-aware test generation. 



3 PROPOSED METHOD 
3.1 Motivation 
The difficulty of delay-based side-channel HT detection comes from 
designing proper test vectors to increase the observability of side­
channel differences. Specifically, the test vectors should be able to 
reveal the impact of an inserted Trojan on path delay as much as 
possible. Existing approaches have focused on passively enumerat­
ing possible paths affected by the HT. But if the HT is not triggered, 
only a few gates difference can be obtained, which is hard to distin­
guish from environmental noise. Consequently, the detection results 
are not promising. In contrast, our proposed solution focuses on 
exploring the impacts through critical path analysis, which allows 
us to actively change the critical path and magnify side-channel 
differences. 
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Figure 3: Maximizing delay difference by changing critical 
path [20] . By triggering T, the critical path from input layer 
to A' is significantly changed. 

Figure 3 shows that the activation of a trigger T is necessary for 
maximizing the delay difference. The top part of the figure shows that 
if the test vector fails to activate the Trojan (T = 0), the critical path 
from the input layer towards the Trojan is exactly the same as that in 
the golden design. Then the delay difference is limited to the inserted 
gates themselves (e.g., only one XOR gate in the figure). The bottom 
part of the figure indicates that the critical path will be drastically 
different if the trigger can be activated. Note that the trigger signal 
T has to switch between consecutive input patterns, otherwise there 
will be no contribution from the Trojan to the path delay because 
the related signals remain the same between two consecutive tests. 
Once the above requirements are satisfied, a completely different 
critical path from input layer to Trojan is obtained, so that we can 
expect a huge difference between the measured delay differences. 
Consequently, the big problem of test generation now is divided into 
two sub-problems: how to find a good initial test for triggering the 
Trojan, and how to efficiently generate proper succeeding tests to 
switch triggering signals. Due to their stealthy nature, HTs are very 
likely to be activated by rare triggered conditions, therefore, the two 
sub-problems can be transformed into: 

• Generate initial tests for triggering rare nodes 
• Generate succeeding tests for triggering rare switches 

There are major research challenges in solving the above two 
sub-problems. If we shift focus to a succeeding path (a path from the 
Trojan to the output layer in which the delay is propagated through 
the design) starting from node A in Figure 3, there has to be a critical 

path from A' to output layer to propagate the delay. Otherwise 
the delay is cut off and hidden from all other nodes succeeding A'. 
Unfortunately, creating such path is an NP-hard problem because, in 
the worst-case scenario, every signal in the critical path has to be 
taken into consideration. For example, in Figure 4, the trigger signal 
T switches from O to 1. Signal C, whose original value is 0, can either 
switch to 1 for propagating the delay induced by the switch through 
the AND gate to E or remain unchanged to propagate it through the 
XOR gate to D. This process will recursively continue for D and E 
to calculate constraints if they are chosen to be added to the critical 
path. The search space grows exponentially, bringing in numerous 
constraints. Therefore, traditional SAT-based approach is not feasible 
here, and we plan to apply reinforcement learning to tackle this issue. 
We will discuss this application in detail in Section 3.4. 
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Figure 4: When the trigger signal T switches, C has to make a 
decision to propagate this change through either D or E. This 
process continues since D and E have to consider how to prop­
agate their value changes to the output layer. 

3.2 Overview 
Figure 5 shows an overview of our proposed method. The primary 
goal is to generate a sequence of test patterns (t1, tz, .. . , tn) such 
that for every consecutive pair of tests (t;, t;+1), the delay-based 
side channel sensitivity is maximized. For a given circuit design, we 
first obtain a set of proper initial test cases to ensure triggering rare 
nodes (Section 3.3). Next, those initial test cases in previous step are 
fed into an reinforcement machine learning model as initial inputs, 
which is trained with a stochastic learning scheme(Section 3.4) to 
increase the probability of triggering rare switches. After sufficient 
iteration of training, a well-trained RL model is exploited for auto­
matic test generation. It starts working with initial input patterns, 
and utilizes the newly generated test vectors as input in the next 
round to continuously generate a sequence of test patterns of the 
desired amount. 

3.3 Generation of Initial Vectors 
As discussed in Section 3.1, it is important for test patterns to activate 
trigger conditions because if the test pattern fails to activate the 
Trojan, the delay of the golden design and the Trojan-inserted design 
differs by, at most, one gate. Therefore, our goal is to maximize 
the probability of activating trigger conditions. Since an attacker is 
likely to construct trigger conditions based on rare nodes to avoid 
detection, we need to generate initial vectors that can maximize 
the activation of rare nodes. Algorithm 1 shows the major steps 
in generating efficient initial vectors. It accepts the design (circuit 
netlist), the list of rare nodes (R) as well as the number of test vectors 
(n) as inputs, and produces n test vectors. The number of vectors 
presents a trade-off - a larger number can lead to longer runtime, but 
it is likely to improve the probability of activating trigger conditions 
compared to a smaller number of initial vectors. 

