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As Internet of Things (IoT) stretches into every aspect of our life, the IoT devices

provide us with efficiency, convenience and economic benefits. The IoT devices typically

contain a System-on-Chip (SoC) computing platform. However, more and more

vulnerabilities are discovered in SoCs, which suggests the urgent need of research to

analyze and mitigate these vulnerabilities. This dissertation focuses on the hardware

vulnerabilities of SoCs, which includes the memory vulnerability due to soft errors, the

vulnerability of debug infrastructure, and malicious hardware implantation in integrated

circuits. My research has made five major contributions: (i) it analyzes vulnerability of

cache due to soft errors, and proposes scheduling-aware cache reconfiguration algorithms

to reduce vulnerability for single-core systems; (ii) it proposes a reconfiguration approach

for partially protected caches to mitigate cache vulnerability and reduce energy overhead;

(iii) it proposes a cache reconfiguration strategy for multicore systems to reduce cache

vulnerability; (iv) it analyzes the vulnerability of trace buffers, demonstrates that an

attack can be mounted to steal the encryption key, and proposes countermeasures

against this type of attack; (v) it analyzes the vulnerability due to hardware Trojans,

and proposes statistical test generation algorithms for side-channel based Trojan detection.

Experimental results suggest that the proposed approaches can significantly reduce

hardware vulnerability to enable design of secure and reliable SoCs.
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CHAPTER 1
INTRODUCTION

The Internet of Things (IoT), defined as the infrastructure of the information society,

is the network of physical devices embedded with electronics, software and network

connectivity. As shown in Figure 1-1, IoT devices are pervasive in every aspect of our

daily life. They enable us to have smart home, smart transport, smart finance, smart

health, and so on. It is estimated that the IoT will consist of 50 billion objects by 2020

[1]. Safety, security and privacy concerns of IoTs have received significant attention from

both academia and industry in recent years. Safety is a natural concern, since IoT devices

and systems inherently have humans in the loop. People’s lives depend on safety-critical

devices, such as pacemakers and self-driving cars. The report by HP [2] indicates that 70%

of the IoT devices have serious vulnerabilities. Many of these IoT devices are becoming

easy targets for attackers. Privacy also becomes a concern, as many of the IoT devices

have sensors to collect data from humans. It raises great concern regarding privacy of

confidential personal information and health-related sensitive data.

Figure 1-1. The Internet of Things (IoT) is pervasive in every aspect of our daily life.
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Figure 1-2. IoT devices typically contain a System-on-Chip (SoC) computing platform
with reusable hardware IP components.

Majority of these IoT devices are designed using System-on-Chip (SoC) components

and software applications [3]. In order to reduce design complexity as well as the time

to market, SoCs use third-party Intellectual Property (IP) components. For example,

Figure 1-2 shows a typical SoC with a processor core, a Digital Signal Processor (DSP),

memory (MEM), analog-to-digital (ADC) and digital-to-analog (DAC) converters, network

interface card (NIC), peripherals (I/O), design-for-test facility (DFT), and so on. In

many cases, these IP components are designed by different companies across the globe.

Each functional component may travel through long supply chain involving multiple

vendors before they are integrated into a SoC. This design methodology of employing

reusable hardware IPs severely affects the security and trustworthiness of SoC computing

platforms, primarily due to three factors. (1) The third-party components might not be

fully tested/verified under all conditions (such as corner-case inputs, extreme environment

conditions). The reliability and availability of the SoC might be compromised when such

a corner-case condition happens. (2) These SoCs may have undocumented test or debug

interfaces that could be used as a backdoor for information leakage. (3) An SoC may come

with malicious implants to incorporate undesired functionality (e.g. hardware Trojans).
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1.1 Vulnerabilities in System-on-Chip

The top ten IoT vulnerabilities identified by the Open Web Application Security

Project (OWASP) include [4]: insecure web interface, insufficient authentication or

authorization, insecure network services, lack of transport encryption or integrity

verification, privacy concerns, insecure cloud interface, insecure mobile interface,

insufficient security configurability, insecure software or firmware, and poor physical

security. These reported vulnerabilities mostly focus on analysis of the network/cloud and

software/firmware holes in IoT devices. There are cases involving poor physical security,

which is mostly gaining access to the software system through unprotected physical

interfaces. There has not been much analysis of vulnerabilities of the underlying hardware

itself. In this dissertation, we zoom into the underlying SoCs and investigate the hardware

components for vulnerability analysis.

Figure 1-3. System-on-Chip vulnerabilities.

Vulnerabilities of a SoC come from its hardware IP components. According to the

weakest-link theory, a SoC system is as vulnerable as the most vulnerable component. It

is therefore important to verify each hardware component thoroughly before integrating

them into a SoC. As shown in Figure 1-3, we have illustrated three possible vulnerabilities
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that pose threats to the reliability and security of the SoC. Assume the caches in the

processor have no protection against corrupted data (for example, a flipped bit).

This error in caches may propagate and cause the whole system to crash. As for the

Design-for-Test (DFT) module, the debugging information stored in the trace buffer could

be used by attackers as a source of information leakage. We have shown a successful

attack mounted to the trace buffer to steal the AES encryption key. Assume that the

Network Interface Card (NIC) module and Digital Signal Processing (DSP) module are

from untrusted third-party vendors, malicious implantations (such as hardware Trojans

and backdoors) might be inserted for tampering the SoC or leaking information. In this

dissertation, we focus on these three types of hardware vulnerabilities in SoCs. Analysis

and mitigation techniques are proposed to improve the reliability and security of SoCs.

1.2 Challenges

In this dissertation, three aspects of hardware vulnerability analysis are covered:

(1) vulnerability of cache cells due to soft errors; (2) vulnerability of trace buffer used in

hardware debugging; (3) vulnerability introduced by malicious implantations in integrated

circuits. The following section describes the challenges concerning these vulnerabilities.

1.2.1 Vulnerability Due to Soft Errors

Soft errors are transient faults in CMOS circuits, which are caused by energy carrying

particles (cosmic rays or substrate alpha particles). These transient faults flip bits in

storage cells or change the logic values in functional units. Soft error rate per chip is

expected to grow due to the growing density of transistors on chip [6].

Previous studies have concluded that unprotected memory elements are the most

vulnerable components to soft errors [7]. The cache in embedded microprocessors is most

susceptible to soft errors for several reasons: (i) cache occupies the majority of chip area,

(ii) cache has an extremely high density of transistors, and (iii) cache cell size scales down,

which reduces the critical charge needed to flip a bit in stored data. Due to widespread
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use of embedded systems in safety-critical devices, it is necessary to protect embedded

caches from soft errors.

Detection and correction of soft errors in logic circuits usually involve the techniques

of fault tolerant design. These include the use of redundant circuitry, such as triple

modular redundancy (TMR). In this technique, three identical copies of a circuit are

employed to compute on the same data in parallel and the result would be the value

occurred in at least two of the three cases. In this way, the failure of one circuit due to

soft error is discarded if the other two copies of the circuit work correctly. However, it will

come at 200% overhead in circuit area and power, which is unacceptable in many cases.

Another concept of temporal (or time) redundancy uses one circuit on the same data and

checks consistency between several repetitive executions. This approach is more efficient

than the modular redundancy approach, although it still incurs performance and power

overhead. In this dissertation, we propose several cache reconfiguration techniques to

mitigate vulnerability due to soft errors, with negligible impact on power and performance.

1.2.2 Vulnerability Due to Hardware Debug Infrastructure

One of the major challenges in post-silicon validation and debug is the limited

controllability and observability of the fabricated integrated circuit. Trace buffer is widely

used to improve the observability of circuit and thus assist post-silicon debug and analysis.

It is a buffer that traces (records) some of the internal signals in a silicon chip during

runtime. If an error is encountered, the content of trace buffer would be dumped out

through JTAG interface for off-line debug and error analysis. Due to design overhead

constraints, the number of trace signals is only a small fraction of all internal signals in the

design. The size of the trace buffer directly affects the observability that we can get from

the trace buffer.

Figure 1-4 illustrates how the trace buffer is used during post-silicon validation and

debug. Signal selection is done during the design time (pre-silicon phase). Let us assume

that S1, S2, ..., Sn are the selected trace signals. Figure 1-4 shows a trace buffer with a
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Figure 1-4. Overview of trace buffer in system validation and debug

total size of n × m bits, which traces n signals (buffer width) for m cycles (buffer depth).

For example, the ARM ETB [62] trace buffer provides buffer sizes ranging from 16Kb

to 4Mb. In this case, a 16Kb buffer can trace 32 signals for 512 cycles (i.e., n=32 and m

=512). Once the trace signals are selected, they need to be routed to the trace buffer. A

trigger unit is also needed that decides when to start and stop recording the trace signals

based on specific (error) events. The trace buffer records the states of the traced signals

during runtime. During debug time, the states of traced signals are dumped out through

the standard JTAG interface. Signal restoration is performed to restore as many states as

possible, which tries to maximize the observability of the internal signals in the chip. The

off-line debug and analysis are based on the traced signals and the restored signals.

System-on-Chip (SoC) designs have in-built trace buffer that traces a small set of

internal signals during execution, and the traced signal values are used during post-silicon

(off-line) debug. There is an inherent conflict between security and observability. While

debug engineers would like to have better observability, the security experts would like

to enforce limited or no visibility with respect to the security modules in a SoC design.
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A trade-off is typically made where trace signals are carefully selected to maintain

security while providing reasonable debug capability. To the best of our knowledge, the

vulnerability of trace buffers in cryptographic implementation has not been studied in the

literature.

In practice, one routinely faces a situation where the cryptographic schemes are

deployed in different adversarial setting, where keys are compromised, and the internal

memory is not fully opaque. This situation leads to a set of physical cryptanalysis

techniques, commonly known as side channel attacks. Side channel attacks exploit the

physical implementation of cryptographic algorithms. The physical implementation

might enable leakage, i.e., observations and measurements on the implementation details,

as well as tampering with them. Trace buffer in post-silicon can provide observability

into the hardware implementation, which implies that it can be employed as a source of

information leakage by attackers.

1.2.3 Vulnerability Due to Malicious Implantation

Hardware Trojan attacks relate to malicious modifications in the design of integrated

circuits (ICs) at different stages of the design or fabrication process [100][103][105]. An

adversary can introduce these modifications in a design in order to cause disruption in

normal functional behavior and/or to leak secret information from a chip during operation

in field. Increased globalization of IC design and fabrication process coupled with reduced

control on these steps by a trusted manufacturer makes the ICs highly vulnerable to

these attacks. Since the threat of hardware Trojan in the form of a malicious implant

in a design came into light about a decade ago through an US Department of Defense

announcement [97], it has triggered wide array of research activities in threat analysis as

well as design/validation solutions to evaluate this threat and protect against it. Hardware

Trojan attacks are also being increasingly recognized in the semiconductor industry as a

serious security concern.
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A Trojan is expected to be covert and difficult to detect, i.e. an intelligent adversary

will likely insert a Trojan circuit in a way that evades detection during post-manufacturing

functional/parametric testing, but manifests itself during long hour of in-field operation.

This can be achieved by externally triggering its operation or by making it dependent

on rare circuit conditions inside an IC. The condition of Trojan activation as commonly

referred to as trigger condition, which can be purely combinational or sequential, related

to the clock or a sequence of rare events in the state elements (e.g. flip-flops of registers).

The internal circuit nodes affected by a Trojan activation are referred to as payload of

a Trojan. Fig. 1-5 shows some example Trojan circuits including a combinational and a

sequential Trojan. For example, a Trojan circuit could be triggered only when a data bus

attains a unique rare value or when the number of times it attains the rare value equals a

particular count. The malicious effects of Trojan payloads can range from passive, such as

leakage of secret information to altering the original functionality of the chip in a critical

or destructive fashion.

Protection against hardware Trojan attacks can be accomplished in two broad ways:

(1) design-for-security techniques that make Trojan insertion difficult or make a Trojan

easily detectable through post-silicon testing; and (2) manufacturing test approaches that

aims at detecting an arbitrary Trojan by observing its effect into a circuit’s operational

behavior. The first class of techniques, primarily relies on different types of hardening

approaches - e.g. insertion of dummy cells into empty spaces in a circuit layout; or

key-based obfuscation of a design that make malicious alteration by an adversary provably

hard. Design techniques, however, come at the cost of additional design, verification, and

test time, as well as additional design overhead. For example, key-based obfuscation, even

though is capable of providing high level of robustness against Trojan attacks, come at a

cost of 10% or more area overhead [98]. More importantly, design solutions, however, only

work for new designs and not legacy designs, and hence has limited applicability. Hence,

efficient test/validation approaches that can provide high level of confidence regarding IC
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(a) Combinational Trojan

(b) Sequential Trojan

Figure 1-5. Example of a combinational and a sequential Trojan with triggers from two
rare internal nodes A and B.

trustworthiness in the presence of Trojan threat provides an attractive solution to the IC

manufacturers.

Existing test solutions for hardware Trojan detection can be broadly classified

into: 1) logic testing and 2) side-channel analysis approaches. In logic testing approach,

directed structural or functional tests are generated to activate rare events in the circuit

and propagate the malicious effect in logic values to primary outputs. Such approaches

are known to be more effective in detecting ultra-small Trojans (typically a few gates

in size) reliably under large process variations. The main challenge with logic testing

approaches, however, is the difficulty to trigger a Trojan and observe its effect, particularly

the complex sequential Trojans, and the inordinately large number of possible Trojan

instances an adversary can exploit. On the other hand, side-channel analysis approaches,

which depend on measurement of physical “side-channel” parameters like power signature
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of an IC in order to identify a structural change in the design. Such approaches have the

advantage that they do not require triggering a malicious change and observing its impact

at the primary output. Side-channel analysis (SCA) - primarily based on supply current

has been extensively investigated by large number of research groups and various solutions

to increase the signal-to-noise (SNR) has been proposed. A disadvantage of SCA is in

terms of large process variations which can potentially mask the minute effect of a Trojan

in the measured side-channel parameter e.g. 20X leakage power and 30% delay variations

in 180nm technology [99].

A solution to the sensitivity problem can be achieved by judicious test generation

approach that aims at maximizing the sensitivity for an arbitrary Trojan in unknown

circuit location. To maximize sensitivity of a given Trojan, one needs to amplify activity

inside the Trojan circuit and simultaneously minimize the background activity (i.e.

activity in the original circuit). However, since the number of possible Trojan instances

in a design can be inordinately large, a deterministic test generation method similar

to conventional stuck-at fault test generation, cannot work. To address this issue, in

this dissertation, we present a novel test generation framework that can maximize the

detection sensitivity for an arbitrary Trojan.

1.3 Research Contributions

My research proposes novel techniques to address vulnerability challenges described

in Section 1.2. The objective of my research is to identify/analyze vulnerabilities and

design efficient tools and techniques to mitigate these vulnerabilities in SoCs. The

proposed research focuses on three major directions of hardware vulnerabilities: (1) the

vulnerability due to soft errors, induced by high-energy particles hitting the microchip;

(2) the vulnerability due to the exploitation of hardware debug infrastructure; (3) the

vulnerability due to malicious implantations (hardware Trojans).

Figure 1-6 outlines the major research contributions of the dissertation that are

summarized as follows.
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• Vulnerability-aware Cache Reconfiguration: This dissertation examines
the vulnerability issue of cache cells due to soft errors. The proposed approach
exploits dynamic reconfiguration of embedded caches in multitasking soft real-time
systems. By profiling each task with its optimal cache configurations statically,
and dynamically selecting configurations at runtime, our approach can reduce
vulnerability as well as energy consumption.

• Vulnerability-aware Reconfiguration for Partially Protected Caches:
This dissertation proposes a reconfigurable cache architecture with the partially
protected caches. The research combines the advantage of cache reconfiguration,
which is favourable for energy and performance, and the advantage of partially
protected caches, which is favourable for vulnerability reduction. The proposed
approach synergistically explores data partitioning schemes and cache configurations
to achieve both vulnerability reduction and energy improvement with minor impact
on performance.

• Vulnerability Reduction for Multicore Systems: This dissertation proposes
a cache reconfiguration approach for multicore systems to reduce vulnerability.
The proposed approach uses dynamic reconfiguration of the private L1 caches and
static partitioning of the shared L2 cache. Each task for each core is statically
profiled. The optimal configurations for L1 caches and partition factors for L2 can be
determined by a dynamic programming algorithm.

• Debugging Infrastructure Vulnerability: This dissertation analyzes the
vulnerability of debugging infrastructure, specifically the trace buffer used in
post-silicon debug. We investigate the trace buffer as a source for information
leakage. Our proposed approach is able to mount an attack on different
implementations of the AES ciphers through the help of trace buffer. Unless proper
countermeasure is taken, the proposed attack can steal part of the key from the AES
chip.

• Vulnerability due to Malicious Implantation: This dissertation surveys the
pros and cons of test generation and side-channel analysis in detecting malicious
implantations (hardware Trojans). I propose a novel side-channel-aware test
generation approach, based on a concept of Multiple Excitation of Rare Switching
(MERS). The tests generated by the proposed approach can significantly increase
the Trojans sensitivity, thereby making Trojan detection effective using side-channel
analysis.

The rest of this dissertation is organized as follows. Chapter 2 describes relevant

background and related work. Chapter 3 presents the vulnerability-aware cache

reconfiguration technique in single-core multitasking systems. Chapter 4 describes

the synergistic exploration of data partitioning and cache reconfiguration for partially
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Figure 1-6. Dissertation Outline

protected caches. Chapter 5 presents the cache reconfiguration approach for multicore

systems to reduce cache vulnerability. Chapter 6 analyzes the vulnerability of trace buffers

and presents an attack on the Advanced Encryption Standard (AES) cipher. Chapter 7

presents a statistical test generation approach for side-channel based Trojan detection.

Chapter 8 concludes the dissertation.
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CHAPTER 2
BACKGROUND AND RELATED WORK

This chapter surveys existing System-on-Chip vulnerability analysis and mitigation

techniques. For ease of presentation, we have divided the existing approaches into three

categories. First, we describe the existing techniques for cache vulnerability reduction.

Next, we discuss existing research on security vulnerabilities in post-silicon debug. Finally,

we present vulnerability due to hardware Trojans and associated detection techniques.

2.1 Dynamic Cache Reconfiguration for Vulnerability Reduction

This section is organized as follows. First, we describe how to compute vulnerability

of caches. Next, we present existing cache reconfiguration techniques. Finally, we highlight

the importance of partially protected caches for vulnerability reduction.

2.1.1 Cache Vulnerability

Soft errors are transient faults in CMOS circuits, which are caused by energy carrying

particles (cosmic rays or substrate alpha particles). These transient faults flip bits in

storage cells or change the logic values in functional units. Soft error rate per chip is

expected to grow due to the growing density of transistors on chip [6]. Previous studies

have concluded that unprotected memory elements are the most vulnerable components to

soft errors [7]. According to [29], DRAMs have soft error rate (SER) of 1000 FIT, while

SRAMs have SER of 100000 FIT (1 FIT is 1 failure in one billion device hours). Soft

error rate of SRAM is significantly higher than that of DRAM [29, 31, 32]. The cache in

embedded microprocessors is most susceptible to soft errors for several reasons: (i) cache

occupies the majority of chip area, (ii) cache has an extremely high density of transistors,

and (iii) cache cell size scales down, which reduces the critical charge needed to flip a bit

in stored data. Due to widespread use of embedded systems in safety-critical devices, it is

necessary to protect embedded caches from soft errors.