Algorithm 1 first computes the logic equations for each rare node 
by analyzing the cone-of-influence for each of them. Next, it gen­
erates n test vectors, one in each iteration. The test generated in 
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Figure 5: Our proposed framework consists of two major activities: initial test generation and reinforcement learning. 

each iteration is expected to activate different rare nodes since we 
randomize the order of the rare nodes. Algorithm 1 also tries to a 
generate a test vector that can cover a large number of rare nodes. 
We ensure this by adding as many rare nodes as possible without 
making an invalid trigger. We use a SAT solver [9] to find a test 
that would activate all the nodes in the trigger simultaneously. Since 
an attacker is likely to create a trigger with the smallest possible 
number of rare nodes to minimize the path delay footprint, tests 
generated by our approach have a higher likelihood of detecting 
small triggers. In other words, if we can find a test that can cover a 
trigger with a large number of nodes, although we do not know the 
actual trigger inserted by an attacker, the likelihood of activating 
that Trojan goes up if we assume that the actual trigger will consist 
of a small number of nodes because the small trigger signals are a 
subset of the large trigger signals. These test cases will be used by 
the reinforcement learning (RL) model to form the initial state. The 
RL model is able to automatically search for the best succeeding test 
patterns, as discussed in the next section. 

Algorithm 1: Generation oflnitial Test Patterns 
Input :Design (D), Rare nodes (R), Number of initial 

vectors (n) 
Output:Test Patterns 

1 Compute logic equations for each rare node in D 
2 Initialize Tests={} 
3 i = 1 
4 repeat 
s Trigger TR= 0 
6 

7 

8 

9 

11 

12 

Randomize the order of rare nodes R 
for each rare node r E R do l if TR Ur is a valid trigger then 

L TR=TRUr 

Solve TR and get a testTR 
Tests= Tests U testrR 
i = i+ 1 

13 until i > n; 

14 Return Tests 

3.4 Generation of Succeeding Vectors 
There are two crucial requirements for a succeeding test vector (a 
test vector produced by the RL model, which can then be used to 
generate another succeeding, or consecutive, test vector). First, the 
rare signals triggering Trojans have to switch between consecutive 
test patterns. If there is no rare switch, the critical path will not 
pass through the trigger signal. Second, the optimal succeeding test 
vector should be able to produce a critical path from the Trojan to the 
output layer which is completely different from the path in the golden 
design. Otherwise, the delay difference created by a Trojan cannot 
be propagated, and the maximum delay difference is suppressed. 

For the first requirement, a SAT-based algorithm can solve for 
possible vectors to satisfy the rare switches. But the second condi­
tion, creating a critical path from the Trojan to the output, is an 
NP-hard problem, as discussed before. Traditional approaches have 
failed to satisfy this demand because exploiting ATPG or SAT is ex­
pensive for large circuits. Moreover, strict conditions are required for 
these approaches to function. One such condition is a rough estimate 
on the actual Trojan payload. Even in the state-of-the-art method, 
ATGD [20], the author circumvents this task by choosing to perform 
a test reordering. The author generates a large number of test pat­
terns, and then performs a Hamming-distance-based reordering of 
these patterns with the expectation that the large Hamming distance 
increases the probability of signal switches in the cone area. This 
approach introduces significant time complexity in both steps. The 
first step is time-intensive since it needs to consider a large number 
of initial vectors to produce reasonable results. The reordering step 
requires quadratic time complexity in terms of the number of initial 
vectors. The author makes several heuristic assumptions to increase 
the probability of constructing a critical path between the Trojan 
and output layer; some of these assumptions may not be valid in 
many scenarios. 

In order to address this fundamental challenge, we plan to apply 
reinforcement learning (RL) to enable automatic succeeding test 
generation. We explored the effectiveness of Hamming-distance­
based analysis for satisfying the requirements of succeeding test 
vectors, and this analysis will be deployed as a component of the loss 
function in our model. A prototype version of our basic workflow is 
illustrated in Figure 6. This workflow is very similar to the scheme 
illustrated in Figure 2. 
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Figure 6: The reinforcement learning model for automatic 
test generation. At time stamp t, the model takes action At on 
current test case to flip its bits. Then the mutated test will in­
teract with the circuit design (environment), while feedback 
St+1 and reward Rt+l are sent back to evaluate the new test 
case. The RL model gradually learns the optimal strategy for 
flipping bits of previous test vectors, so that the newly gener­
ated test pattern can maximize the reward received. 