Major reliability improvement techniques include error correction and error prevention

[6], [16], [19]. Error correction techniques, such as parity caching and error-correcting
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codes (ECC), use spatial redundancy to detect errors. If an error is detected in a cache

block and this block is not dirty (i.e. memory has a correct copy of this block), it is

possible to recover by reloading from memory. But if an error is detected in a dirty block,

there is no way to recover the corrupted data. An important idea in protecting cache

data from soft errors is to ensure that there is an updated copy of all cached data in

memory (so data can be reloaded if soft error corrupts data). Even when caches have

error detection or correction techniques, the detection/correction process comes at a cost.

It consumes multiple clock cycles to correct the error and the CPU might get stalled

to re-fetch the data if the error cannot be successfully corrected by ECC. To combat

the data vulnerability due to soft errors, error correction codes (ECC) are used in lower

levels of the memory hierarchy. However, ECC might not be suitable for caches because

of short access time constraints [43]. Error prevention techniques [20], such as periodic

flushing and early write-back, are introduced. However, too many memory-writes will

keep the data-bus busy, which results in longer cache-miss latency and decreased overall

performance. Particularly, write-through caches will always write data all the way to

memory, but may not be a good idea for embedded systems. Moreover, too many data

accesses will also consume a lot more energy than write-back caches. These hardware

techniques need extra hardware support in cache, and are not sensitive to the data access

pattern of the applications. In this dissertation, we assume no error prevention, as we aim

to reduce vulnerability with the given reconfigurable cache architecture using Dynamic

Cache Reconfiguration (DCR). Our approach for vulnerability reduction can work on top

of any error correction or error prevention techniques. Our goal is to take advantage of the

reconfigurable cache and the data access pattern of applications to reduce vulnerability

and improve energy efficiency while meeting task deadlines.

In order to facilitate reliability analysis of cache, a measurement method is needed

for the quantification of cache vulnerability due to soft errors [15]. Mukherjee et al. [17]

introduced the concept of Architectural Vulnerability Factor (AVF). Vulnerability analysis
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Figure 2-1. Vulnerable intervals of two data elements in cache (where W=Write Access,
R=Read Access, E=Evict). (a) data with both write and read accesses; (b)
data with only read accesses.

divides a bit’s lifetime into vulnerable and un-vulnerable intervals [17, 18]. A bit is

vulnerable for an interval, if soft errors that happen in this interval cause the program to

get contaminated data. Similar to [17] and [21], we measure the vulnerability of cache on

a per-byte basis. Activities during the lifetime of a byte includes “idle”, “read”, “write”

and “eviction”. Figure 2-1(a) shows a data with both read and write accesses, and the

vulnerable intervals are marked by two black rectangles: the data is vulnerable between

the first write and the second read as well as between the second write and the evict.

During these two intervals, the data is read for reuse, while a flipped bit can corrupt the

data, causing the program to use the corrupted cache data. The interval between the

second read and the second write is un-vulnerable, since the data will be updated by the

write operation even if soft errors corrupt it. The duration between the last (third) read

and evict is also vulnerable, since this is dirty (modified) data and needs to be written

back to memory. Therefore, any bit flip in this duration will result in corrupted data being

written back to memory. Figure 2-1(b) shows a data with only read accesses, and the

intervals between read accesses are vulnerable. However, the interval between the last read

and the evict is un-vulnerable, since data will not be reused or written back to memory.

Byte Cycles is an widely used term for measuring cache vulnerability [7, 34]. We measure

the vulnerability of cache as the summation of vulnerable intervals of all bytes. It can be
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defined as follows:

Vulnerability =
∑
all bytes

vulnerable time of bytei

2.1.2 Dynamic Cache Reconfiguration

Dynamic Cache Reconfiguration (DCR) is a widely studied method for optimizing

energy and performance in embedded systems [8]. The basic idea of cache reconfiguration

is that different programs have varying data and instruction access characteristics during

execution (runtime) and DCR tries to find the optimal cache configuration for a given

application (program). For example, we can improve performance by increasing cache

size when a program needs a lot of data accesses. Similarly, we can save energy by

shutting down a part of the cache if the program is not data-intensive. However, cache

reconfiguration will also affect the vulnerability due to soft errors. A large cache size for

a data-intensive program might have fewer cache misses and thus improve energy and

performance efficiency, but it is also likely to increase the vulnerability of cache data

because of longer data retention in the cache.

Applications have varied instruction and data access patterns, which means that they

require different cache requirements in terms of cache size, line size, and associativity. If

the cache configuration is tuned according to the need of the application, we can gain

performance improvement and energy savings. Figure 2-2 illustrates that inter-task and

intra-task DCR can improve overall performance by tuning cache size for a system with

three tasks. We assume that cache size is the only tunable parameter of cache for the

ease of illustration (line size and associativity remain the same). Figure 2-2(a) shows a

traditional system using a fixed base cache1 , whereas in Figure 2-2(b) each task uses its

1 Base cache refers to the cache used in typical real-time systems, which is chosen
to ensure durable task schedules. Typically, base cache is the globally optimal cache
configuration determined during design time for a set of tasks.
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favorable cache configuration and the overall execution time is improved. In the traditional

system with a fixed base cache, Task 1 starts execution at time t0, Task 2 and Task 3 start

at t1 and t2, respectively. The fixed base cache has a 4096-byte cache size for all tasks.

In inter-task (application-based) cache reconfiguration, DCR tunes the cache when a new

task starts its execution. Assuming Task 1 is computation-intensive, we choose a smaller

(2048-byte) cache to save energy, while the execution time will increase. Assuming Task 2

is data-intensive, we choose a larger (8192-byte) cache and its runtime is greatly improved.

Figure 2-2(c) shows the effect of combining inter- and intra-task cache reconfiguration.

By introducing intra-task reconfiguration, Task 1 can improve its performance if suitable

configurations are applied to the four phases during execution. Assuming Task 2 has

three phases, we set the cache to be large (8192-byte) for the first and third phase for

performance consideration, and set the second phase to 4096-byte to reduce energy

consumption. For Task 3, inter-task reconfiguration is not able to find a better cache

than 4096-byte, while intra-task reconfiguration can find three phases and improve the

performance and/or energy.

It is a major challenge to improve the reliability of real-time embedded systems with

special design considerations of real-time constrains. Hard real-time systems require that

all tasks must complete execution before their deadlines to ensure correct execution. A

task set is considered schedulable if there exists a schedule that satisfies all the timing

constraints. Due to stringent timing constraints, scheduling for hard real-time systems

must perform task schedulability analysis based on task attributes (such as deadlines,

priorities, and periods) [9]. For soft real-time systems, minor deadline misses may result

in temporary service degradation, but will not lead to incorrect behavior. An efficient

cache reconfiguration framework is proposed for energy optimization in soft real-time

systems in [8]. They exploit the flexibility of soft real-time systems and manage to achieve

considerable energy savings with minor impact on user experiences. However their method

does not consider the vulnerability of cache due to soft errors.
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Figure 2-2. DCR in a system with three tasks.

DCR has been extensively studied by previous works [8], [10], [11], [12], [13].

Reconfigurable cache architectures are extensively studied in [49]. Gordon-Ross et al.

[50] utilizes DCR to improve performance by online feedback and dynamic self-tuning of

the cache. An energy-efficient approach using DCR is proposed in [11] for soft real-time

systems using static profiling and dynamic reconfiguration. DCR in two-level cache

hierarchy in uniprocessor has been studied by [47]. DCR for multicore systems has been

studied by [13] for thread-fairness and performance improvement. Wang et al. proposed

an energy-efficient approach for multicore systems in [12] by using DCR on private L1
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caches and cache partitioning (CP) on the shared L2 cache. CP is a special case of

reconfiguration on the shared cache among multiple cores [51, 52]. Initial works of CP

aim at improving the performance of multicore systems [52, 53]. Reddy et al. investigates

energy-efficient CP for multitasking embedded systems in [54]. However, none of the above

approaches takes vulnerability into consideration. Cai et al. [14] is the first attempt to

consider the effect of cache configurations for energy and vulnerability in time-constrained

systems. Their approach only considers simple exploration of cache sizes.

In Chapter 3, we propose a vulnerability-aware DCR approach to explore

performance, energy and vulnerability trade-offs in uniprocessor-based systems. In

Chapter 5, we extend vulnerability-aware cache reconfiguration for multicore systems.

2.1.3 Partially Protected Caches for Vulnerability Reduction

Several microarchitectural techniques have been proposed to reduce the vulnerability

of memory data due to soft errors. Error Correction Codes (ECC) is a popular technique

used to detect the transient faults in memory and correct the corrupted data. The

most common ECC uses Hamming codes that provide single bit error correction and

double bit error detection (SEC-DED) [43]. Previous research shows that SEC-DED

codes implementation can increase the cache access time by up to 95% [44] and power

consumption by up to 22% [45]. While it might be possible to hide the performance

overhead through hardware optimization, it is not possible to hide power/energy overhead.

The idea of Partially Protected Caches (PPC) initially comes from horizontally

partitioned caches [40], where a processor has two or more caches at the same level of the

memory hierarchy. Horizontally partitioned caches can help reduce cache pollution and

thereby improve performance and/or energy consumption. Lee et al. [38, 39, 41] extends

the idea of horizontally partitioned caches into the PPC architecture, by assuming that

one of the two caches is protected from soft errors. The protected cache has redundancy

logic like SEC-DED [43] for error protection, which has overhead in access time, area

and power consumption [44, 45]. To align the access latency with the unprotected cache,
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the protected cache is typically smaller than the unprotected cache. PPC is expensive in

terms of energy consumption and performance, compared to the original architecture with

only an unprotected cache. PPC works very well for multimedia applications where the

partition between vulnerable data and multimedia data (not so vulnerable) is very clear.

It is a challenge to make PPC reduce vulnerability for general applications, while incurring

acceptable performance and energy penalty. In other words, designers would like to use

PPC to reduce vulnerability but cannot afford significant increase in both execution time

and energy consumption.

Figure 4-1 shows that the PPC architecture protects one cache from soft errors,

while keeping the other cache unprotected. Each page from the memory is exclusively

mapped into one of the two caches. Pages have a mapping attribute set by the compiler,

which indicates the cache where a specific page should be mapped. When a new page is

requested by the processor, the Translation Look-aside Buffer (TLB) will be checked to

figure out which cache has the data. Therefore, only one cache will be accessed for each

data access. Every time data is written into the protected cache, the data needs to be

encoded, and it needs to be decoded when data is read from the cache. The challenge

of using PPC is to properly partition data into two caches to ensure that it would not

introduce too much penalty in performance and energy consumption. Lee et al. [38]

used PPC to mitigate soft error failures for multimedia applications by selective data

protection. They partition the data into failure non-critical (multimedia data) and failure

critical, and map them into the unprotected and protected caches, respectively. Their

approach works well for multimedia applications since the separation of multimedia

data and other data is relatively easy. In [41], Lee et al. presented a data partitioning

method which can work for general applications. It exhaustively searches for data pages

to map them into the protected cache to reduce vulnerability, while not violating the 5%

performance penalty constraint. In [39], another data partitioning method is proposed

to search possible mapping schemes with a greedy approach. However, the existing
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approaches use PPC only for the purpose of reducing vulnerability, and these approaches

can introduce unacceptable energy overhead. In Chapter 4, we propose a DCR approach

using PPC architecture to enable reduction in both energy consumption and cache

vulnerability.

2.2 Trace Buffer Attack on AES

Trace buffer provides observability into the circuit so as to assist post-silicon debug

and test. The quality of selected trace signals directly affects the observability that we can

get from the circuit. The goal of trace signal selection is to obtain a set of signals, which

can restore the maximum number of internal states in the chip. Basu et al. [76] proposed

a metric based algorithm that employs total restorability for selecting the most profitable

signals. Chatterjee et al. [77] proposed a simulation based algorithm which is shown to

be more promising than metric based approaches. Li and Davoodi [78] proposed a hybrid

approach which combines the advantages of metric and simulation based approaches. A

simulation based approach using augmentation and ILP techniques by Rahmani et al. [79]

demonstrated very high restoration capability and thus high observability of the internal

signals. It is accepted in the research community that there is a strong link between

observability/testability and security [83] for Design for Testability (DfT) facilities. Scan

chain based DfT has been studied for attacks on block ciphers, including Data Encryption

Standard (DES) [84] and Advanced Encryption Standard (AES) [85], and stream ciphers

[86]. However, it is surprising that the vulnerability of trace buffers in cryptographic

implementation has not been studied so far. This forms the core motivation of our work.
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2.2.1 AES Specification

AES works on a block size of 128 bits and a key size of 128, 192 or 256 bits, which

are referred to as AES-128, AES-192 and AES-256, respectively2 . We briefly review

AES-128 here, for further details readers can refer to [61].
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Figure 2-3. AES Encryption Flow

The encryption flow of AES is shown in the Figure 2-3. AES accepts a 128-bit

plaintext, 128-bit user key and generates 128-bit ciphertext. The encryption proceeds

through an initial round and subsequent 10 round repetition of 4 steps. These steps are

SubBytes, ShiftRows, MixColumns and AddRoundKey. In the final round, MixColumns

step is skipped. For each of these rounds, separate 128-bit round subkeys are needed. The

round subkeys are generated from the initial user key via a key expansion step. The key

expansion uses Rijndael’s key schedule.

2 For the rest of the chapter, unless explicitly specified, we will use AES-128 and AES
interchangeably.
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The plaintext is organized as a 4 × 4 column-major order matrix, which is operated

through the AES rounds. The SubBytes step uses a non-linear transformation on every

element of the matrix. The non-linear transformation is defined by an 8-bit substitution

box, also known as Rijndael S-box. The ShiftRows step cyclically shifts the bytes in each

row by a certain offset. In the MixColumns step, each column is multiplied by a fixed

matrix. In the AddRoundKey step, each byte of the matrix is exclusive-OR-ed with each

byte of the current round subkey. This is shown graphically in the Figure 2-3.

2.2.2 AES Attacks

Advanced Encryption Standard (AES) algorithm with various key lengths (128, 192

and 256) is widely used. The fact that AES stood the intense scrutiny from attackers

over the last 15 years itself makes it an important benchmark for cryptography and

cryptanalysis. So far, the best-known attempt against full AES-128, by algebraic crypt-

analysis, has a computational complexity of 2126.1, which is slightly better than the

brute-force attack and practically infeasible [59]. However, the perspective of physical

cryptanalysis changes this scenario completely.

Since the pioneering works on differential power analysis [63], numerous side-channel

attacks have been developed. Side-channel attacks can be classified into passive, semi-

invasive and invasive attacks depending on the level of intrusion necessary for the

attacker. The side-channels are of varied forms ranging from the software execution

pattern such as cache timing [64] to more detailed hardware-oriented information leakages

such as electromagnetic waves [65], acoustic waves [66] and optical fault injections [67].

Recent surveys on timing channels and invasive fault attacks are available in [68] and [69],

respectively. Another approach of constructing an invasive attack originates from a

malicious hardware, secretly inserted into a chip. These are commonly known as hardware

Trojans [94, 95]. Such attacks have broken systems with mathematical security proof. In

this scenario, secure implementation is rapidly becoming as important as the mathematical

security proofs. For example, an AES implementation with protection against a first-order
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side-channel attack is presented in [60]. The protected design is still vulnerable to

more sophisticated attacks and even then, incurs 4.6× area- and 3.6× power-overhead,

respectively, compared to the unprotected implementation.

Considering the impact that AES has on our everyday communications, many of

the attack techniques report their efficacy by demonstrating an attack on AES, which is

also the target cipher for the current work. Among the hardware side-channel attacks

reported against AES, attacks based on scan-chain [72] and external fault injections [73]

are most prominent. For all these attacks, effective countermeasures are proposed and the

inherent resilience of various design points [74] is studied. It is also shown that there exists

an interplay between the countermeasures of one attack and the consequently increased

vulnerability against another attack [75].

In Chapter 6, I propose a novel and effective attack, termed Trace Buffer Attack. It

identifies the trace buffer as a source of information leakage and shows that an effective

security attack on AES is possible by analyzing the trace buffer content.

2.3 Hardware Trojan Attacks and Detection Techniques

In this section we briefly describe the growing threat of hardware Trojan attacks and

discuss two broad classes of Trojan detection approaches.

2.3.1 Hardware Trojan Attacks

Malicious modification of IC at different stages of its life cycle, known as hardware

Trojan attacks, is an impending threat in the electronics industry. Increased reliance on

third party hardware intellectual property (IP) blocks and design automation tools in

the IC design flow as well as outsourcing of design/fabrication steps to external parties

due to economic reasons is rapidly increasing the vulnerability to Trojan attacks. An

adversary can mount such an attack with an objective to cause in-field operational failure

or to leak secret information from inside a chip - e.g. the key in a cryptographic IC.

Recent investigations have shown that an intelligent adversary can insert tiny Trojans
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of numerous forms and sizes into a million-transistor design, which can easily evade

conventional manufacturing test that is not designed to isolate the stealthy Trojan attacks.

Depending on their mode of operation and structure, hardware Trojans can be

grouped into several broad classes. A common classification of Trojans [96, 102] is based

on the activation mechanism (referred as Trojan trigger) and the effect on the circuit

functionality (referred as Trojan payload). As shown in Figure 1-5, Trojans can be both

combinationally and sequentially triggered. Typically, an adversary would choose an

extremely rare activation condition so that it is highly unlikely for the Trojan to trigger

during conventional manufacturing test. Sequentially triggered Trojans (the so-called

“time bombs”), on the other hand, are activated by the occurrence of a sequence, or

after a period of continuous operation. The simplest sequential Trojans are synchronous

stand-alone counters, which trigger a malfunction on reaching a particular count. The

trigger mechanism can also be analog in nature, whereby on-chip sensors are used to

trigger a malfunction. For example, the Trojan gets activated when the temperature of a

particular region of the IC exceeds a threshold [96]. Trojans can also be classified based

on their payload mechanisms into two main classes - digital and analog. Digital payload

Trojans can either affect the logic values at chosen internal payload nodes, or can modify

the contents of memory locations. Analog payload Trojans, on the other hand, affect

circuit parameters such as performance, power and noise margin.

2.3.2 Trojan Detection Approaches

Detecting hardware Trojan instances in an IC before it is used in an electronic system

is of paramount importance. Even though design-for-security (DfS) approaches that aim at

hardening a design with respect to Trojan insertion or facilitating Trojan detection during

manufacturing test are being actively researched [98], they have several major limitations:

(1) they cannot provide provably robust defense against all forms of Trojan attacks; (2)

they often incur unacceptable design overhead; and (3) they cannot be applied to legacy

designs, which is difficult to change for incorporating DfS features. Hence, a Trojan
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detection step for trust validation during post-silicon manufacturing test is becoming

crucial to isolate ICs affected with Trojans.

It is worth noting that conventional post-manufacturing test using functional /

structural test patterns performs poorly to reliably detect hardware Trojans. This is

because manufacturing test generation and application aim at detecting manufacturing

defects with well-characterized behavior and model that cause deviation from functional

or parametric specifications. They do not aim at detecting additional functionalities

incorporated by a Trojan or deviation in circuit behavior triggered by rare events. Hence,

conventional testing methods typically provide poor Trojan detection capability, as

observed by recent researches [100]. Destructive testing of a chip by de-packaging,

de-metallization and micro-photography based reverse-engineering is highly expensive

(in time and cost) and not a feasible solution because an attacker may selectively insert

Trojan into a small subset of the manufactured ICs [103].

Existing Trojan detection approaches fall into two major classes: (a)functional

testing based, and (b) side-channel analysis based. Most Trojan detection techniques

proposed in the literature are characterized by their efficiency in detecting particular

classes of Trojan. These approaches typically fail to provide high confidence in detecting

generic Trojan of arbitrary operating mode. The enormous variety of Trojans and the

inordinately large Trojan population that might be present in a circuit makes it difficult

to devise deterministic test patterns for them. The functional testing based Trojan

detection approaches [100] aim to trigger rare events at internal nodes in the circuit

to activate Trojans and then compare the obtained output logic values of the circuit

with the expected golden values of the IC. On the other hand, the side-channel analysis

based Trojan detection approaches [104][107][114] are based on observing the effect

that an inserted Trojan is expected to have on a physical parameter such as circuit

transient current, power consumption or path delay. If the observed value of the measured
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parameter differs by more than a threshold from the golden value, the presence of a Trojan

is suspected.

Both classes of Trojan detection techniques have their relative merits and demerits.

The main challenge for functional testing based Trojan detection approaches is the

enormously large Trojan design space, which makes complete enumeration and test

generation for all feasible Trojan instances in a moderately-sized circuit computationally

infeasible. This makes it extremely difficult to guarantee that an arbitrary Trojan would

be activated, cause circuit malfunction and thus get detected during the test application

phase. On the other hand, the advantage of the side-channel analysis based approaches

lies in the fact that even if the Trojan circuit does not cause observable malfunction in

the circuit during test, the presence of the extra circuitry can be reflected in the measured

side-channel parameter. Also, such techniques are applicable for arbitrarily complex

Trojans because they do not need to make any assumption about the mode of operation

of an inserted Trojan. However, the main challenges associated with side-channel analysis

are large process variation and design marginality induced effects in modern nanometer

technologies [96], and measurement noise, which can mask the effect of an inserted Trojan

circuit, especially for small Trojans.

One promising direction to overcome process variation is to generate functional

test patterns that are likely to activate the Trojans. These approaches rely on the fact

that an adversary will choose a trigger condition for the Trojan using a set of rare

nodes. Various approaches tried to maximize the rare node activation to increase the

likelihood of activating Trojans. Some approaches [113][114] use the Design-for-Test

(DFT) infrastructure (such as additional scan flip-flop) to increase the transition

probability of low-transition nets. MERO [100] takes the advantage of N-detect test

[115] to maximize the trigger coverage by activating the rare nodes. The test generation

ensures that each of the nodes gets activated to their rare values for at least N times.

They have shown that if N is sufficiently large, a Trojan with trigger conditions from
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these rare nodes, will be highly likely to be activated by the generated test set. Saha et

al. [101] improves the test pattern generation of MERO by using genetic algorithm and

Boolean satisfiability, which could more effectively propagate the payload of possible

Trojan candidates. However, these functional test generation approaches are not designed

for side-channel analysis. Direct application of these test generation approaches for

side-channel analysis would not be best for improving side-channel sensitivity for Trojan

detection. The objective of increasing side-channel sensitivity is very different from the

ones in both MERO as well as in subsequent improvement by Saha et al. [101]. Unlike

these existing approaches, we propose a side-channel aware test generation approach in

Chapter 7, which can maximize switching activity in an unknown Trojan circuit while

minimizing the background switching.
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CHAPTER 3
VULNERABILITY AND ENERGY-AWARE CACHE RECONFIGURATION

In this chapter, we propose a methodology for using cache reconfiguration in soft

real-time systems. The proposed approach provides an efficient cache tuning strategy

based on static profiling and dynamic scheduling of tasks. It explores Vulnerability-aware

Energy Optimization (VAEO) opportunity within each task (intra-task VAEO) as

well as across task sets (inter-task VAEO). While traditional approaches (no DCR)

uses a fixed cache for all tasks in the system, the inter-task DCR will select (use) the

most beneficial cache configuration for each task to improve both vulnerability and

energy-efficiency. Intra-task DCR will extend the optimization opportunity further by

enabling changes in cache configuration within each task depending on task phases

(application requirements). The proposed research is able to balance performance, energy

consumption and vulnerability, so that tasks can meet their deadlines and produce

energy savings while vulnerability reduction can also be achieved. The configurable cache

architecture used in our work is similar to the one in [11]. It contains four cache banks

operating as four separate ways. The cache ways can be configured to shut down so as

to vary the cache size. The way associativity can be changed by concatenating ways.

The line size can be adjusted by configuring the fetch unit to different lengths. This

architecture requires very simple hardware augmentation and minor overhead [11]. A light

process can be used as the cache tuner, which will make the reconfiguration decision and

change the configuration at runtime. There are many prior efforts in developing energy-

and performance-aware cache reconfiguration techniques.

The rest of the chapter is organized as follows. Section 3.1 motivates the reader by

illustrating the effect of DCR on performance, energy consumption and vulnerability.

Section 3.2 presents our cache reconfiguration methodology for inter-task VAEO.

Section 3.3 presents intra-task VAEO, which includes phase identification and cache
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configuration assignment for phases. Section 3.4 presents the experimental results. Finally,

Section 3.5 concludes the chapter.

3.1 Motivation: Illustrative Example
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Figure 3-1. Energy and vulnerability values of pegwit benchmark using different cache
configurations. (a) Energy and miss rate, (b) Vulnerability and miss rate.

Existing techniques for cache reconfiguration do not consider cache vulnerability

due to soft errors. Figure 3-1 illustrates the interesting behaviors of vulnerability and

energy consumption under different cache configurations. We run the program peg-

wit (a benchmark from MediaBench [22]) for 18 times, and each run uses a different

configuration for L1 data cache. Each configuration consists of three parameters: cache
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size, associativity and line size. For example, 1024B 1W 64B implies a cache configuration

with cache size of 1024 bytes, one way with 64 bytes line size.

Figure 3-1 shows that the energy consumption, vulnerability and miss rate change

drastically as we tune cache configurations. Both energy and vulnerability relate to cache

miss rates and cache configurations. However, the correlation behaviors are quite different

and even conflicting in certain scenarios. In Figure 3-1(a), energy consumption decreases

when miss rate decreases (the first 9 cache configurations), but keeps increasing for the

last 9 cache configurations even though miss rates are fairly low. The reason is that the

total energy consumption is the sum of dynamic and static energy. For the first 9 cache

configurations, the total energy is dominated by dynamic energy consumption, thus the

total energy decreases when miss rate (dynamic energy consumption) decreases. However,

for the last 9 cache configurations with large cache size, the total energy is dominated by

static energy consumption even though miss rates are low. In Figure 3-1(b), the relation

between vulnerability and miss rate is a little more complex. Cache size has a significant

influence on vulnerability. Configurations with cache size of 1024B is much less vulnerable

than configurations with cache size of 2048B and 4096B. For configurations with the same

cache size, vulnerability decreases when miss rate increases and vice versa. For the same

cache size, lower miss rate means that more dirty data is staying in cache for longer time,

which contributes to vulnerability.

There are two interesting observations here: (i) small cache size might have high

energy consumption but less vulnerable; (ii) low miss rate might be energy friendly but

leads to higher vulnerability. These observations motivate us to investigate the trade-off

between vulnerability, energy and performance during DCR. In this chapter, we develop a

cache reconfiguration framework that considers both energy and cache vulnerability. Since

both vulnerability and energy depend on program characteristics and cache configurations,

we statically analyze various cache configurations for each application. Such an approach

is suitable for embedded systems since applications are known a priori. Based on static
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analysis, we propose inter-task as well as intra-task dynamic cache tuning that can select

suitable configurations during runtime.

3.2 Inter-task Cache Reconfiguration

3.2.1 System Model

Let us define the reliability-aware DCR problem with consideration of both energy

and cache vulnerability. The system we consider can be modeled as:

• A processor with a reconfigurable cache which supports m possible cache
configurations C = {c1, c2, c3, ..., cm}.

• A set of n independent tasks T = {t1, t2, t3, ..., tn}.

• Each task ti ∈ T has attributes including arrival time, period and deadline.
Non-preemptive execution is employed, which means, a task will continue execution
until completion once it starts to execute.

Let e
cj
ti
, p
cj
ti
and v

cj
ti

denote the energy, execution time (performance) and vulnerability of

task ti when it is run on cache configuration cj . The reliability-aware DCR problem is to

find a cache assignment for the task set such that energy consumption and vulnerability

are minimized with each of the tasks satisfying its deadline. One common practice for

dealing with multi-objective optimization problem is to optimize one objective at a time

while transforming other objectives into constraints. We introduce the Vulnerability-

aware Energy Optimization (VAEO) problem, which aims at minimizing the total energy

consumption, while adding vulnerability of tasks as constraints. A heuristic algorithm

based on run-time task scheduling is proposed for solving the VAEO problem.
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3.2.2 Vulnerability-Aware Energy Optimization (VAEO)

Let n represent the total number of task arrivals within the least common multiple

(hyper-period1 ) of all task periods.
∑n
i=1 e

cj
ti
is the total energy consumption of n tasks2 .

The VAEO DCR problem can be defined as the following:

minimize
n∑
i=1

e
cj
ti

(3–1)

subject to

v
cj
ti
≤ Vti , ∀i ∈ [1, n] (3–2)

ati + wti + p
cj
ti
≤ Dti , ∀i ∈ [1, n] (3–3)

Equation 3–1 is the optimization objective. Equation 3–2 and 3–3 contain the

vulnerability and timing constraints. Vti is the upper bound for vulnerability of task ti .

Here ati , wti , p
cj
ti
, Dti denote the arrival time, queuing time, execution time, and deadline

of task ti . The optimization goal is to find a set of cache configuration assignments for all

tasks so that the total energy consumption is minimized with vulnerability and timing

constraints. We choose Vti as the vulnerability of task ti when it is executed with the base

cache, the most profitable cache configuration decided during design time. In other words,

we set the vulnerability as a constraint to ensure that it is always at least as reliable as

the base cache.

In Equation 3–3, arrival time ati and deadline Dti are known upon the arrival of the

task, while queuing time wti and execution time p
cj
ti
depend on the scheduling and cache

1 A hyper-period is the Least Common Multiple (LCM) of all the periods in the task
set. The basic idea of using hyper-period is that once we find a profitable (for energy or
vulnerability) schedule for one hyper-period, the exactly same schedule can be applied to
subsequent hyper-periods.

2 It will be precise to call n as the total number of “jobs” as in real-time system
terminology. However, for ease of discussion, we do not distinguish between tasks and
jobs.
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reconfiguration algorithms. Queuing time wti depends on the scheduler and is determined

by the priority of this task and the other tasks currently in the queue. Execution time

p
cj
ti
is determined by the cache configuration cj which will be assigned to this task by the

cache reconfiguration algorithm.

3.2.3 Heuristic Approach for VAEO Problem

Tasks arrive periodically and each task is inserted into a list of ready tasks upon

arrival. We propose a heuristic approach, which employs Earliest Deadline First (EDF)

as our underlying scheduling algorithm. EDF fetches the task with the highest priority

(earliest deadline) to execute. The cache configuration selection algorithm will pick

a configuration for this task and try to satisfy Equation 3–2 and 3–3 if possible. Our

heuristic approach chooses between the VAEO cache configuration and performance

optimal (PO) cache configuration for this task.

• VAEO cache configuration of a task is the configuration which satisfies

Equation 3–2 and consumes the least energy among all possible configurations.

• PO cache configuration of a task is the configuration which has the shortest

execution time, but PO configuration might not satisfy Equation 3–2.

The intuition behind our approach of choosing between PO and VAEO configuration

are as follows:

(1) The VAEO configuration satisfies the vulnerability constraint in Equation 3–2 and

it is most beneficial for energy savings, although it might have long execution time. We

would like to always choose the VAEO configuration for energy optimization, as long as

this choice would not cause the current task or any of the subsequent tasks to violate their

deadlines.

(2) The PO configuration is aimed on Equation 3–3 for satisfying timing constraints.

If the VAEO configuration of a task causes deadline violations, we would conservatively

choose the PO configuration instead. With this task running under the PO configuration,

the subsequent tasks will have more slack time for scheduling and possibly save energy.
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Algorithm 1: Inter-task Cache Reconfiguration

1: Input: List of ready tasks (LRT) and task profile table.
2: Output: VAEO or PO cache configuration.
3: Step 1: Sort all tasks in LRT by priority and fetch the task tc with highest

priority.
4: Step 2: t1 to tm are tasks left in LRT, from highest to lowest priority. τ represents

the current time.
5: /** check the schedulability of each task in LRT **/
6: for j = 1 to m do

7: if τ + pPOtc +
∑j
i=1 p

PO
ti

> Dtj then
8: Discard task tj
9: end

10: end
11: Step 3: Select cache configuration for current task tc . Let m

′ be the number of
tasks in LRT left after Step 2.

12: /** test the feasibility of using VAEO config for tc **/
13: if τ + pVAEOtc

> Dtc then
14: OKVAEO = false;
15: end
16: else
17: OKVAEO = true;
18: for j = 1 to m′ do

19: if τ + pVAEOtc
+
∑j
i=1 p

PO
ti

> Dtj then
20: OKVAEO = false;
21: end

22: end

23: end
24: if OKVAEO == true then
25: return VAEO configuration for task tc
26: end
27: else
28: return PO configuration for task tc
29: end

Figure 3-2 shows the VAEO and PO configurations for benchmarks epic and

qsort. The base cache configuration is 4096B 2W 32B. For epic , the PO configuration

(4096B 1W 32B), determined by runtime (which is not shown in this figure), has

worse vulnerability than Base. The VAEO configuration (4096B 2W 16B) has the

minimum energy consumption, among all candidates which has smaller vulnerability

than Base. Cache sizes of 1K and 2K (the first nine configurations) are candidates
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Figure 3-2. VAEO and PO configurations of two benchmarks: (a) epic and (b) qsort.

with very small vulnerability, however, they are not chosen because of large energy

consumption. The configuration with minimum energy consumption (4096B 1W 16B,

marked as EO in Figure 3-2a) is not chosen as VAEO, because its vulnerability is higher

than the Base. For qsort, the VAEO configuration (2048B 2W 64B) finds a sweet spot

which has low vulnerability and energy footprint. It is not the one with the minimum

energy consumption (EO), while it has much lower vulnerability than Base and PO

configurations. VAEO configuration has cache size 2K and line size 64B, which indicates

that the data of the program can fit into 2K cache and data is accessed in large chunks.
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Algorithm 1 illustrates the runtime cache selection procedure for VAEO approach.

Let us assume that our system uses non-preemptive EDF scheduling for the task set.

Tasks arrive periodically and currently available tasks will be put into the list of ready

tasks (LRT), which is maintained as a priority queue based on the deadlines of tasks.

Algorithm 1 is called when the processor is ready to execute a new task. The term pPOti

stands for the execution time of task ti using its PO configuration, and pVAEOti
stands for

the execution time using its VAEO configuration.

Step 1 fetches the current task tc to be executed, which is the highest priority task

from LRT. Step 2 checks the schedulability of the tasks left in LRT, when the current task

tc is executed with PO cache configuration. The schedulability of each task tj left in the

LRT is checked by τ + pPOtc +
∑j
i=1 p

PO
ti

> Dtj , which tests whether its deadline can be

met with the assumption that all preceding tasks (and itself) use PO cache configurations.

If tj cannot satisfy its deadline even with this conservative assumption, tj should be

discarded. The discarding process is done from highest priority to lowest priority, so as to

achieve fewest discarded tasks. This step ensures that all tasks in LRT will satisfy their

deadlines with their PO configurations, when the current task tc is executed with its PO

configuration. This step will be skipped if LRT is empty. In Step 3, we try to test the

feasibility of using its VAEO configuration for the current task tc , which will help improve

vulnerability and energy consumption. The appropriate cache configuration for the current

task tc is selected by checking whether it is safe to use its VAEO configuration. VAEO

configuration is safe, only if no tasks in the LRT will fail to meet their deadlines with their

PO configurations. If the VAEO configuration is not safe for tc , we will conservatively

execute the current task tc with its PO configuration, which can ensure all tasks left in

the LRT to satisfy their deadlines with their PO configurations (otherwise they would

have already been discarded in Step 2). This algorithm has time complexity of O(m logm)

where m is the total number of tasks in LRT, since Step 1 takes O(m logm) time, Step 2

takes O(m) time and Step 3 takes O(1) time.
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Note that Algorithm 1 needs to take the profile information (the performance

numbers for PO and VAEO configurations) for all the tasks. The profiling can be done

off-line for one specific input pattern for a program. In this work, we assume that the

input size (for example, the image size, the compression ratio for jpeg) remains the same

but input patterns (for example, contents, image format) can vary. This is a reasonable

assumption for real-time embedded systems. We performed our offline analysis by varying

input patterns (data values) for all the benchmarks and observed that it has a minor

impact on the footprint of data access. Since the profile of vulnerability and energy

estimation for data pages depends on the data access pattern, our static profiling will

still remain effective for different input patterns during runtime. Our observations are

consistent with the ones made by existing literature [11].

3.3 Intra-task Cache Reconfiguration

The heuristic approach described in Section 3.2 provides solution for the inter-task

cache reconfiguration of a task set, which will choose between the PO and VAEO

configurations for each task. In this section we find that it is even more beneficial if

we can reconfigure inside the task itself (i.e. intra-task reconfiguration). In other words,

both intra-task and inter-task can be used simultaneously for improving vulnerability and

energy efficiency. A task can have considerably different behaviour depending on which

portion of execution is examined.

Figure 3-3(a) shows the data cache misses, when benchmark qsort is executed with

a fixed cache C1 (1024B 1W 32B). We can observe three program phases based on the

number of cache misses per sampling point (100K instructions). The first and third

phases (0 ∼ 5 million and 38 ∼ 47 million) have fewer than 3000 misses per sampling

point, while the second phase has more than 6000 misses per sampling point. Based

on this observation, a large cache C2 (4096B 2W 32B) is selected for the second phase

in Figure 3-3(b), which greatly reduces the cache misses. This example shows that
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(b) Three intra-task phases using different caches

Figure 3-3. Data cache misses for benchmark qsort. (a) Without intra-task
reconfiguration, using one cache for the whole task; (b) With intra-task
reconfiguration, using a different cache for each of the three phases.

intra-task reconfiguration can reduce cache misses. Our ultimate goal of using intra-task

reconfiguration is to further optimize energy and/or vulnerability of the task.

A phase of task (program) can be defined as an interval of execution during

which a measured program metric is relatively stable [26], [27], [28]. Intra-task cache

reconfiguration aims at finding the sequence of cache assignments to different phases of the

task, so that cache misses (energy and/or vulnerability) of this task is further optimized.

In order to improve energy consumption and vulnerability, we need to properly define the

phases and carefully select the configuration for each phase. Our approach for intra-task

reconfiguration is to switch to the most beneficial cache configuration when the task

enters a different phase during its execution. At the beginning of a new phase, we choose

a configuration based on the characteristics (cache requirement) of the new phase. The

cache will be flushed if we decide that the configuration is to be changed for the new

phase. The flushing of cache will result in additional cache misses, which cause penalty

in performance and energy consumption. However, the flushing of cache is beneficial to
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reduce vulnerability, because vulnerable data in cache are prematurely written back to

the memory. A beneficial configuration would be one which can save energy and reduce

vulnerability, in spite of the additional misses at the very beginning of the new phase.

The problem of intra-task cache reconfiguration boils down to solving the following

two problems: (1) how to monitor the execution of the task and define phase partitions;

(2) how to decide the cache configuration for each phase. The following sections address

these challenges.