Here, the RL components are matched as: 
• Agent: The current test vector. 
• Environment: The circuit design. 
• Action: Mutation of current test vector consisting of a se­

quence of bit flipping operations on each bit. 



• State: Activation of trigger nodes and rare switches. 
• Reward: Evaluation that produced a succeeding test vector. 

Training of proposed model faces three serious challenges: 
(1) The possible number of actions is exponential. For a test vector 

oflength n, there are 2n - 1 possible ways to flip its bits to 
create a different test case. 

(2) It is hard to determine the exact reward value of each opera­
tion. Because actions like "flipping the second bit" can either 
increase the difference of path delay or do exactly the opposite 
of another initial pattern. 

(3) This naive learning framework cannot prevent an "infinite 
loop" from happening. That is, throughout learning, the model 
could consider vz as the best successor for v1. It could also 
happen that v1 maximizes the reward if it follows vz. Then this 
{v1, vz, v1, vz, ... } repetitive loop can continue forever. Finally, 
the test set produced is useless since it only consists of two 
individual test patterns. 

We apply a stochastic approach to train our RL model to solve these 
challenges. In traditional value-based reinforcement learning pro­
cesses, succeeding vectors are deterministic since the choice of action 
is fixed for a given state to maximize the reward. But in our method, 
a stochastic scheme is applied. First, for each step of learning, the 
action is chosen randomly, i.e, for each bit of current test vector, a 
probabilistic selection will determine whether to flip it or not. This 
non-deterministic result is not completely arbitrary but determined 
by a series of probability distributions. Second, the basic principle 
of our method is to adjust these probability distributions based on 
the expectation of reward. Specifically, when positive reward ex­
pectation is obtained, the probability of the corresponding action is 
increased, and vice versa. 

This stochastic approach not only ensures non-determinism but 
also avoids blindness action reward scheduling, which is the key 
barrier to the general training approach. In addition to the theoretical 
advantages of dealing with optimization problems, this strategy also 
possesses huge advantages in implementation since, for a test vector 
oflength n, there is no need to encode all 2n - 1 possible mutations. 
There is only a need to maintain a table consisting of n binomial 
distributions. 

As a result, all above-mentioned challenges are addressed properly. 
There is no longer a time cost for redundant test generation in previ­
ous steps. Furthermore, the reward value is the expectation of action 
rather than a fixed value. Consequently, the infinite loop problem 
no longer exists since bit flipping is probabilistically determined. 

The learning process is shown in Figure 7, which is basically a 
strategy optimization process. At the beginning, randomly initialized 
probability distributions are assigned to each bit of the test vector. Of 
course, there is no guarantee for this strategy to generate promising 
results, so the newly generated test case will likely to provide poor 
performance and receive negative rewards. The goal of learning is 
to improve the expected reward, which can be formulated in the 
following way: 

1(0) = -E,,.~p11 (R,,.), Pe(r) = P0(r1lrzl ... lrn) 
R,,. = RS(t, t,,.) +A· Hamming(t, t,,.) 

0* = argminl(0) 

where action r is the union of probabilistic flipping action for each bit, 
i.e {r1, rz, ... , Tn}. The rewardR,,. ofaction r is defined as a combination 
ofrare switches RS( t, t,,.) and the Hamming distance Hamming( t, t,,. ), 
an idea which we adopted from [20]. A is a regularization factor. The 
loss function l ( 0) is the expectation of reward since r is chosen by 
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Figure 7: Illustration of proposed stochastic reinforcement 
learning method 

probability distribution Pe parametrized by 0. A negative sign is 
put ahead since we want to minimize this "loss" through gradient 
descent. Also, to circumvent the non-differentiability of this objective 
function, we resort to the standard REINFORCE learning rule[25] 
which gives an alternative gradient of l ( 0) w.r.t. 0: 

n n 

Vel(0) = -Er~p11 [(L V0logp0(ri)) LR,,.i] 
i=l j=l 

For each iteration, the model starts learning, and the product of the 
learning rate a and V el ( 0) is used to update the parameter until the 
expected reward exceeds a certain threshold or no longer increases: 
This training process is shown in Algorithm 2. The reinforcement 
learning framework enables generation of efficient tests for delay­
based side-channel analysis, as demonstrated in the next section. 