3.3.1 Phase Extraction

We introduce our approach for phase extraction in Algorithm 2. We get the cache

miss statistics of all intervals for a fixed cache (1024B 1W 32B). We choose such a

relatively small cache, because it is easier to identify phases. The algorithm works in two

steps: (1) identify potential phase boundaries, and (2) post-process to select profitable

phases. Firstly, an interval is marked as a potential starting point of a new phase if

the change in number of cache misses exceeds the threshold that we have set (line 5-7).

Secondly, each of the potential phases is examined and the ones which mark a relatively

stable execution (i.e. longer than the minimum threshold) are kept (line 10-12). A

phase will be merged with the previous phase if it lasts no longer than PhaseLength.

For each benchmark, it is divided into 100 sampling intervals with equal number of

instructions. Each interval is profiled with the number of cache misses by simulation

using a configuration of 1024B 1W 32B. We used the threshold for change of cache misses

(MissFactor ) as 2, and the threshold for minimum phase length (PhaseLength) as 5

intervals.

Figure 3-4 shows the phases identified for 6 benchmarks from the MediaBench [22]

and EEMBC [23] automotive benchmark suits. We can observe that benchmarks have very

different patterns of data cache misses during execution. We identify 3 phases in epic, 2

phases in dijkstra, 2 phases in cjpeg, 2 phases in BITMNP01, and 4 phases in AIFFTR01,

while pegwit has no obvious phases.
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Figure 3-4. Phases identified for different benchmarks.
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Algorithm 2: Phase Identification

1: Input: Benchmark, threshold MissFactor (changes of cache misses), threshold
PhaseLength

2: Output: Identified phases.
3: Get the cache misses (CMi) statistics of all intervals
4: for each interval i do
5: if CMi < CMi−1/MissFactor or CMi > CMi−1 ∗MissFactor then
6: Set interval i as a potential phase boundary
7: end

8: end
9: for each potential phase fj do

10: if length(fj) < PhaseLength then
11: Merge this phase with previous phase
12: end

13: end

3.3.2 Cache Assignment for Phases

In this section, we show the cache assignment for phases of a task for the VAEO

problem. We want to minimize the total energy consumption of all phases, with the total

vulnerability constrained. The best VAEO cache configuration for m phases (f1 to fm) can

be defined as:

minimize
m∑
i=1

e
cj
fi

(3–4)

subject to
m∑
i=1

v
cj
fi
≤ V (3–5)

e
cj
fi
and v

cj
fi

are the energy consumption and vulnerability of phase fi using config cj . V is

the threshold for vulnerability, which is the vulnerability of the task when it is executed

with the base cache.

For each of the m phases, there are n possible configurations. The time complexity

for a brute-force exploration of all possible combinations is O(nm). We observe that this

is essentially a dynamic programming problem, where each phase is dependent on the

previous phase. If the current phase chooses a different configuration from the previous

phase, the cache needs to be flushed before running the current phase. However, if the
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chosen configuration for the current and previous phases are the same, the cache is not

flushed and will keep the data. We define the dynamic programming problem as follows.

E
cj
(f1∼fi ) = mink∈(1..n)

{E ck(f1∼fi−1) + e
cj
fi
} (3–6)

where i > 1, 1 ≤ j ≤ n,

and V ck(f1∼fi−1) + v
cj
fi
≤ V(f1∼fi )

with the initial states: E
cj
(f1∼f1) =


e
cj
f1
, v

cj
f1
≤ Vf1

∞, otherwise

(3–7)

E
cj
(f1∼fi ) is the minimum total energy consumption for the first i phases (f1 ∼ fi), assuming

that the current phase fi chooses cj . Equation 3–6 shows the formula to get the current

minimum energy consumption, based on the previous iteration step. V(f1∼fi ) is the

threshold for vulnerability of the first i phases, which is the vulnerability when the task is

run with base cache. Equation 3–7 shows the initial states for our dynamic programming.

If we remove the constraints for vulnerability (or set the vulnerability constraints

as very large), the DP algorithm can always produce the optimal solution. We can use

induction to prove that E
cj
(f1∼fi ) = mink∈(1..n){E

ck
(f1∼fi−1) + e

cj
fi
} will always find the optimal

cache assignments for all phases.

Step 1: Let i = 1, E
cj
(f1∼f1) = e

cj
f1
for all 1 ≤ j ≤ n. This is our base case for induction.

This is the minimal energy for phase f1 using configuration cj , since there is no previous

phase and it is the only possibility.

Step 2: Assume i = x , E
cj
(f1∼fx ) for all 1 ≤ j ≤ n are the minimal energy solutions for

the previous x phases (f1 ∼ fx).

Let i = x + 1, E
cj
(f1∼fx+1) = mink∈(1..n){E

ck
(f1∼fx ) + e

cj
fx+1
} provides the energy for phases f1

to fx+1, which combines the optimal solutions from previous step for phases f1 to fx . This

is the minimal energy that can be achieved for phases f1 to fx+1.
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When the vulnerability threshold is small, the dynamic programming is not

guaranteed to find the optimal solution since the partial solutions in the earlier stages

may not be useful if the final vulnerability number crosses the threshold. In this scenario,

exhaustive exploration is needed to find the optimal result. It is important to note that,

the exhaustive exploration is feasible since the number of phases (m) are small, typically

less than 10, with O(nm) complexity.

Algorithm 3 is an iterative implementation of our cache assignment approach for

the phases. We use two arrays to store the energy and vulnerability values (E [m][n] and

V [m][n]), where m is the number of phases, and n is the number of cache configurations.

In line 4-10, we initialize the states of phase f1, as directed by Equation 3–7. For each

configuration cj , its energy value will be updated only if its vulnerability is smaller than

Vf1 . In line 12-25, we evaluate the states of phase f2 to fm, as outlined by Equation 3–6.

In each iteration (phase fi), we update the optimal energy value (E [i ][j ], which is E
cj
(f1∼fi )

in Equation 3–6) for each configuration (cj). This is done in line 15-23, which compares

all solutions (E [i − 1][k ] and V [i − 1][k ]) found at the previous iteration for phases

f1 ∼ fi−1. In the process of comparing previous solutions (line 18), we also ensure that

the vulnerability constraints are not violated (line 17). In line 27-30, we iterate through

feasible solutions at the last phase fm, and find the optimal solution with the minimum

energy. The initialization process of line 4-10 is of complexity of O(n). The dynamic

programming process of line 12-25 has complexity of O(mn2). The final iteration for

output of line 27-30 has complexity of O(n). Thus, the algorithm has an overall time

complexity of O(mn2). This algorithm can be completed in reasonable time since m is

typically less than 10 and n is 18 in our framework.

3.3.3 Inter+Intra Cache Reconfiguration

Up to this point, we have introduced both inter-task DCR and intra-task DCR.

The inter-task DCR approach optimizes at the task level, where each task is deemed as

an atom since our system is non-preemptive. The intra-task DCR approach optimizes
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Algorithm 3: Cache Assignment for Intra-task Phases

1: Initialize the energy array E [m][n] = {∞, ...,∞}
2: Initialize the vulnerability array V [m][n] = {∞, ...,∞}
3: /** Phase 1 **/
4: for config cj=c1 to cn do
5: Get e

cj
f1
and v

cj
f1

by running phase f1 with config cj
6: if v

cj
f1
≤ Vf1 then

7: E [1][j ] = e
cj
f1

8: V [1][j ] = v
cj
f1

9: end

10: end
11: /** Phase 2 to Phase m **/
12: for phase fi=f2 to fm do
13: for config cj=c1 to cn do
14: E [i ][j ] =∞
15: for config ck=c1 to cn do
16: Get e

cj
fi
and v

cj
fi

by running fi with config cj
17: if V [i − 1][k ] + v cjfi ≤ Vfi then
18: if E [i − 1][k] + ecjfi < E [i ][j ] then
19: E [i ][j ] = E [i − 1][k ] + ecjfi
20: V [i ][j ] = V [i − 1][k] + v cjfi
21: end

22: end

23: end

24: end

25: end
26: /** Find the optimal solution with minimum energy **/
27: for config cj=c1 to cn do
28: Emin = min(E [m][j ],Emin);
29: V = V [m][j ];

30: end
31: The path leading to Emin is the VAEO solution
32: return the VAEO config vector for all phases

at the phase level (inside a task), where phases can execute with the intra-task VAEO

configuration vector (one configuration for each phase). It is straightforward to introduce

our (inter+intra)-task DCR approach, which combines these two levels of optimization

by applying intra-task DCR on each task for inter-task DCR. Algorithm 4 shows

our (inter+intra)-task DCR approach. In Step 1, we generate the profile (i.e., the
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intra-task VAEO configuration vector) for each task, which can be obtained by the phase

identification and cache assignment methods described earlier in this section. Step 2 shows

the (inter+intra)-task cache reconfiguration approach. We fetch the task with the highest

priority from the task queue as the current task tc . The inter-task reconfiguration method

(Algorithm 1) is called to make the decision whether the intra-task VAEO configuration

is suitable for tc to satisfy deadline constraints. If the intra-task VAEO configuration is

chosen, the system will execute the task with intra-task reconfiguration. Otherwise, the

system will execute the task with PO configuration without intra-task reconfiguration.

Algorithm 4: (Inter+intra)-task Cache Reconfiguration

1: Step 1: Generate profile for each task.
2: for each task ti do

// Call Algo. 2

3: phases = PhaseIdentify(ti)
// Call Algo. 3

4: Intra-task VAEO config = CacheAssign(phases)

5: end
6: Step 2: (Inter+intra)-task Cache Reconfiguration
7: while task queue is not empty do
8: Fetch the current task tc with highest priority
9: Use Algo. 1 for inter-task cache reconfiguration

10: if Intra-task VAEO config is chosen then
11: Execute tc with intra-task reconfiguration
12: end
13: else
14: Execute tc with the PO config
15: end

16: end

Instead of using a fixed VAEO configuration for a task, our (inter+intra)-task DCR

approach can use the intra-task VAEO configuration, which has optimal configurations for

different phases. There is no context switching or preemption during the execution of a

task, even though intra-task optimization is applied. Compared with inter-task DCR, the

inter+intra DCR approach introduces overhead in the form of cache flushing when cache

configurations change between phases. Since the number of phases in a task is relatively
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Figure 3-5. Comparison of DL1 energy consumption and vulnerability of single tasks for
Base, VAEO and Intra-task VAEO configurations. (a) Data cache energy
consumption, (b) Data cache vulnerability.

small, the overhead caused by intra-task reconfiguration is negligible (less than 1% penalty

for performance). The overhead of cache flushing on energy consumption and vulnerability

is far outweighed by the benefits of intra-task reconfiguration, which will be presented in

our experiments.

3.4 Experiments

3.4.1 Experimental Setup

The configurable caches used in our work are from the cache architecture introduced

in [8]. The underlying cache architecture contains a configurable cache with a four-bank
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Figure 3-6. Comparison of IL1 energy consumption and vulnerability of single tasks for
Base, VAEO and Intra-task VAEO configurations. (a) Instruction cache energy
consumption, (b) Instruction cache vulnerability.

cache with sizes of 1 KB, 2 KB and 4 KB, line sizes of 16 bytes, 32 bytes and 64 bytes,

and associativity of 1-way, 2-way and 4-way. In order to quantify reliability-aware DCR

trade-off, we selected benchmarks from MediaBench [22] and EEMBC automotive [23]

benchmark suites. Table 3-1 shows our four task sets with three selected benchmarks

in each set. All of the tasks are executed with the default input parameters provided

with the benchmark suites. The benchmarks from MediaBench have about 10∼200

million instructions, while the benchmarks from EEMBC AutoBench have about 1∼10

million instructions. The rationale for us to form a task set is that the tasks are of
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comparable size in terms of number of instructions. Both task set 1 and set 2 consist

of three tasks from MediaBench. Both task set 3 and set 4 consist of three tasks from

EEMBC AutoBench. Thus, set 1 and set 2 have more instructions and can potentially

stress the cache with more cache accesses, compared to set 3 and set 4.

Table 3-1. Four task sets with twelve benchmarks
Task 1 Task 2 Task 3

Task Set 1 epic dijkstra cjpeg
Task Set 2 fft pegwit qsort
Task Set 3 AIFFTR01 AIFIRF01 BITMNP01
Task Set 4 CACHEB01 CANRDR01 IIRFLT01

We modified the SimpleScalar simulator [24] for cache vulnerability analysis and

energy consumption estimation. We performed the vulnerability analysis during cache

accesses for each byte in instruction and data cache. The vulnerability estimation function

collects all the vulnerable intervals for each valid byte in cache. We applied the same

energy model as in [8] to calculate both dynamic and static energy consumption, and

the energy consumption was estimated using CACTI 5.3 [25] with 65 nm technology. For

static profiling of each task to find the PO, VAEO, and Intra-task VAEO (with intra-task

reconfiguration) cache configurations, we developed Perl scripts to search the design space

of all possible cache configurations. Since we only consider systems with one level of

reconfigurable cache architecture, the space of possible cache configurations is small. The

statistics for all possible cache configurations for a task can be collected in a reasonable

time (a few hours). Once we have the profile tables for all the tasks, we use an EDF

scheduler to simulate the system for a hyper-period. The cache selection algorithms are

integrated in the scheduler to make decisions to reconfigure the cache during simulation.

The optimization for instruction cache and data cache are independent. In the following

subsections, we will first present results for optimization of individual benchmarks,

followed by the results for task sets with scheduling and cache selection.
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3.4.2 VAEO and Intra-task VAEO Configurations

In this section, we present the results to show the effectiveness of reconfiguration for

single tasks. We will compare the energy consumption and vulnerability when a task is

executed with the Base, VAEO and Intra-task VAEO configurations.

• Base Config: the configuration of the base cache, which is 4KB, 2-way associative
with line size of 32 bytes.

• VAEO Config: the vulnerability-aware energy optimal configuration without
intra-task reconfiguration.

• Intra-task VAEO Config: the VAEO configuration when intra-task
reconfiguration is allowed.

Figure 3-5a and 3-5b show the energy and vulnerability of L1 data cache for 12

benchmarks. The VAEO configurations can reduce energy consumption (up to 33.0%,

19.8% on average), as well as vulnerability (up to 16.1%, 9.3% on average), compared with

Base configurations. The Intra-task VAEO configurations can reduce energy consumption

(up to 33.5%, 21.1% on average), as well as vulnerability (up to 58.4%, 30.0% on average),

compared with Base configurations. Generally speaking, the VAEO configurations can

greatly reduce energy and vulnerability compared with the Base, and the Intra-task VAEO

can further improve energy and vulnerability compared with VAEO.

We observe that the trend of energy and vulnerability improvement in data cache

(Figure 3-5) is similar to the trend of instruction cache (Figure 3-6). Figure 3-6a and

3-6b show the energy and vulnerability of L1 instruction cache for 12 benchmarks with

their Base, VAEO and Intra-task VAEO configurations. The VAEO configurations can

reduce energy consumption (up to 34.3%, 20.4% on average), as well as vulnerability (up

to 47.6%, 25.3% on average), compared with Base configurations. The Intra-task VAEO

configurations can reduce energy consumption (up to 34.5%, 23.1% on average), as well as

vulnerability (up to 68.9%, 29.5% on average), compared with Base configurations.
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(a) Data cache energy consumption

(b) Data cache vulnerability

Figure 3-7. (a) Data cache energy and (b) Data cache vulnerability.

3.4.3 Results for Inter-task VAEO and (Inter+Intra)-task VAEO

In this section, we present the results to show the effectiveness of reconfiguration

for task sets using proposed approaches. We profile each task with its PO, EO, VAEO,

and Intra-task VAEO configurations. The runtime algorithms (Algorithm 1 for inter-task

reconfiguration and Algorithm 4 for (inter+intra)-task reconfiguration) will select between

PO and VAEO (or Intra-task VAEO) configurations. In the following section, we compare

our proposed VAEO approaches with the base cache system as well as [11]:

• Base refers to the base system which uses the fixed Base Config for all tasks.
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(a) Instruction Cache Energy Consumption

(b) Instruction Cache Vulnerability

Figure 3-8. (a) Instruction cache energy and (b) Instruction cache vulnerability.

• EO [11] refers to the Energy-Optimization approach in [11] which chooses between
PO and EO configurations.

• Inter-task VAEO is our inter-task reconfiguration approach when the runtime
algorithm chooses between PO and VAEO configurations.

• (Inter+Intra)-task VAEO is our (inter+intra)-task reconfiguration approach
when the runtime algorithm chooses between PO and Intra-task VAEO
configurations.

Figure 3-7a and 3-7b show the results of L1 data cache for four task sets. Inter-task

VAEO can improve energy by 19.6% on average and vulnerability by 9.0% on average,

compared with Base. (Inter+Intra)-task VAEO can improve energy by 20.9% on average
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and vulnerability by 25.3% on average, compared with Base. (Inter+Intra)-task VAEO,

which takes advantage of both intra-task and inter-task reconfiguration, can further

improve energy consumption compared with Inter-task VAEO. Compared with EO [11],

our VAEO approach can reduce vulnerability by 8.7% on average, while it consumes 1.2%

more energy on average. This minor energy penalty is not surprising since EO did not

consider any vulnerability threshold during energy minimization, whereas our approach

respects the vulnerability constraint. Our (inter+inter)-task VAEO approach reduce

vulnerability by 24.9% and it saves 0.1% more energy compared with EO [11]. As shown

in Figure 3-7b, EO [11] produces very bad vulnerability for Task Set 1 and Task Set 2,

which is even worse than the Base system.

Figure 3-8a and 3-8b show the results of L1 instruction cache for four task sets.

Inter-task VAEO can improve energy by 21.6% on average and vulnerability by 24.1%

on average. (Inter+Intra)-task VAEO can improve energy by 23.8% on average and

vulnerability by 28.2% on average. Compared with EO [11], our VAEO approach produces

the exact same results for four task sets. This is because the VAEO configurations are

exactly the same as EO configurations for IL1 cache. This suggests that IL1 cache accesses

has similar patterns among benchmarks, thus the results for IL1 have fewer variations

than that of DL1 cache. Our (inter+inter)-task VAEO approach can improve a little bit

further over the VAEO approach. Compared with EO [11], our (inter+inter)-task VAEO

approach can reduce vulnerability by 4.1% and save 2.3% more energy.

3.4.4 Hardware Overhead

Cost of implementation involves two factors: (1) the cost of reconfiguration

infrastructure (2) the cost of chip area for storing profile table. Dynamic cache

reconfiguration (DCR) is an approach widely used in embedded systems for performance

improvement and energy saving. This architecture requires very simple hardware

augmentation and minor overhead [11]. A light process can be used as the cache tuner,

which will make the reconfiguration decision and change the configuration at runtime.
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The overhead to implement our VAEO approach is mostly the cost to store the profile

table in hardware. The cache tuner will fetch the cache configuration information from the

profile table. The size of the table depends on the number of tasks in the system and the

information needed to store for each task. For the VAEO approach, we need to store two

configurations (i.e., [Config, Runtime] for the PO and VAEO configurations) for each task.

Five bits are used to specify a configuration since the configurable cache architecture used

in this study offers 18 possible cache configurations. Another 16 bits are used to store the

expected runtime of the task. For 12 benchmarks, the profile table contains 24 entries each

with 21 bits. For the VAEO approach with intra-task reconfiguration, we need to store

[Phase1, Config1, ..., Phasen, Confign, Runtime] for the intra-task VAEO configuration.

We use 16 bits (Phasei) to indicate the start instruction number of the phase, and 5

bits to store its cache configuration. For benchmarks used in our experiments, n is at

most 4. In total it takes at most 100 (=16*4+5*4+16) bits to store the intra-task VAEO

configuration for one task.