Algorithm 2: Stochastic training of RL Model 
Input :Design(D), Model Parameter (0), Initial tests (T), 

number of epochs k, learning rate a 
Output: Optimal Model Parameter 0* 

1 Initialize probability distributions P = Pe 
2 Initialize RL Model Me = init(T, P) 
3 i = j = 0, n = size(T) 
4 repeat 
s repeat 
6 for each t E T do 
7 l r = mutate(t, P) 
s R,,. = ~S(t, t,,.) +A· Hamming(t, t,,.) 
9 1(0) - -E,,.-p11 (R,,.) 

Update parameter : 0 = 0 + aV el ( 0) 
11 until j ~ n; 

12 until i ~ k; 
13 Return 0 

4 EXPERIMENTS 
This section is organized as follows: First, we describe our experi­
mental setup including implementation details as well as evaluation 
criteria. Next, we present our experimental results. 



4.1 Experimental Setup 
RL Implementation: The model training was conducted on a host 
machine with Intel i7 3.70GHz CPU, 32 GB RAM and RTX 2080 256-
bit GPU. We developed Python (3.6.7) code using PyTorch (1.2.0) 
with cudatoolkit (10.0) as the machine learning library. The training 
process consisted of 200 epochs where we updated the learning rate 
a starting with 0.01, pushing it up to 0.2, and lowering it again to 
0.02. 

Hardware Implementation: For test simulation, we compiled each 
benchmark design (golden and Trojan-inserted) using Quartus Prime 
18.0 Lite Edition in order to generate SDO (timing annotation simi­
lar to SDF) files associated with each benchmark design. Each SDO 
file was generated with the Cyclone IV-E FPGA to ensure that Ver­
ilog code constructs appearing in each benchmark were associated 
with the same hardware for timing. Next, we generated Verilog test­
benches using the test vectors produced by our framework. The 
testbenches initialized the scan chains with suitable values from the 
test vectors, and then applied the primary inputs. We ran the tests 
sequentially with two clock cycles between test applications. We 
ran the testbenches using ModelSim version SE-64 2020.l's timing 
simulation capabilities with the Verilog benchmark and testbenches 
as well as the Quartus-generated SDO files. We recorded each simu­
lation's data by generating an associated event list file in ModelSim. 

Benchmarks: To demonstrate the test vectors' effect on different 
designs, we carried out the experiment on five benchmarks from 
ISCAS-89 [1]. 

Path Delay Computation: ModelSim event list files provide initial 
signal values and changes in signal values over the course of the 
simulation. To compute path delay, we subtracted the time between 
changes of the same signal for each application of a test. 

Evaluation Criteria: To quantify the efficacy of test vectors, we 
collected the path delay data for simulated golden designs and de­
signs with inserted Trojans. We then used this data to quantify the 
effect of the inserted Trojan on the path delay with the given test 
vector using the difference, here defined as: 

difference= rr:_r(ldelaifvuT(t) - delaifgo1it)I) (1) 

where f is the set of all registers in the tested benchmark and t is 
the set of all tests in the analyzed test vector. The difference is the 
maximum path delay difference between golden and Trojan-inserted 
designs (designs under test or DUTs). We also adopt the "sensitivity" 
from [20] as a metric, which refers to the scaled delay difference 
between the DUT and golden design. The sensitivity is defined as: 

sensitivity= difference/delay{;1it*)) (2) 

where f* refers to the register producing the maximum delay 
difference, and t* refers to the test producing the maximum delay 
difference. 

4.2 Evaluation Results 
To demonstrate the quality of tests compared to existing approaches, 
we evaluate the following three different test generation schemes. 

• Random: Random test generation, applied as the baseline. 
• ATGD: State-of-the-art algorithm proposed in [20). 
• Proposed: Our proposed method. 

We generated 1000 random test vectors using all three approaches 
for each benchmark, and Table 1 summarizes the results of perfor­
mance evaluation. We present the difference of delay and the average 
sensitivity for each configuration. From the results, we can see that 
our proposed method provides the best performance. For random 

test generation, there is a significant decrease in sensitivity with the 
increase of benchmark size. For example, when it comes to relatively 
large benchmark like s38417, the sensitivity is only around 4%, which 
can hide in typical environmental noise. The ATGD [20] is better 
than random simulation with an average sensitivity of 73.38%. Our 
proposed method provides superior results for all these benchmarks 
with an average sensitivity of 132.92%, which grants 60% extra sen­
sitivity than ATGD. Also, ATGD cannot guarantee the stability of 
test quality. For s15850 (2812 gates), the sensitivity drops below 30%, 
while for s13207 with same level of scale (2335 gates), it achieved 
72.24% sensitivity. This is expected since ATGD relies on a simple 
heuristics. In contrast, our proposed method consistently provides 
high sensitivity (e.g., 97.28% and 133.45% for these cases). 

The benefit of improving sensitivity is directly reflected by the 
results of HT detection. We apply these delay number for HT detec­
tion by following the threshold criteria: when the delay difference 
between DUT and golden design exceed certain threshold, we claim 
the existence of HT inside the DUT. We use a 7% threshold in this 
paper based on the study [3] that provides an estimate on process 
variations and environmental noise margins. Figure 8 presents the 
rate(%) ofHTs detected in each benchmark. 
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Figure 8: The performance of HT detection rate for all ap­
proaches on each benchmark. 

As shown in Figure 8, when we consider tiny benchmarks, all ap­
proaches achieved a decent detection rate. Because the path between 
the input layer and the output layer in smaller designs is very short, 
even if these methods do not activate the Trojan, the extra inserted 
gates and change in capacitive load can still produce certain degrees 
of delay difference. However, when it comes to large benchmarks, 
the random test generation completely failed to detect most of the 
HTs. The ATGD performs better than random test generation, but it 
still faces the problem of decreasing detection rate with increasing 
design scale. In the worst case, over 50% ofHTs successfully bypass 
detection by ATGD in s15850 and s38417, which is unacceptable. By 
comparison, the rate of detection by our proposed method is always 
above 80%. It also achieved a very high detection rate (88.54%) in the 
largest tested benchmark (s38417). 

Another important factor of approach evaluation is the time com­
plexity. Table 2 compares the running time between ATGD and our 
proposed approach deployed on each benchmark (Random approach 
is out of consideration since it is definitely the fastest one due to 
its no-calculation nature). The results show that our method can 
generate test vectors much faster than ATGD. The huge difference of 
time efficiency comes from the following reasons: In our experiment, 
the desired task is to generate 1000 test vectors for each benchmark. 
If case of ATGD, we need to exploit an SAT-based method to generate 
1000 test vectors, then perform a reordering algorithm on these 1000 



Table 1: Performance comparison with existing approaches 

Random ATGD [20] 
bench golden difference sensi- golden difference 

delay(ps) (ps) tivity delay(ps) (ps) 
s1196 1302 698 53.60% 982 1237 
s1423 1625 275 19.23% 666 1368 
s13207 1911 143 7.48% 1621 996 
s15850 2340 111 4.74% 2398 703 
s38417 33319 1520 4.56% 12580 9088 

Average 8099 549 6.76% 3649 2678 

vectors to sort them. For an RL based approach, on the other hand, 
the SAT method is only applied to generate several vectors as candi­
dates for initial states to be fed into the learning model. Meanwhile, 
the model training is composed of 200 iterations where each iteration 
is basically a one-step succeeding test generation and evaluation. 
When the model is well-trained, it can generate the remaining test 
vectors. So, as we can see, assuming k is the desired number of test 
vectors, our approach finishes the task with linear O(k) time com­
plexity, while, for ATGD, the reordering process requires a quadratic 
(O(k2)) time complexity. 

5 CONCLUSION 
Hardware Trojans are a serious threat to designing trustworthy 
integrated circuits. While side-channel analysis is promising, exist­
ing delay-based techniques are not effective in detecting hardware 
Trojans. Specifically, existing approaches introduce high time com­
plexity requiring extra computation resources, and are therefore not 
suitable for large designs. Most importantly, these approaches lead 
to small differences in path delay between the golden design and 
the Trojan-inserted design; this makes the approaches unreliable 
in the presence of environmental noise and process variations. In 
this paper, we proposed reinforcement-learning-based test genera­
tion for effective delay-based side-channel analysis. We generated 
a set of efficient initial patterns through SAT-based approach. We 
utilized reinforcement learning using stochastic methods to generate 
beneficial succeeding patterns. Our approach is fast, automatic, and 
significantly improves the side-channel sensitivity compared with 
existing research efforts. Specifically, our method takes, on average, 
94% less time for generating 1000 test cases for each benchmark, and 
it is able to detect most implanted Trojans in all tested benchmarks. 
The state-of-the-art method, on the other hand, failed to detect 58% 
of Trojans on large designs. 

Table 2: Comparison of Test Generation Time. 

bench #gates #wires ATGD [20] Proposed Speedup 
s1196 550 568 35.2s 7.4s 4.75x 
s1423 456 502 36.8s 7.3s 5x 
s13207 2335 2504 203.7s 28.ls 7.3x 
s15850 2812 3004 492s 66.9s 7.4s 
s38417 23815 23844 6022.6s 282.6s 21.3x 

Average 8015 8128 1358s 79s 17x 
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