Table 3-2. Overhead of profile table (180nm technology)
Approach Table size (bits) Area (µm2) Dynamic Power (µW ) Leakage Power (µW )
VAEO 504 96730 60.05 180.13
Intra-task VAEO 1032 198067 122.97 368.84

Table 3-3. Overhead of profile table (65nm technology)
Approach Table size (bits) Area (µm2) Dynamic Power (µW ) Leakage Power (µW )
VAEO 504 10641 19.26 243.37
Intra-task VAEO 1032 21788 39.44 498.33

We used Synopsis Design Compiler with TSMC library to implement the profile table.

We estimate a table lookup frequency of once per 3 µs . It is a table lookup every one

thousand instructions using a 500 MHz CPU with an average CPI of 1.5. It should be

suffice since the benchmarks we used have around 1 to 200 million instructions. Table 3-2

and 3-3 show our results of the area, dynamic power, and leakage power for the profile

table using 180nm and 65nm, respectively. We observed that on average for each task

set, the energy overhead of our approach accounts for less than 2% (0.067 mJ compared
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to 3.38 mJ) of the total energy savings for VAEO approach, and less than 3% (0.14mJ

compared to 4.73 mJ) of the total energy savings for intra-task VAEO approach. The

(intra+intra)-task VAEO approach has slightly higher overhead than VAEO and also has

higher energy savings. Therefore, we can conclude that the overhead for profile tables are

negligible compared to the energy saving for both VAEO and (inter+intra)-task VAEO

approaches.

3.5 Summary

Dynamic cache reconfiguration is widely used for improving energy and performance

in embedded systems. While cache vulnerability is a well studied area, previous research

efforts did not explore cache vulnerability in the context of cache reconfiguration. In

this chapter, we developed algorithms to reduce cache vulnerability with energy and

performance considerations. Our experimental results demonstrated that our approach

can significantly improve the reliability of both instruction and data caches. For the

data cache, the Inter+Intra DCR approach can improve energy by 20.9% on average

and vulnerability by 25.3% on average. For the instruction cache, the Inter+Intra DCR

approach can improve energy by 23.8% on average and vulnerability by 28.2% on average.

Future work will focus on applying our approach to more flexible systems in broader areas.

(1) Our approach can be extended to multi-level caches in single-core systems as well as

multicore systems. The only difference would be that heuristic approaches should be used

to efficiently explore beneficial cache configurations because exhaustive exploration may

not be feasible since the number of possible configurations can be very large. (2) Our

approach can be extended to systems allowing preemptive execution. This can be achieved

by partitioning tasks into phases and profiling each partition, and preemptive task can

resume execution using the configuration for the current phase.
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CHAPTER 4
VULNERABILITY-AWARE RECONFIGURATION FOR PARTIALLY PROTECTED

CACHES

In this chapter, we apply the idea of cache reconfiguration to the partially protected

caches (PPC) architecture. On one hand, our approach has the advantage of PPC, which

has a protected cache against soft-error vulnerability. On the other hand, it also has the

advantage of DCR, which can reduce energy consumption by proper reconfiguration. Our

proposed approach can select the best cache configurations for the two caches of the PPC

architecture, and it also searches for the optimal data partitioning scheme to split data

into the two caches. Our method is designed for the optimization of single tasks in the

reconfigurable PPC architecture, which can be easily extended to task sets.

We propose a reconfigurable cache architecture (as in Figure 4-1) to address the above

challenges. While the protected cache reduces vulnerability, the reconfigurability of the

two (protected and unprotected) caches enables reduction in both execution time and

energy consumption. This chapter makes four important contributions:

1. It presents a reconfigurable cache architecture to improve performance and energy
efficiency while maintaining PPC’s natural advantage for vulnerability reduction.

2. It develops a greedy algorithm for partitioning data pages between the protected and
unprotected caches.

3. It proposes a method for synergistic exploration of cache configurations and data
partitioning schemes to trade-off between vulnerability, energy consumption and
performance.

Figure 4-1. A reconfigurable PPC-base architecture with one protected cache and the
other unprotected cache at the same level of hierarchy.
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4. It proposes two heuristics for fast exploration of cache configurations and data pages
without degrading the optimization results.

The remainder of the chapter is organized as follows. Section 4.1 presents the energy

and vulnerability models. Section 4.2 describes the data partitioning method and our

vulnerability-aware cache reconfiguration framework using exhaustive exploration as well

as fast exploration. Section 4.3 presents our experimental results. Finally, Section 4.4

concludes the chapter.

4.1 Energy Models

In this section, we introduce the models used to measure energy consumption and

vulnerability of the PPC caches.

4.1.1 Energy Model for Unprotected Cache

The energy model for unprotected cache is adopted from the one used in [11], which

calculates both dynamic and static energy consumption and main memory fetch energy.

The total cache energy consumption is E = Edyn + Esta, where Edyn and Esta denote the

dynamic and static energy of the cache subsystem. Let Eaccess and Emiss be the energy

consumption for per access and per miss, Psta be the power consumption for one clock

cycle (CC ). Specially, we have:

Edyn = Accesses × Eaccess +Misses × Emiss (4–1)

Emiss = Eoffchip access + Eblock fill (4–2)

Esta = Psta × CC × tcycle (4–3)

4.1.2 Energy Model for Protected Cache

For the ECC protected cache, the dynamic energy calculation also includes energy

consumption for ECC encode/decode. Similar to [38], we categorize the cache accesses

into read hit, read miss , write hit, and write miss since each operation results in different

ECC events. For example, the energy consumption of read hit is the sum of the access

energy consumption and the energy consumption of ECC decoding (d), while the energy
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consumption of read miss is the sum of the access energy consumption, the energy

consumption of ECC decoding (d) as well as the ECC encoding (e).

∆Edyn = RH × d + RM × (d + e)

+WH × e +WM × (d + e) (4–4)

where RH, RM, WH and WM denote the number of read hit, read miss , write hit and

write miss , respectively.

4.2 Cache Reconfiguration of PPC

There are multiple aspects that have impact on a program executing on a

reconfigurable PPC-based architecture. These aspects include: (1) the data page map

which partitions data pages into the two caches; (2) the configuration of the protected

cache and the configuration of the unprotected cache. Our goal is to optimize perfor-

mance, energy, and vulnerability for programs running in our system. Specifically, we

would like to minimize both vulnerability and energy consumption with acceptable or no

degradation on performance. Since different programs have various data access patterns

and cache requirements, we need to make wise design decisions to take advantage of the

protected cache to reduce vulnerability, while utilize reconfigurability to save energy

consumption.

Our problem can be formulated as shown in Equation 4–5, where we would like to

minimize both vulnerability and energy with acceptable degradation (less than rThresh)

on performance.

minimize (Vulnerability, Energy)

subject to RuntimeOverhead < rThresh (4–5)

Figure 4-2 outlines our approach to accomplish the goal of vulnerability and energy

optimization without penalizing the performance. The two important design decisions

we have to make for each program include: (1) data partitioning to map data pages into
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Figure 4-2. Our exploration methodology consists of two design decisions: data
partitioning and cache reconfiguration.

the protected and unprotected caches; (2) cache reconfiguration to select the profitable

configurations for the two caches. We perform these two steps through off-line (design

time) analysis. It is important to note that off-line exploration is applicable and useful

for embedded systems design because these systems have well-defined applications

(programs) that are known a priori. The remainder of this section is organized as

follows. Section 4.2.1 describes efficient partitioning of data pages between protected and

unprotected regions. Section 4.2.2 describes exploration of different cache configurations.

Finally, Section 4.2.3 presents two fast and effective design space exploration techniques to

improve the scalability of our reconfiguration framework.
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4.2.1 Data Partitioning

We have two data caches, with one protected from soft errors, and another

unprotected which remains vulnerable. The protected cache is very effective in reducing

the vulnerability. For any data mapped to the protected cache, it is protected against soft

errors. If we map all data into the protected cache, the vulnerability of the application will

be reduced to zero. However, mapping too much data into the small protected cache will

increase the cache misses and eventually result in a significant degradation of performance

and increase in energy consumption. We performed a simple experiment to show the

effectiveness of protected cache in reducing vulnerability, as well as its side-effect on

runtime and energy consumption. Figure 4-3 illustrate this exploration for benchmark

cjpeg from MediaBench [22]. First, we map all the data pages (54 pages in total for cjpeg)

into the unprotected cache. Then we sort the pages by vulnerability in decreasing order.

Each time we map a new page (from the top of the sorted list) into the protected cache

if it would reduce the vulnerability. Figure 4-3a shows that after mapping 35 pages into

the protected cache, vulnerability is reduced by 55%, while runtime increases by 10%.

The runtime is expected to increase because the protected cache, which is much smaller

in capacity, will cause a lot of misses when there are many data pages evicting each

other’s data. Figure 4-3b shows that energy consumption of unprotected cache decreases

as we remove pages from the unprotected cache. However, the energy consumption of

the protected cache will increase drastically when more data pages are mapped into it.

The energy consumption of the protected cache can rise to as much as 2.5 times of that

of the unprotected cache. This example suggests that we cannot afford to blindly map

data pages into the protected cache, which might result in unacceptable performance and

energy penalty.

We introduce a greedy approach with a runtime threshold during data partitioning.

For the same example above, if we set a 5% threshold for runtime, we are allowed to

map only three pages into the protected cache. The runtime threshold will limit both the
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performance degradation and the energy penalty. Algorithm 5 shows our data partitioning

approach. It takes the benchmark and the runtime penalty threshold (rThresh) as inputs,

and produces a data partitioning scheme PageMap as output. PageMap[i ] indicates the

cache for the i thPage: 0 means the unprotected cache, and 1 means the protected cache.

We first map all pages into the unprotected cache (the base partitioning scheme) by

setting PageMap as all 0’s (line 1). We simulate the benchmark with the base partitioning

scheme, which provides us with BaseRuntime and a profile of vulnerability of all data

pages (line 2-4). After sorting the pages by vulnerability in descending order (line 5), we

greedily select each page to test whether it is suitable to be mapped into the protected

cache (line 6 to 15). A page is suitable to be protected if it satisfies two conditions: (i) it

is favorable for vulnerability reduction and (ii) it would not cause the program to exceed

the runtime threshold. If either of the two conditions is not satisfied, the page should

be put back into the unprotected cache. For the benchmarks used in our experiments,

we have up to 258 pages, on average 58 pages. Let p be the total number of data pages

in a benchmark. Although we need to sort the pages in line 5 (which usually has time

complexity of O(p log p) for conventional sorting algorithms), the time for sorting is

negligible compared with the time used for simulation. We need to do p rounds of

simulation to explore all the data pages and get a most beneficial PageMap. The time

needed for Algorithm 5 is O(C × p), where C is the time needed for one simulation, and p

is the number of data pages.

4.2.2 Cache Exploration

This section describes how to take advantages of both cache reconfiguration (DCR)

and data partitioning (PPC) by synergistic exploration. In our reconfigurable PPC

architecture, the base cache1 for the unprotected cache is 4096B 1W 32B (size of 4KB,

1 The base cache refers to the cache configuration that is widely used in the literature
for the selected benchmarks.
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Algorithm 5: DataPartition

Input: Benchmark, rThresh, page vulnerability profile
Output: PageMap

1: Set PageMap[n] = (0, 0, ..., 0);
2: {runtime, vulnerability} = simulate(PageMap)
3: Set BaseRuntime = runtime;
4: Set BestVulnerability = vulnerability ;
5: Sort the pages by vulnerability in descending order
6: for (i = 0; i < PageMap.size; i ++) do
7: Set PageMap[i ] = 1;
8: {runtime, vulnerability} = simulate(PageMap)
9: if vulnerability < BestVulnerability then

10: if runtime < BaseRuntime × (1 + rThresh) then
11: Set BestVulnerability = vulnerability ;
12: else
13: Set PageMap[i ] = 0;
14: end

15: else
16: Set PageMap[i ] = 0;
17: end

18: end
19: return PageMap

1-way associative, and line size of 16-byte), which can be reconfigured to the size of 1KB,

2KB and 4KB, associativity of 1-way, 2-way and 4-way, line size of 16-byte, 32-byte and

64-byte. This will lead to 18 valid configurations2 for the unprotected cache. The base

configuration for the protected cache is 512B 1W 32B, which can be reconfigured to be

size of 256B and 512B, associativity of 1-way and 2-way, and line size of 16-byte and

32-byte. This will lead to 6 valid configurations for the protected cache.

It is crucial to dynamically select partitioning schemes for different cache

configurations. For example, assume that we have a data partitioning solution for the

base configuration (<512B, 4096B>) for the protected and unprotected caches. If we use

the same data partitioning for another cache configuration (<256B, 4096B>), it would

2 It is less than 33 since not all combinations are valid [11].
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likely encounter a lot of cache misses in the protected cache and result in significant

performance and energy penalty.

The effectiveness of the data partitioning algorithm described in Section 4.2.1,

is influenced by the cache exploration. First, the data partitioning depends on the

configuration of the unprotected cache, as it requires the vulnerability profile of data

pages. When using a different unprotected cache, the vulnerability of a data page will

change, which will directly affect its priority (importance in reducing vulnerability) during

data partitioning. Similarly, the data partitioning is a greedy algorithm and is constrained

by the configuration of the protected cache. We propose a synergistic exploration of

different cache configurations with various partitioning of data pages.

Algorithm 6: Exhaustive Cache Exploration

Input: Benchmark, rThresh
Output: Protected and unprotected cache configs

1: for cache size su of 1024B, 2048B, 4096B do
2: for associativity au of 1, 2, 4 ways do
3: for line size lu of 16B, 32B, 64B do
4: UnproConfig = (su, au, lu)
5: Generate vulnerability profile
6: for cache size sp of 256B, 512B do
7: for associativity ap of 1, 2 ways do
8: for line size lp of 16B, 32B do
9: ProConfig = (sp, ap, lp)

// Call Algorithm 5

10: DataPartition(rThresh)

11: end

12: end

13: end

14: end

15: end

16: end
17: Collect (runtime, vulnerability, energy) for all configs.
18: Choose the best configs based on system goal.
19: return (UnproConfig,ProConfig,PageMap)
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Algorithm 6 shows our approach of dynamic data partitioning during the process

of cache exploration. We explore the cache size, way associativity, and line size of the

unprotected cache in line 1-3. For each unprotected cache configuration, it is necessary

to re-evaluate the vulnerability of all pages based on the current configuration of the

unprotected cache (line 4-5). Next, we explore the configurations of the protected cache

and call Algorithm 5 to get the best data partitioning for the selected pair of cache

configurations (line 6-10). The complexity of the algorithm is O(n1×n2×p), where n1 and

n2 are the number of configurations for the unprotected and protected caches, respectively,

and p is the number of data pages in the benchmark.
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Figure 4-4. Configurations covered by (a) Exhaustive Exploration (108), (b) FEC
Exploration (41), for benchmark cjpeg.

4.2.3 Fast Exploration

One major drawback of of the exhaustive approach outlined in the previous section is

the long exploration time. The total time for exhaustive exploration is (C×n1×n2×p). For

the largest benchmark epic with p=258 pages, the time needed for one simulation is C=22

seconds, so the total time is (22×18×6×258) seconds, which is about 7 days. Clearly,

exhaustive exploration is not feasible for larger benchmarks and complex processors
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Figure 4-5. Configurations covered by (a) Exhaustive Exploration (108), (b) FEC
Exploration (29), for benchmark pegwit.
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Figure 4-6. Page exploration during data paritioning for six different benchmarks

with a large number of cache configurations. In order to improve the scalability of our

reconfiguration framework, we propose two fast and effective exploration heuristics that

would explore fewer cache configurations and/or fewer data partitioning schemes without

compromising the quality of optimization objectives. The remainder of this sections
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describes two fast exploration techniques: Fast Exploration of Caches (FEC) and Fast

Exploration of Caches and Data pages (FECD).

4.2.3.1 Fast exploration of caches (FEC)

By examing the results generated by exhaustive exploration, we find that some

very unprofitable cache configurations are also explored. We propose a heuristic to

reduce the number of explorations for cache configurations, thus drastically reduce the

overall exploration time. We have 18 configurations for the unprotected cache and 6

configurations for the protected one. Both caches (protected and unprotected) have

influence on the overall vulnerability and energy consumption. If one configuration for

the protected (or unprotected) cache is very bad, it may not be useful to explore the

unprotected (or protected) cache at all. We can explore the two caches independently

and pick out the Pareto-optimal tradeoff points. Candidates with both vulnerability

and energy consumption worse than the Pareto-optimal ones are eliminated during the

exploration. Our proposed Fast Exploration of Caches (FEC) heuristic is summarized

below:

1. Hold the protected cache as the base configuration. Tune the unprotected cache
and record all its Pareto-optimal configurations. Let Pu denote the set of recorded
configurations for the unprotected cache.

2. Hold the unprotected cache as the base configuration. Tune the protected cache
and record all its Pareto-optimal configurations. Let Pp denote the set of recorded
configurations for the protected cache.

3. Explore all the combinations from each set of Pareto-optimal configurations from the
previous two steps, and find the best configuration based on the system optimization
goal.

The first two steps explore 24 (=18+6) candidates while the last step explores |Pu| ∗

|Pp| candidates. The number of Pareto-optimal points varies for different applications

but normally around 2 to 6. In our experiments, the total number of explored cache

configurations is 35 on average for the above heuristic approach. The total exploration

time for one benchmark will be reduced to C × n′ × p, where n′ = 35 on average.

78



The number of cache configuration is reduced from 108(=18*6) to 35, which results

in about 3X speed-up. Figure 4-4 and 4-5 show the explored points of the exhaustive

exploration and the FEC heuristic for benchmark cjpeg and pegwit, where FEC explores

41 configuration for cjpeg and 29 configurations for pegwit.

4.2.3.2 Fast exploration of caches and data (FECD)

Given a combination of configurations of the unprotected and protected caches,

the data partitioning in Algorithm 5 will divide data pages between them. The data

partitioning process explores each page to decide whether this page should be protected or

not, and it takes p (number of pages) simulations. Figure 4-6 shows the data partitioning

exploration process when the two caches are set to their base configurations. There is a

clear trend for these six benchmarks in Figure 4-6. The first few pages result in drastic

vulnerability reduction and the curve will saturate after a certain number of pages are

mapped to the protected cache. This is because the pages are sorted by vulnerability, and

the partitioning algorithm goes through them one by one. This inspires us that we don’t

have to explore all the pages. We can save the total exploration time (C × n′ × p′) by

reducing the pages explored for each cache configuration. We can explore only the top

p′ pages for these benchmarks without any compromising of exploration quality. In our

experiments for FECD, we choose to explore only top 50% of the data pages (with minor

impact on cjpeg and epic), which can enable another 2X speed-up, compared to FEC.

4.3 Experiments

Our framework used the sim-outorder simulator from the SimpleScalar toolset [24].

The protected cache has an ECC-based technique, while the unprotected cache has no

protection against soft errors. We assume that the protected cache is optimized to have

the same access time as the unprotected one. Both caches are reconfigurable, and the

reconfigurable cache model is described in Section 4.2.2. The ten benchmarks that are

used in our experiments are from the MediaBench [22] and MiBench [46], which are

representative of embedded system applications. The energy model and vulnerability
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model are detailed in Section 4.1. The energy consumption for cache accesses is estimated

using CACTI 4.2 [25] with a 0.18 µm technology. We implemented the vulnerability

calculation in the simulator for the unprotected cache.

4.3.1 Synergistic Exploration

Figure 4-7 and 4-8 show the exploration results by applying Algorithm 6 for

benchmark cjpeg and pegwit, with runtime penalty threshold to be 5%. The figures

show the exhaustive exploration of all the 108 (=18×6) cache configurations, each of which

has full exploration of all its data pages.

There are several interesting observations that we would like to highlight:

(1) If we observe the curves for 18 configurations of the unprotected cache,

they have very consistent trends for six different protected cache configurations,

especially for the benchmark pegwit. For example in Figure 4-8, the protected cache

configuration 256B 1W 32B always has worse vulnerability (Figure 4-8a), worse energy

consumption(Figure 4-8b), worse runtime(Figure 4-8c) than 512B 2W 32B, if the same

unprotected cache configuration is used. This motivates us to perform fast exploration of

cache configurations. We can avoid exploration of a certain configuration if we know it will

always produce worse results than another configuration.

(2) As shown in Figure 4-7a and 4-8a, vulnerability is dominated by the unprotected

cache. This is as expected, since vulnerability only comes from data maintained in the

unprotected cache. The vulnerability of the first nine unprotected cache configurations (of

size 1024B and 2048B), is smaller than that of the last nine configurations (of size 4096B).

This is due to the fact that a large unprotected cache can retain more data and the data

usually stay in the cache for longer time because of lower miss rates, compared with a

small unprotected cache.

(3) Figure 4-7 (cjpeg) has more fluctuation than Figure 4-8 (pegwit). This is because

different configurations for cjpeg have very different data partitioning, while pegwit has

the same data partitioning for all configurations. This is consistent with what we observed
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in Figure 4-6 on page exploration for cjpeg and pegwit. The vulnerability of cjpeg is

spread among many pages, while that of pegwit is dominated by the first page. So the

data partitioning is the same for pegwit (just protect the first page) no matter what cache

configuration is used. While the data partitioning changes greatly for cjpeg when different

cache configurations are used.

4.3.2 Comparison with Previous Works

In this section, we perform exploration in two directions depending on the primary

optimization objective: the energy-aware vulnerability-minimization exploration and

the vulnerability-aware energy-minimization exploration. The first one is vulnerability

minimization, where energy constraint is determined by the energy consumption of the

two fixed base caches. In other words, we are trying to find the cache configuration with

lowest vulnerability while the energy consumption is equal or better than two (protected

and unprotected) fixed base caches (no DCR capability). Similarly, the second one is

energy minimization with vulnerability constraint (determined by the vulnerability of two

base caches). We refer to these two optimal configurations as DCR+PPC(VulMin) and

DCR+PPC(EnergyMin), respectively. [5] and [39] are the two most related works in

reducing cache vulnerability for embedded systems. We compare our results with [5] and

[39] to demonstrate the effectiveness of our approach.

4.3.2.1 Improvement to DCR

The approach in [5] uses dynamic cache reconfiguration (DCR without PPC) to

reduce vulnerability. We use our DCR+PPC(VulMin) configuration to compare with

them, as shown in Table 4-1. The results for DCR [5] are from the EAVO approach in [5],

which uses only one reconfigurable cache. Our approach can reduce vulnerability by up to

96.5%, on average 61.9%, for the ten benchmarks. Our approach is able to provide drastic

improvement in vulnerability compared to [5], because we take advantage of PPC’s ability

to reduce vulnerability. For benchmark rijndael , our vulnerability number is the same as

[5]. This is because our DCR+PPC configuration is the same as DCR [5], which means
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we map all the data into the unprotected cache while the protected one is not used at all.

The reason is that rijndael has only 17 data pages (the smallest among all benchmarks),

and mapping any of the data pages into the protected cache resulted in exceeding the

performance threshold.

Table 4-1. Vulnerability reduction compared to [5]
Benchmark DCR [5] Our Approach Improvement
fft 2.5E+10 2.2E+09 91.3%
cjpeg 1.0E+10 3.8E+09 62.6%
djpeg 1.9E+09 1.7E+09 13.4%
pegwit 2.3E+09 8.0E+07 96.5%
rijndael 6.8E+10 6.8E+10 0.0%
stringsearch 2.0E+09 2.9E+08 85.9%
untoast 2.5E+10 9.4E+08 96.2%
epic 6.4E+09 3.3E+09 48.0%
ospf 2.4E+09 2.9E+08 87.9%
susan 9.8E+09 6.2E+09 37.1%
Average - - 61.9%

4.3.2.2 Improvement to PPC

In this subsection, we compare with the partially protected caches (PPC) as proposed

in [39], which has a fixed unprotected cache and a fixed protected cache (no DCR).

We use our exhaustive exploration approach considering data partitioning and cache

configurations as described in Algorithm 6. We present two sets of results based on two

different primary optimization goals:

• DCR+PPC(VulMin): vulnerability minimization, where energy constraint is
determined by the energy consumption of the two fixed base caches.

• DCR+PPC(EnergyMin): energy minimization with vulnerability constraint set
as the vulnerability of two fixed base caches.

Figure 4-9a shows the vulnerability improvement for all benchmarks.

DCR+PPC(VulMin) reduces the vulnerability by 52.8% on average, while

DCR+PPC(EnergyMin) reduces the vulnerability by 28.9% on average. Figure

4-9b shows that DCR+PPC(VulMin) reduces the energy by 9.6% on average, while

DCR+PPC(EnergyMin) reduces the energy by 18.4% on average. As expected based on
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their optimization goals, DCR+PPC(VulMin) provides better vulnerability reduction

whereas DCR+PPC(EnergyMin) provides better energy reduction results.

Table 4-2 and Table 4-3 show the detailed results (these results were summarized,

in normalized form, in Figure 4-9). The first column indicates the benchmark. The

second, fifth and eighth columns provide the vulnerability, energy and execution time,

respectively, for the base configuration with PPC [39]. The third, sixth and ninth

columns provide vulnerability, energy and execution time, respectively, using our approach

(DCR+PPC). The fourth, seventh and tenth columns indicate the improvement produced

by our approach compared to [39]. A positive number implies improvement whereas

a negative number means overhead (penalty). Table 4-2, DCR+PPC(VulMin), shows

that our approach can provide significant reduction (on average 52.8%, up to 90.3%) in

vulnerability, modest reduction (on average 9.6%, up to 38.9%) in energy, and minor

performance penalty (0.3% on average). Table 4-3, DCR+PPC(EnergyMin), demonstrates

significant energy (on average 18.4%, up to 39.3%) and vulnerability reduction (on average

28.9%, up to 90.3%), with minor performance improvement (0.7% on average).
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(a) Vulnerability Improvement

(b) Energy Improvement

Figure 4-9. Comparison of DCR+PPC(VulMin) and DCR+PPC(EnergyMin) with
PPC[39]. (a) Vulnerability improvement, (b) Energy improvement.
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Table 4-2. DCR+PPC(VulMin): vulnerability minimization under energy constraints

Benchmark
Vulnerability (109byte × cycles) Energy (mJ) Runtime (106cycles)

PPC [39] Our Approach Improvement PPC [39] Our Approach Improvement PPC [39] Our Approach Improvement
fft 10.81 2.22 79.4% 8.54 5.22 38.9% 52.60 51.21 2.6%
cjpeg 5.72 3.77 34.1% 2.21 2.08 5.6% 9.26 9.54 -3.0%
djpeg 3.36 1.69 49.7% 0.34 0.33 4.7% 2.63 2.69 -2.2%
pegwit 0.82 0.08 90.3% 4.93 4.66 5.5% 17.85 17.83 0.1%
rijndael 80.09 67.75 15.4% 3.84 3.22 16.3% 46.23 46.25 -0.1%
stringsearch 2.80 0.29 89.8% 0.81 0.81 0.7% 6.82 6.69 1.9%
untoast 1.10 0.94 14.6% 2.60 2.40 7.7% 29.52 29.27 0.9%
epic 31.66 3.35 89.4% 5.00 4.94 1.1% 36.35 37.43 -3.0%
ospf 0.73 0.29 60.1% 1.54 1.40 9.2% 5.19 5.25 -1.1%
susan 6.53 6.18 5.3% 1.18 1.10 6.3% 15.55 15.35 1.3%
Average - - 52.8% - - 9.6% - - -0.3%

Table 4-3. DCR+PPC(EnergyMin): energy minimization under vulnerability constraints

Benchmark
Vulnerability (109byte × cycles) Energy (mJ) Runtime (106cycles)

PPC [39] Our Approach Improvement PPC [39] Our Approach Improvement PPC [39] Our Approach Improvement
fft 10.81 3.92 63.8% 8.54 5.19 39.3% 52.60 51.16 2.7%
cjpeg 5.72 5.72 0.0% 2.21 1.91 13.6% 9.26 9.26 -0.1%
djpeg 3.36 3.21 4.3% 0.34 0.31 8.9% 2.63 2.60 1.2%
pegwit 0.82 0.08 90.3% 4.93 4.66 5.5% 17.85 17.83 0.1%
rijndael 80.09 67.75 15.4% 3.84 3.20 16.8% 46.23 46.25 -0.1%
stringsearch 2.80 1.93 30.9% 0.81 0.59 27.5% 6.82 6.67 2.1%
untoast 1.10 1.09 0.6% 2.60 2.31 11.0% 29.52 29.32 0.7%
epic 31.66 9.83 68.9% 5.00 3.72 25.5% 36.35 37.28 -2.6%
ospf 0.73 0.63 14.3% 1.54 1.36 12.0% 5.19 5.07 2.3%
susan 6.53 6.48 0.7% 1.18 0.90 23.6% 15.55 15.39 1.0%
Average - - 28.9% - - 18.4% - - 0.7%

Table 4-4. Simulation time for three exploration strategies: Exhaustive, FEC and FECD

Benchmark
Exhaustive FEC FECD

Num. of
Simations

Exploration Time
(hh:mm)

Num. of
Simations

Exploration Time
(hh:mm)

Improv. to
Exhaustive

Num. of
Simations

Exploration Time
(hh:mm)

Improv. to
Exhaustive

fft 1728 15:58 464 04:01 73.1% 232 02:01 86.6%
cjpeg 5616 12:28 2132 05:44 62.0% 1326 03:57 76.4%
djpeg 2592 02:36 984 01:37 62.0% 468 00:17 81.9%
pegwit 4860 20:25 1305 05:29 73.1% 652.5 03:45 86.6%
rijndael 1620 09:51 495 03:42 69.4% 247.5 01:21 84.7%
stringsearch 1728 02:01 480 01:34 72.2% 240 00:17 86.1%
untoast 1404 08:57 377 02:08 73.1% 188.5 01:04 86.6%
epic 27864 169:38 8256 50:58 70.4% 3741 23:38 86.6%
ospf 4968 07:47 2162 03:57 56.5% 1081 01:29 78.2%
susan 7452 23:11 2691 08:22 63.9% 1345.5 04:11 81.9%
Average 5983 27:41 1934 08:09 67.6% 952 04:54 83.6%
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There are three important aspects in our results:

(1) Although we set the runtime threshold to be 5% (same as the threshold used in

[39]) in our data partitioning algorithm, all benchmarks have far better performance than

the threshold. In fact, many of them even have performance improvement. The is due to

the fact that although PPC has the potential to cause performance degradation, DCR

can find the suitable cache configurations to hide the performance penalty. This further

demonstrates the effectiveness of our DCR+PPC approach.

(2) DCR+PPC(VulMin) can also reduce energy consumption, and

DCR+PPC(EnergyMin) can also reduce vulnerability. That is because

DCR+PPC(VulMin) and DCR+PPC(EnergyMin) are two Pareto-optimal points among

all explored configurations. For example, DCR+PPC(VulMin) has vulnerability as the

primary goal (the first dimension), while energy is still constrained to be better than base

configuration (the second dimension).

(3) For benchmark pegwit, the two tables report the same numbers because the two

optimization explorations have chosen the same cache configurations (also with the same

partitioning scheme).

4.3.3 Fast Exploration

This subsection presents results for fast exploration of fewer cache configurations

and/or fewer data partitioning schemes without compromising the quality of optimization

goal. The three exploration strategies are:

• Exhaustive: Exhaustive exploration on both cache configurations and data pages.
• FEC: Fast exploration on cache configurations.
• FECD: Fast exploration on both cache configurations and data pages.

Table 4-4 shows the required number of simulations and exploration time for each of

the benchmarks. The average number of simulations is 5983 for Exhaustive, 1934 for FEC,

and 952 for FECD. The average exploration time is 27 hours for Exhaustive, 8 hours for

FEC, and 5 hours for FECD. FEC can reduce time by 67.6% (3 times speed-up), while

FECD can reduce time by 83.6% (6 times speed-up), compared to Exhaustive.
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Figure 4-10 shows the quality of results for the three exploration strategies. For

vulnerability minimization (Figure 4-10a), FEC achieves a vulnerability about 9% worse

than Exhaustive for cjpeg, while it gets exactly the same vulnerability numbers for the

other nine benchmarks; FECD can achieve a vulnerability almost as good (less than

1% worse) for pegwit and epic , while it gets exactly the same results for other eight

benchmarks. Similarly for energy minimization (Figure 4-10b), FEC achieves energy

consumption about 5% worse than Exhaustive, while it gets exactly results for other nine

benchmarks; FECD achieves energy about 9% worse for cjpeg and less than 1% for epic

and susan, while it gets exactly results for other seven benchmarks. In summary, our fast

exploration techniques (FEC and FECD) can reduce the exploration time by (3X and 6X)

with minor (less than 1% on average) impact on design quality.

4.4 Summary

Designing reliable embedded systems needs to consider cache vulnerability due to

soft errors. In this chapter, we presented a reconfigurable cache architecture to combine

the advantages of PPC (vulnerability reduction) and cache reconfiguration (energy

and performance improvement). Synergistic integration of cache reconfiguration and

data partitioning improves both vulnerability and energy efficiency. For vulnerability

minimization, our approach can significantly reduce vulnerability (up to 90.3%, on

average 52.8%), and also reduce energy consumption (up to 38.9%, on average 9.6%), with

minor (on average 0.3%) performance penalty. In order to improve the scalability of our

reconfiguration framework, we presented two fast exploration strategies that can achieve

up to 6X speed-up, with negligible impact on the quality of exploration results.
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(a) DCR+PPC(VulMin)

(b) DCR+PPC(EnergyMin)

Figure 4-10. Comparison of three exploration strategies: Exhaustive, FEC and FECD. (a)
DCR+PPC(VulMin), (b) DCR+PPC(EnergyMin)
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CHAPTER 5
VULNERABILITY-AWARE CACHE TUNING FOR MULTICORE SYSTEMS

Multicore architectures consist of multiple processor cores to improve execution

performance of application programs. Multicore processor usually has on-chip caches

to resolve the performance bottleneck caused by the increasing gap between processor

and memory speed. In a typical multicore system, each core maintains its private L1

caches while all cores share the same L2 cache. There are many optimization techniques

for multi-level on-chip caches to improve performance and energy consumption of the

overall system [12, 13, 51]. With the increasing demand for high reliability and availability,

vulnerability of caches due to soft errors is gaining increasing importance. Data corruption

caused by soft errors can change the behavior of applications and may eventually result

in a system failure. As for performance and energy improvement, it is beneficial to

maintain a useful data longer in the cache. However, longer data retention can negatively

impact the vulnerability or probability of data corruption due to soft errors. It is a great

challenge to keep vulnerability under control while we optimize the cache subsystem for

improvement in performance and energy consumption.

In this chapter, I propose a vulnerability-aware energy optimization technique which

integrates cache reconfiguration (DCR) of private L1 caches and cache partitioning (CP)

of the shared L2 cache. This chapter makes four important contributions: (i) We explore

the inter-dependence of L1 DCR and L2 CP for performance, energy consumption as

well as vulnerability; (ii) We are able to minimize energy consumption without violating

both vulnerability and real-time constraints; (iii) Our fast and scalable static profiling

algorithm can efficiently search the design space of L1 configurations and L2 partitions,

making it feasible to find the optimal result using dynamic programming; and (iv) Our

results demonstrate that our approach can provide significant energy savings compared

with the base configuration as well as drastic reduction in vulnerability compared to the

state-of-the-art techniques.
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The remainder of the chapter is organized as follows. The architecture model and an

motivational example are presented in Section 5.1. Section 5.2 presents our approach for

vulnerability-aware optimization. Section 5.3 presents the experimental results. Section 5.4

concludes the chapter.

5.1 Modeling Systems with Reconfigurable Caches

In this section, we describe the modeling of multicore systems with reconfigurable

caches. First, we describe the underlying multicore architecture. Next, we present the

energy and vulnerability models. Then, we provide an illustrative example to motivate the

need for the proposed exploration framework. Finally, we present the problem formulation.

Figure 5-1. A multicore system with reconfigurable L1 caches and a partition-enabled
shared L2 cache.

5.1.1 Multicore Architecture Model

Figure 5-1 shows a typical multicore system with a shared on-chip L2 cache and

private L1 caches for each core. In this chapter, we assume that the private L1 caches

(both IL1 and DL1) are reconfigurable, and the shared L2 cache is equipped with
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way-based partitioning. The L1 caches can reconfigure its cache size, associativity, and

line size. The reconfigurable cache architecture is the same as [11, 50]. The cache size is

tuned by selectively shutting down the banks with gated-Vdd techniques. The associativity

is reconfigured by logically concatenating ways. The line size can be changed by fetching

multiple unit-length blocks in one access. The reconfigurable architecture is lightweight,

which introduces negligible overhead [11].

The shared L2 cache with way-based partitioning [52] is illustrated in Figure 5-1.

Each L2 cache set (8-way associativity as in this example) is partitioned into four parts,

each of which will be assigned to one core. Each core will access only the assigned portion

of the cache sets and enforce the LRU replacement policy among its individual group

of ways. The number of ways assigned to a core is referred to as its partition factor.

As shown in Figure 5-1, Core 1 has a L2 partition factor of 2. In this chapter, we use

dynamic reconfiguration of the L1 caches and static partitioning of the shared L2 cache.

In other words, L1 cache configurations can be tuned for each application on each core

during runtime. While L2 partition factors are pre-determined for each core and remain

unchanged during runtime, all applications running on that core have the same L2

partition factor.
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Figure 5-2. Inter-dependence of L1 DCR and L2 CP on (a) L2 Misses, (b) IPC, (c)
Runtime, (d) Energy and (e) Vulnerability.

5.1.2 Energy and Vulnerability Models

The Energy Model is adopted from the one used in [11]. The cache energy

consumption consists of static and dynamic energy: E = Esta + Edyn. The static energy

93



dissipation Esta is computed as Esta = Psta × t, where Psta is the static power of cache.

Dynamic energy dissipation Edyn comes from both cache accesses and cache misses.

Edyn = Accesses × Eaccess +Misses × Emiss (5–1)

Emiss = Eoffchip access + Eblock fill (5–2)

where Eaccess and Emiss are the energy required per cache access and per cache miss,

respectively. Eaccess and Emiss are constant values for one specific configuration.

Eoffchip access is the energy for accessing the lower level of the memory hierarchy, and

Eblock fill is the energy for filling the cache block with fetched data.

The Vulnerability Model is based on per-byte analysis of cache data with respect to

the sequence of operations during its lifetime in the cache. Operations on a byte include

“fill”, “read”, “write” and “evict”. Similar to [5], the vulnerability analysis divides the

lifetime of a byte into vulnerable and un-vulnerable intervals. The vulnerable intervals are

of four types: “fill-to-read”, “read-to-read”, “write-to-read”, “write-to-evict”. We measure

the vulnerability of cache as the summation of vulnerable intervals of all bytes in all cache

blocks.

5.1.3 Illustrative Example

Figure 5-2 shows the impact of L1 DCR and L2 CP for benchmark qsort from

MiBench [46]. The L2 partition factor can change from 1 to 7 in a 8-way associative L2

cache. Four pairs of cache configurations1 for IL1 and DL1 are randomly chosen. We

observe that different L1 configurations will lead to different L2 cache misses (Figure 5-2a)

and pipeline throughput (i.e. IPC in Figure 5-2b). This is expected since L1 configuration

determines the number accesses to the L2 cache, as well as the pipeline throughput.

Secondly, as L2 partition factor w increases, L2 cache misses will decrease and eventually

1 Here c18 and c9, for example, stands for the IL1 and Dl1 using the 18-th and 9-th
configuration, respectively.
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converge (for w ≥ 4) for different L1 configurations. However, the IPC shows great

diversity even when L2 partition factor is large.

Figure 5-2(c-e) show the runtime, energy consumption and cache vulnerability of

the benchmark, respectively. It is interesting to see that they have different patterns as

L2 partition factor w increases. Runtime will decrease drastically as w increases, which

is accordant with the pattern of IPC. Energy consumption will decrease to a minimal

point (for w = 3), but it will increase when w becomes larger. This is because dynamic

energy (caused by a lot of cache misses) dominates the total energy consumption when w

is small, while static energy dominates when w is too large. However, vulnerability will

increase with w . This is expected for two reasons: (1) a large w means that L2 cache has

more valid area and is holding more data, which remains vulnerable to soft errors; (2)

the decrease in cache misses (data replacement) also indicates that data are residing in

the cache for longer time, which means data will have longer vulnerable intervals. While

a large L2 partition facilitates performance, it might jeopardize energy consumption and

vulnerability. This shows that performance, energy and vulnerability have very different

(often conflicting) cache requirements.

Given the above observations, both L1 DCR and L2 CP have major impact on

performance, energy consumption and vulnerability. The interesting trade-offs between

them is the motivation of this chapter to explore for optimization. We exploit L1 DCR

and L2 CP simultaneously for vulnerability-aware energy optimization for real-time

multi-core systems.

5.1.4 Problem Formulation

We model our multicore system as follows:

• The multicore processor has m cores P {p1, p2, ..., pm}.

• Each core has private IL1 and DL1, both of which can be reconfigured to r
configurations C {c1, c2, ..., cr}.

• The shared L2 cache is ω-way associative, which supports way-based partitioning.
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• A set of n independent tasks T {τ1, τ2, ..., τn} with a common deadline D.

Our optimization goal is to find a reconfiguration scheme R for the private L1

caches and a partitioning scheme P for the shared L2 cache such that the overall

energy consumption E is minimized without violating vulnerability constraints and

task deadlines. Assume that we are given the following:

• A task mapping scheme M: T→ P, which assigns tasks to each core. In this chapter,
we assume that the task mapper M is given, which can ensure that the total runtime
on each core is comparable. ρk is the number of tasks mapped to core k .

• A reconfiguration scheme R for L1 caches: CI ,CD → T, which assigns one IL1 and
DL1 configuration to each task.

• A partitioning scheme P for L2 cache: P = {w1, w2, ..., wm}, which allocates wk
ways to core k .

For task τk,i ∈ T (the ith task on core k), ek,i(cI , cD ,wk) denotes the energy

consumption of the cache subsystem when the task is executed with L1 configurations

(cI , cD) and L2 partition factor wk . Similarly, let tk,i(cI , cD ,wk) and vk,i(cI , cD ,wk)

denote the execution time and the total vulnerability. Our minimization problem can be

formulated as follows:

E =

m∑
k=1

ρk∑
i=1

ek,i(cI , cD ,wk) (5–3)

is minimized subject to:

max
k=1..m

(

ρk∑
i=1

tk,i(cI , cD ,wk)) ≤ D (5–4)

ρk∑
i=1

vk,i(cI , cD ,wk) ≤ Vk , ∀k ∈ [1,m] (5–5)

m∑
k=1

wk = ω;wk ≥ 1,∀k ∈ [1,m] (5–6)

Equation 5–4 guarantees that all tasks will meet the deadline D. Equation 5–5 guarantees

that the total vulnerability of the tasks on each core is constrained by the threshold Vk ,

which is chosen as the base case vulnerability. Equation 5–6 verifies that the partitioning

scheme is valid.
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Figure 5-3. Three-step optimization: the first step statically profiles each task, the second
step optimizes for each partition factor on each core to find the best L1 cache
configurations, the third step combines the optimal solution on all cores to find
the best L2 partition scheme.

5.2 Vulnerability-Aware DCR+CP

In this section, we present our approach which utilizes the static profiles of tasks

to efficiently search the design space for the optimal energy solution. Our three-step

optimization approach is illustrated in Figure 5-3, with the first step to profile each

task, the second step to use a dynamic programming algorithm to optimize for all cache

configurations on each core, and the third step to combine the optimal solutions on each

core by trying out all feasible L2 partition schemes.

5.2.1 Task Profiling

Theoretically, we can do static profiling for the whole task set T for all possible L1

reconfiguration schemes R and all possible L2 partition schemes P. However, it is not

feasible to do this exhaustive exploration because of excessive simulation time. Assume

that we have a four-core processor with an 8-way associative L2 cache. Each core is

assigned with three tasks and the IL1 and DL1 cache each has 18 configurations [11]. The

total number of architectural simulations would be ((182)3)4 ∗ 35. To be specific, ((182)3)4

would be all L1 configurations (both IL1 and DL1) for the tasks (three on each core)

across four cores. This needs to be multiplied by 35, which is the total number of valid L2
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partition schemes according to Equation 5–6 with m=4 and ω=8. If each simulation takes

only 1 minute, the total simulation time is longer than the age of the universe.

Fortunately, we can drastically reduce the complexity of static profiling by exploiting

the inherent independence in our system. Tasks running on different cores are independent

(with no inter-task data sharing). After introducing L2 partitioning, each task is

essentially isolated on a separate core with private L1 caches and a dedicated L2 partition.

Therefore, we can profile each task as if it is executed independently on a uniprocessor

with a wi -way associative L2 cache (with capacity equal to wi/ω of the original L2). The

total number of simulations required for the entire task set would be r 2 · (ω − 1) · n,

where r 2 is the number of IL1 and DL1 combinations, (ω − 1) is the number of possible

L2 partition factors, and n is the total number of tasks. Using the same example above, it

takes 182 × 7 × 12 simulations with 12 tasks. For benchmarks used in our experiments,

the static profiling can finish within three days. We simulate each task with all possible

IL1 and DL1 cache configurations, along with all possible L2 partition factors. After static

profiling, each task has a profile table with r 2 · (ω − 1) entries, each of which contains

the runtime, energy consumption, vulnerability for the specified L1 configurations and L2

partition factor.

Note that the profiling can be done off-line for one specific input pattern for a

program. In this work, we assume that the input size remains the same but content can

vary. This is a reasonable assumption for real-time embedded systems. We performed

our offline analysis by varying input patterns (data values) for all the benchmarks

and observed that it has minor impact on the footprint of data access. Since profile of

vulnerability and energy estimation for data pages depends on the data access pattern, our

static profiling will still remain effective for different input patterns. Our observations are

consistent with the ones made by existing literature [11].
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5.2.2 Optimization on Each Core

In order to find the optimal solution under deadline and vulnerability constraints,

we first optimize on each core (find profitable L1 configurations), and then optimize

across all cores (find the best L2 partition scheme). In this subsection, we explain our

approach for optimization on each core. Since static partitioning of L2 is used, tasks

on the same core share the same L2 partition factor wk . This fact enables us to treat

each core as a subproblem, which optimizes the energy consumption for a given core

under different L2 partition factors. In other words, we find cache assignment R to

minimize Ek(wk) =
∑ρk
i=1 ek,i(cI , cD ,wk) constrained by

∑ρk
i=1 tk,i(cI , cD ,wk) ≤ D and∑ρk

i=1 vk,i(cI , cD ,wk) ≤ Vk , with k and wk fixed for ∀k ∈ [1,m] and ∀wk ∈ [1,ω − 1].

This subproblem is to choose L1 configurations for each task so that the total

energy is optimized with constraints. The optimization goal is to minimize energy,

which can be discretized to simplify the problem. We can use a dynamic programming

algorithm to search for the optimal solution. Let emink (wk) and e
max
k (wk) denote the

minimum possible energy (
∑ρk
i=1min{ek,i(cI , cD ,wk)}) and the maximum possible energy

(
∑ρk
i=1max{ek,i(cI , cD ,wk)}) on core k , respectively. The energy consumption Ek(wk) of

core k using partition factor wk is bounded by [emink (wk), e
max
k (wk)]. Let S

E
i denote the

current solution found for the first i tasks. It has a cumulative energy consumption of E

while the execution time and vulnerability are minimized. The execution time T [i ][E ] for

SEi is stored in a two-dimensional table T . The vulnerability for SEi is stored in another

two-dimensional table V . As we try out all possible (cI , cD) configurations, we update

the solution for SEi whenever runtime or vulnerability can be improved. The dynamic

programming process uses the recursive formula shown in Figure 5-4 to update the two

tables. The solutions for the first i tasks (the i th row in the two tables) are built upon the

previous step, i.e., the (i − 1)th row. All entries in T and V are initialized to some very

large value. Based on the above recursive formula, we update the tables one row at a time

for all energy values in [emink (wk), e
max
k (wk)]. When the i th row is calculated, all previous
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If (T [i ][E ] > T [i − 1][E − ek,i(cI , cD ,wk)] + tk,i(cI , cD ,wk) && V [i ][E ] > V [i − 1][E −
ek,i(cI , cD ,wk)] + vk,i(cI , cD ,wk))
{
T [i ][E ] = T [i − 1][E − ek,i(cI , cD ,wk)] + tk,i(cI , cD ,wk)
V [i ][E ] = V [i − 1][E − ek,i(cI , cD ,wk)] + vk,i(cI , cD ,wk)

}
Figure 5-4. Recursive formula for dynamic programming

(i − 1) rows are already computed. The final optimal energy consumption E ∗
k (wk) can be

found by:

E ∗
k (wk) = min{Ek | T [ρk ][Ek ] ≤ D && V [ρk ][Ek ] ≤ Vk} (5–7)

Equation 5–7 provides the solution for core k with partition factor wk , which has

minimum energy consumption with deadline and vulnerability constraints satisfied.

5.2.3 Optimization Across All Cores

In this step, we combine the solutions found on each core and search for the minimum

total energy consumption E ∗ of all cores within all L2 partition schemes P. For a given

partition factor wk on core k , the optimal energy E ∗
k (wk) is already calculated in the first

step. A valid partition scheme {w1,w2, ...,wm} is one that complies with Equation 5–6.

The final total energy E ∗ can be found by:

E ∗ = min{
m∑
k=1

E ∗
k (wk)}, ∀{w1,w2, ...,wm} ∈ P (5–8)

Since the number of valid partition schemes is small (35 for 4-core processor with an

8-way associative L2 cache), an exhaustive search on all partition schemes is feasible. In

our experiment, we assume that after the tasks on a core finish execution the core along

with its private L1 caches and the designated L2 partition is turned off. Thus, E ∗ will

be the final energy consumption for all cores running with the optimal configuration and

partitioning scheme.

Algorithm 7 shows the major steps of our cache reconfiguration and partitioning

approach. In the first step (line 1-10), for each task τk,i , we simulate the task with all

possible configurations [cI , cD ,wk ]. We collect the energy, vulnerability and runtime
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numbers of the task using the configurations and save them in its profile table. In the

second step, our algorithm iterates to find the best L1 configurations for all tasks in core

k with partition factor wk . During each iteration (line 11 to 37), all discretized energy

values (e) and all L1 cache configurations (1 to r 2) for current task τk,i are examined. The

dynamic programming process of the first task on a core is shown in line 13 to 22, and

that of task 2 to ρk is in line 23 to 34. Line 35 gets the optimal solution E ∗
k (wk) for core k

with partition factor wk . In the third step (line 38 to 41), our algorithm iterates over all

valid partitioning schemes to find the global optimal energy consumption. Line 39 gets the

energy consumption for partition scheme Pj , and line 40 updates the final solution E ∗ with

the minimal energy consumption. The time complexity for the first step is O(m ·ρk ·ω · r 2),

where m is the number of cores, ρk is number of tasks on each core, ω is the number of

ways in L2 cache, r 2 is the number of L1 configurations. The time complexity for the

second step is O(m · ω · ρk · r 2 · (emax − emin)), where emax − emin is the energy range. The

time complexity for the third step is O(m · |P|), where m is the number of cores and |P|

is the number of partition schemes. In our experiments, our proposed approach can find

the optimal solution in less than three days, which is mostly the time of the first step for

profiling. Since our approach is based on static (offline) analysis and one-time effort, this

is a reasonable time.

5.3 Experiments

In order to evaluate the effectiveness of our approach, we use the architectural

simulator gem5 [56] in system emulation (SE) mode to simulate the multicore system as

shown in Figure 5-1. We enhanced the simulator to support reconfiguration of L1 caches

and way-based partitioning of the shared L2 cache. We also embedded our measurement

for vulnerability of caches in the simulator, while the energy estimation of the cache

subsystem is calculated with a script after simulation. We configured our system with a

four-core processor running at 500MHz on each core with the TimingSimpleCPU model in

gem5. The shared L2 cache supports 32KB, 8-way associative with 32-byte lines. There
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are 35 valid schemes to partition the L2 ways among the four cores. The L1 caches have

a base configuration as 4KB, 2-way associative with 32-byte lines, which offers effective

size of 1KB, 2KB, and 4KB, and associativity of 1-way, 2-way, and 4-way, and line size of

16-byte, 32-byte and 64-byte. There are 18 configurations in total for the L1 caches2 . We

used 20 applications from the MiBench [46] and SPEC CPU2000 [57] benchmark suites as

our tasks for evaluation. Table 5-1 shows the task sets used in our experiments. We choose

4 task sets which contain 2 tasks running on each core, 3 task sets which contain 3 tasks

on each core, and 2 task sets which contain 4 tasks on each core. The task assignment

on cores is based on the rule that each core will have comparable execution time and

vulnerability.

In our results, we will compare the following three approaches:

• CP Only: the base configuration, which has L1 in base configurations and uniform
L2 cache partitioning among cores.

• DCP+CP[12]: the energy-aware approach in [12] using DCR on L1 and CP on L2.

• Our Approach: our vulnerability-aware energy optimization approach using DCR
on L1 and CP on L2.

Here CP Only refers to the base configuration of the system, which has uniform L2 cache

partitioning among the four cores with all the L1 caches in base configuration. For our

vulnerability-aware approach, the vulnerability threshold on each core is set as that of the

base system (CP Only). We want to minimize the energy consumption while ensure that

the vulnerability be at least better than the base system.

5.3.1 Deadline and Vulnerability Threshold

It is meaningful to see how deadline and vulnerability threshold affect the

optimization process. Figure 5-5 shows the optimal energy consumption (i.e. E ∗
1 (w1)

as in Equation 5–7) of core 1 using partition factor (w1 = 2) for task set 9, under different

2 It is fewer than 33 since not all combinations are valid [11].
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deadline and vulnerability constraints. In Figure 5-5a, as we gradually vary the deadline

from 4600 ms to 3600 ms , the optimal energy found by the dynamic programming

algorithm will become worse. When the deadline is shorter than 3690 ms , there is no

feasible solution. In Figure 5-5b, as we gradually reduce the vulnerability threshold from

8.4 × 1012 to 7.2 × 1012 bytes-cycles, the optimal energy solution will also become

worse. There is no solution when vulnerability threshold is set smaller than 7.3 × 1012

bytes-cycles. In this example, we can get a converged optimal energy solution (2753 mJ)

with a deadline larger than 4300 ms and a vulnerability threshold larger than 8.0 × 1012

bytes-cycles. Note that in Figure 5-5a we removed the vulnerability constraint (i.e. set

vulnerability threshold as infinity) to solely investigate the effect of deadline and vice versa

for Figure 5-5b.
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Figure 5-5. Effects of Deadline and Vulnerability Threshold.

This example suggests that the choice of deadline and vulnerability threshold can

affect the optimal energy solution. In our experiments, the deadline is chosen in a way

so that each core can reach the converged minimum energy under the base configuration

setting. The vulnerability threshold on each core is also same as the base system which
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runs with uniform L2 partition and the base configuration for L1s. These settings are

performed under the assumption that our approach should not be more vulnerable than

the base system while improving the energy profile. This assumes that our system should

be at least less vulnerable than the base system. In other words, we want our energy

optimization process to be vulnerability-aware.

5.3.2 Vulnerability-Aware Energy Reduction

(a) Vulnerability

(b) Energy consumption

Figure 5-6. Comparison of vulnerability and energy consumption for the cache hierarchy.
(a) Vulnerability, (b) Energy consumption.

Figure 5-6 illustrates the comparison of vulnerability and energy consumption of the

nine task sets in Table 5-1. Here the vulnerability is the maximum vulnerability among

four cores while energy consumption is the total energy consumption of all L1 caches and
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L2 partitions. The maximum vulnerability provides an indication of the overall reliability

of the cache subsystem since all the cores are independent with its private L1 caches and

designated L2 partition.

Figure 5-6a shows the results for vulnerability reduction. Compared with CP Only,

our approach reduces vulnerability by up to 25.2% and on average 8.8%. Compared

with [12], our approach achieves up to 73.9% reduction in vulnerability and 49.3% on

average. Figure 5-6b shows the energy savings. Compared with CP Only, our approach

reduces energy consumption by up to 22.2% and 19.2% on average. Compared with [12],

our approach consumes on average 5.6% and up to 9.5% more energy. In summary, our

vulnerability-aware energy optimization can significantly reduce energy (on average 19.2%)

compared with the base system. Compared with the state-of-art approach for energy

optimization, we gain significant vulnerability reduction (on average 49.3%) with minor

energy overhead (on average 5.6%).

In order to understand the rationale of above improvement, we would like to analyze

the optimal solutions returned by Algorithm 1 for two different tasks sets. Table 5-2 and

Table 5-3 show the results of L2 partition factors and [IL1, DL1] cache configurations

found by our approach for task set 1 and task set 9, respectively. Task set 1 has two

tasks on each core, with a partition scheme of [2,2,1,3] ways dedicated for each core. Task

set 9 has four tasks on each core, with a partition scheme of [2,2,2,2]. We can see that

different tasks have very different L1 configurations, which shows the necessity of DCR

to suit the unique needs of a task. For a certain task, the best [IL1, DL1]configurations

depend not only on the task itself (i.e. its data access patterns), but also the L2 partition

factor as well as the deadline and vulnerability threshold. There are a few tasks appearing

in both Set 1 and Set 9. For benchmarks qsort, vpr , parser , and toast, they have the

exact same L2 partition factor and L1 configurations for the two sets. For benchmark

untoast, Set 1 and Set 9 have chosen different L1 configurations when Set 1 (Core 3)

uses a partition factor of 1 and Set 9 (Core 2) uses a partition factor of 2. Because Set 9
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assigns a larger partition factor, untoast can execute with smaller L1 cache sizes ([1KB,

1KB]) for reducing energy under the deadline and vulnerability constraints.

Vulnerability-constrained systems can tolerate up to certain vulnerability level due to

its implemented mitigation solution. Therefore, existing energy-optimization techniques

(such as [12]) are not applicable on them. For example, if a system can tolerate up to

20% more vulnerability compared to the base configuration, most of the energy savings

(except for Set 1 and Set 7) are meaningless since they crossed the vulnerability threshold.

In other words, apparent energy benefit of [12] is not useful in practice. Therefore, our

vulnerability-aware energy optimization approach is vital for multicore systems with

vulnerability constraints.

5.4 Summary

Cache vulnerability is a major concern in embedded systems design due to

increasing cache size and soft errors. While both vulnerability and energy optimization

have received considerable attention in recent years, there are no existing works on

vulnerability-aware energy optimization for multicore systems. In this chapter, we

presented a vulnerability-aware energy optimization technique for real-time multicore

systems. Our approach integrates dynamic cache reconfiguration (DCR) of private

L1 caches and cache partitioning (CP) of the shared L2 cache. L2 CP is effective in

reducing inter-core interference, while applying L1 DCR can further reduce the energy

consumption under the performance and vulnerability constraints. Our task profiling

technique based on the independence between tasks can drastically reduce the complexity

of space exploration. Our proposed algorithm uses dynamic programming by discretizing

the energy values, which can efficiently search the space to find optimal L1 cache

configurations for each task and L2 cache partition factors for each core. Experimental

results demonstrated that we can achieve 19.2% average energy savings compared with the

base system, while drastically reduce the vulnerability (49.3% on average) compared with

the state-of-art technique [12].
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Algorithm 7: Vulnerability-aware DCR+CP

1: for k = 1 to m do
2: for i = 1 to ρk do
3: for wk = 1 to ω − 1 do
4: for cI , cD ∈ C do
5: Simulate task τk,i with config=[cI , cD ,wk ]
6: Collect tk,i(config) ek,i(config) vk,i(config)

7: end

8: end

9: end

10: end
11: for k = 1 to m do
12: for wk = 1 to ω − 1 do
13: for e = emink (wk) to e

max
k (wk) do

14: for cI , cD ∈ C do
15: if ek,1(cI , cD ,wk) == e then
16: if tk,1(cI , cD ,wk) < T [1][e] && vk,1(cI , cD ,wk) < V [1][e] then
17: T [1][e] = tk,1(cI , cD ,wk)
18: V [1][e] = vk,1(cI , cD ,wk)

19: end

20: end

21: end

22: end
23: for i = 2 to ρk do
24: for e = emink (wk) to e

max
k (wk) do

25: for cI , cD ∈ C do
26: e ′ = e − ek,i(cI , cD ,wk)
27: if T [i − 1][e ′] + tk,i(cI , cD ,wk)¡T [i ][e]

&&V [i − 1][e ′] + vk,i(cI , cD ,wk)¡V [i ][e]
28: then
29: T [i ][e]=T [i − 1][e ′] + tk,i(cI , cD ,wk)
30: V [i ][e]=V [i − 1][e ′] + vk,i(cI , cD ,wk)
31: end

32: end

33: end

34: end
35: E ∗

k (wk) = min{ek |T [ρk ][ek ] ≤ D &V [ρk ][ek ] ≤ Vk}
36: end

37: end
38: for all Pj = {w1,w2, ...,wm} ∈ P do
39: E ∗

j =
∑m
k=1 E

∗
k (wk)

40: E ∗ = min(E ∗,E ∗
j )

41: end
42: return E ∗

107



Table 5-1. Task sets from MiBench [46] and CPU2000 [57] benchmarks
Task set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9

Core 1
qsort
vpr

mcf
sha

applu
lucas

mgrid
FFT

mcf
toast
sha

mgrid
parser
gcc

vpr
sha
FFT

sha
mcf

untoast
toast

gcc
stringsearch

parser
dijkstra

Core 2
parser
toast

gcc
bitcount

dijkstra
swim

dijkstra
parser

gcc
parser

stringsearch

toast
FFT
mcf

CRC32
lucas

untoast

applu
gcc

bitcount
ammp

untoast
mcf

ammp
bitcount

Core 3
untoast
swim

patricia
lucas

ammp
FFT

CRC32
swim

patricia
qsort
vpr

bitcount
ammp
applu

mgrid
bitcount
qsort

lucas
FFT

CRC32
patricia

lucas
patricia
qsort
vpr

Core 4
dijkstra
sha

basicmath
swim

basicmath
stringsearch

applu
bitcount

basicmath
CRC32
ammp

qsort
dijkstra
patricia

applu
parser

stringsearch

vpr
basicmath
mgrid
swim

basicmath
toast
applu
CRC32

Table 5-2. Task set 1: Cache config ([cI , cD ,wk ])

Set 1
Core 1
w1 = 2

Core 2
w2 = 2

Core 3
w3 = 1

Core 4
w4 = 3

Task 1
[4KB 4W 16B,
2KB 2W 32B]

qsort

[2KB 2W 64B,
4KB 4W 16B]

parser

[2KB 2W 32B,
2KB 2W 16B]

untoast

[2KB 2W 64B,
2KB 2W 16B]

dijkstra

Task 2
[1KB 1W 64B,
4KB 4W 16B]

vpr

[4KB 1W 64B,
1KB 1W 16B]

toast

[4KB 4W 32B,
2KB 2W 32B]

swim

[1KB 1W 64B,
1KB 1W 32B]

sha

Table 5-3. Task set 9: Cache config ([cI , cD ,wk ])

Set 9
Core 1
w1 = 2

Core 2
w2 = 2

Core 3
w3 = 2

Core 4
w4 = 2

Task 1
[1KB 1W 64B,
2KB 2W 16B]

gcc

[1KB 1W 64B,
1KB 1W 16B]

untoast

[4KB 4W 16B,
2KB 2W 32B]

lucas

[1KB 1W 64B,
4KB 4W 16B]
basicmath

Task 2
[4KB 1W 32B,
4KB 4W 16B]
stringsearch

[1KB 1W 32B,
1KB 1W 16B]

mcf

[1KB 1W 64B,
1KB 1W 16B]

patricia

[4KB 1W 64B,
1KB 1W 16B]

toast

Task 3
[2KB 2W 64B,
4KB 4W 16B]

parser

[1KB 1W 64B,
1KB 1W 16B]

ammp

[4KB 4W 16B,
2KB 2W 32B]

qsort

[1KB 1W 64B,
1KB 1W 16B]

applu

Task 4
[2KB 2W 64B,
2KB 2W 16B]

dijkstra

[1KB 1W 32B,
1KB 1W 32B]
bitcount

[1KB 1W 64B,
4KB 4W 16B]

vpr

[2KB 1W 32B,
2KB 2W 16B]

CRC32
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CHAPTER 6
TRACE BUFFER ATTACK ON AES CIPHER

It is of utmost importance to remain fully aware of the design vulnerabilities, in the

form of precise information leakage. In this chapter, we introduce Trace Buffer Attack

(TBA), a novel attack that can be mounted with the help of post-silicon debug facilities

present in a chip. System-on-Chip (SoC) designs have in-built trace buffer that traces

a small set of internal signals during execution, and the traced signal values are used

during post-silicon (off-line) debug. There is an inherent conflict between security and

observability. While debug engineers would like to have better observability, the security

experts would like to enforce limited or no visibility with respect to the security modules

in a SoC design. A trade-off is typically made where trace signals are carefully selected

to maintain security while providing reasonable debug capability. To the best of our

knowledge, the vulnerability of trace buffers in cryptographic implementation has not

been studied in the literature. We conclusively show that to achieve a certain quantifiable

level of debugging ability, security is compromised. We consider AES as the benchmark

algorithm for demonstrating the efficacy of this attack though, the attack can be mounted

on other ciphers following the same principles outlined in this work. Our experimental

results demonstrate that we can fully recover the secret key for AES-128 (iterative)

implementation whereas we can partially recover the secret key for various pipelined AES

implementations.

The rest of this chapter is organized as follows. Section 6.1 describes our trace buffer

attack with knowledge of the RTL implementation. Section 6.2 analyzes the process

to attack without any knowledge of the RTL implementation. Section 6.3 presents the

experimental studies followed by proposed countermeasures in Section 6.4. The chapter is

concluded in Section 6.5.
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6.1 Trace Buffer Attack with RTL Knowledge

In this section, we launch the trace buffer attack assuming that the register-transfer

level (RTL) implementation is available. We first describe the attack model and then

introduce the proposed attack in two phases. In the first phase, we attempt to establish

the correspondence between the signal values in trace buffer and variables in the AES

design. In the second phase, depending on the trace buffer size and the number of cycles

for which each signal is dumped, the signal values are fed to the restoration algorithm.

The restoration algorithm attempts to restore internal signals and eventually recover bits

in the user-specified primary key. Details of each step are elaborated in the following

sections.

6.1.1 Attack Model

The proposed trace buffer attack has the following assumptions:

1. The primary key is stored in secure memory and properly maintained by key
management.

2. The attacker knows the AES encryption algorithm as it is open to public.

3. High level timing information, as well as the RTL implementation of the AES, is
known to the attacker.

4. The attacker has access to trigger the trace buffer recording at any time and dump
out the traced content via the JTAG port after designated clock cycles.

5. The attacker does not know which signals are recorded in the trace buffer.

The assumptions that we have made for trace buffer attack are similar to the ones made in

the literature for scan-chain attacks [84–86]. The primary key is assumed to be properly

maintained by key management. The attacker knows the algorithmic details and the

high level timing information of the cryptosystem being implemented in the device. In

Assumption (3), we assume that the attacker knows the RTL implementation of AES for

the attack proposed in Section 6.1. We realize that this is a very strong assumption. We

remove this assumption to make it a more realistic attack in Section 6.2. Assumption (4)

is similar to scan chain attacks concerning the debugging JTAG port. The attacker has
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the ability to run the device under test mode, i.e. trigger the recording of trace buffer and

dump out the buffer content. He can feed the circuit with designated inputs (plaintexts

and fake keys) for cryptanalysis. For Assumption (5), the attacker does not know which

signals are recorded in the trace buffer. It is the first challenge to be resolved if the

attacker wants to launch an attack.

Compared with the scan chain attacks, the trace buffer attack introduces the

following additional challenges. (1) The first step for trace buffer attack is similar to

scan-based attack, which is to identify signals. For scan-based attack, the attacker knows

what signals are in the scan flip-flops. The attacker’s problem is to identify the structure

(order) of the scan chain. However, for trace buffer attack, the attacker does not even

know which signals are selected to be recorded in the buffer. (2) The number of signals

traced is usually much smaller compared to the length of scan chains (especially if it is

full-scan). The number of traced signals is limited, which makes it more challenging for

the second step of signal restoration for trace buffer attack. (3) The trace buffer can

record values over a continuous interval. Trace buffer attack has the advantage to analyze

the signal values between clock cycles (between encryption rounds, while the scan chain

can only scan out the signal values at one clock cycle. (4) Protection against scan-based

attacks mostly focuses on scrambling the structure of scan chain. For trace buffer attack,

the countermeasures have to focus on scrambling or direct encryption of the recorded

signals.

6.1.2 Determine Trace Buffer Signals

If an attacker wants to steal the primary key, signal values in the trace buffer

are the starting point of hacking. Unless the traced data is encrypted or debugging is

authentication based, the attacker can easily dump traced data through JTAG interface.

The challenge for Trace Buffer Attack is that the attacker does not know what signals

are recorded in the trace buffer. In this section, we assume that the attacker has access

to a few test chips and the RTL description of the AES design. The one-to-one mapping
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between the traced signals and the registers in RTL description can be established by

running some test chips and matching with RTL simulation.

Algorithm 8: Map Signals to Registers in RTL

Input: AES RTL implementation, AES test chip
Output: Identified signals in trace buffer

1: while true do
2: Select a random plaintext Titr , a random key Kitr
3: Run RTL simulation with Titr and Kitr for c cycles
4: Run the test chip with Titr and Kitr for c cycles
5: for Each traced signal Si in trace buffer do
6: Represent Si as a vector of c values
7: for Each register Rj in RTL do
8: Represent Rj as a vector of c values
9: if the vectors of Si and Rj are the same then

10: (Si , Rj) is a possible match
11: end

12: end
13: if Si has a unique match Rj then
14: (Si , Rj) is a verified match
15: end

16: end
17: if Every signal in S has a unique match then
18: Break
19: end

20: end
21: return Identified signals in trace buffer

Algorithm 8 shows the process to match signals in trace buffer with registers in the

RTL implementation. For each iteration, we select a random input plaintext Titr and a

random key Kitr . We run the test chip and the RTL simulation with the same key and

input text for c cycles. Each traced signal will have a vector of c values stored in the trace

buffer. For each traced signal, we compare its vector with vectors of all the registers from

RTL simulation. If a unique match is found in the RTL simulation, this traced signal is

identified in the RTL description. We repeat the process until all the traced signals are

uniquely identified.
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6.1.3 Signal Restoration

Let us assume that the attacker has finished the preparation in the previous step

and successfully identified the signals in the trace buffer. The next step is to run the

chip in the working mode with the secret primary key and take advantage of the trace

buffer to initialize the attack. The attacker dumps out the signal states recorded in the

buffer during online encryption, and tries to analyze the design so as to recover as many

other signals as possible, and eventually obtain the primary key. In post-silicon debug,

restoration of unknown signals based on trace buffer data is a crucial step in debugging.

This section describes signal restoration based on trace buffer.

Figure 6-1. Illustration of signal restoration for an AND gate

The signals can be reconstructed from the traced signals in two directions: forward

and backward restoration. Forward restoration pushes the restoration of signals from

input to output, which is the process of inferring output values if some inputs are known.

Backward restoration infers input values if some outputs are known. Figure 6-1 illustrates

forward and backward restoration with a simple example of AND gate. Figure 6-1(a)

shows forward restoration: if one of the inputs is 0, the output can be inferred to be 0;

if both of the inputs are 1, the output can be inferred to be 1. Figure 6-1(b) and (c)

shows backward restoration: if the output is 1, both of the inputs can be inferred to be

1. However, if the output is 0, backward restoration might not be successful as shown
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in (c). The restoration process for other logic components is similar to AND gate. The

restoration for registers (flip-flops) is that the state at current cycle is related to the state

at previous cycle as specified by their truth tables.

Algorithm 9 outlines the major steps in a typical restoration algorithm. We first read

in the AES circuit and form a hypergraph. Based on the trace buffer content, we perform

forward and backward restorations to construct value assignments for un-traced nodes.

We use a queue UnderProcess to keep track of nodes which have new values been restored.

The queue is initialized with nodes from the trace buffer. Each node in the queue is

processed by backward and forward restoration and nodes with newly assigned values

will be put to the end of the queue. This process continues until no new assignments

are created, i.e., the queue becomes empty. Although this algorithm has exponential

complexity, in reality, it completes the process very fast (as demonstrated in Section 6.3)

since the number of new values created decreases significantly after each iteration.

6.2 Trace Buffer Attack without RTL Knowledge

In this section, we aim to attack the AES cipher without the knowledge of its RTL

implementation. We consider iterative AES-128 with a trace buffer (32× 512) of width 32

and depth 512. We first identify as many signals as we can in the trace buffer, by referring

to the variables in the AES encryption algorithm. We then show that the primary key can

be retrieved by taking advantage of Rijndael’s key scheduling,

6.2.1 Mapping Signals to Algorithm Variables

Suppose we have the AES-128 chip as in Case Study 1 (Section 6.3), we don’t have

the implementation at RTL level, which means that we cannot run the RTL simulation

and the chip side-by-side to compare which signals are recorded in the trace buffer. What

we know from the chip datasheet is that it takes 13 cycles to complete one encryption.

The trace buffer contains values of 32 internal signals. The intermediate encrypted text

and the round key are most beneficial for signal restoration to recover the primary key

bits. The code snippet of C implementation of AES-128 is shown in Figure 6-2. The
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Algorithm 9: Signal Restoration Algorithm

Input: Trace buffer content, AES netlist
Output: Restored signal (node) values

1: Read in the AES circuit and form a hypergraph
2: Put all traced nodes into the UnderProcess queue
3: Update the traced nodes with their known values (0/1)
4: Update all other nodes with unknown values (x)
5: while UnderProcess is not empty do
6: Take a node N from the UnderProcess queue
7: for each node in N’s BackwardNeighbors do
8: Backward Restoration for this neighbor node
9: if value at any cycle is restored then

10: Add this neighbor node to UnderProcess
11: end

12: end
13: for each node in N’s ForwardNeighbors do
14: Forward Restoration for this neighor node
15: if value at any cycle is restored then
16: Add this neighbor node to UnderProcess
17: end

18: end

19: end
20: return

variables {state[0], state[1], state[2], state[3]} represent the intermediate encrypted text,

and the variables [w0 w1 w2 w3] represent the 128-bit round key. The for loop of 10

iterations represents the 10 encryption rounds.

We would like to find out whether any signals (bits) in the trace buffer are from

the intermediate encrypted text or the round key. It takes 13 cycles for the AES chip to

complete one encryption operation, which is one initial round and 10 subsequent rounds in

the C program of AES. If one bit is from the round key [w0 w1 w2 w3], we can represent

the values of this bit over 10 rounds as a 10-bit binary string by running the C program.

The resulting 10-bit string would be a substring of the same bit/signal in the trace buffer.

If we apply a fixed key and a fixed plaintext when we run the test chip, a matching

algorithm variable bit from the C program would actually be a 10-bit substring repeating

with a period of 13 in the string of the same signal in the trace buffer.
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void AES128(word state[], word key []){

/* the initial round */

state [0] ^= key [0];

state [1] ^= key [1];

state [2] ^= key [2];

state [3] ^= key [3];

word y, p0 , p1 , p2 , p3;

byte rcon = 1;

/* ten encryption rounds */

word w0 = key [0];

word w1 = key [1];

word w2 = key [2];

word w3 = key [3];

for(int i=1; i <=10; i++) {

// round -key generation

...

// four -step encryption

...

}

}

Figure 6-2. C Code Snippet for AES-128

Algorithm 10 shows the details about how we matched the signals from trace buffer

bits to algorithm variable bits. We run the C program and the test chip with a same

random plaintext Titr , and a same random key Kitr . Each signal Si in trace buffer is

represented as a 512-bit binary string and each variable bit Vj ,k as a 10-bit binary string.

We decide that (Si , Vj ,k) is a possible match if variable bit Vj ,k is a repeating pattern of

Si . The algorithm tries to identify as many signals of S as possible, and it will terminate

when matched signals are uniquely identified and no more unique match can be found.

The complexity of the matching algorithm is O(W ∗
∑
j Bj), where W is the buffer width,

Bj is the number of bits in variable Vj ,
∑
j Bj is the total number of candidate variable

bits.

By applying the above method, we can identify 30 out 32 signals in the trace buffer.

These 30 signals include two bits from the intermediate register, and another 28 bits from

the round key register can be matched. The 28 bits from the 128-bit round key register

include 1 bit from the first word, 2 bits from the third word, and 25 bits from the fourth

word. More details about these signals are presented in Section 6.3.1. Note that we apply
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Algorithm 10: Map Signals to Bits in AES variables

Input: AES C implementaion, AES test chip
Output: Identified signals in trace buffer

1: while true do
2: Select a random plaintext Titr , a random key Kitr
3: Run the C program of AES-128 with Titr and Kitr
4: Run the test chip with Titr and Kitr
5: for Each traced signal Si in trace buffer do
6: Represent Si as a 512-bit binary string
7: for Each variable Vj in AES algorithm do
8: Extract Vj across the 10 encryption rounds
9: for Each bit V(j ,k) in Vj do

10: Represent V(j ,k) as 10-bit binary string
11: if V(j ,k) is a repeating pattern in Si then
12: (Si , V(j ,k)) is a possible match
13: end

14: end

15: end
16: if Si has a unique match V(j ,k) then
17: (Si , V(j ,k)) is a verified match
18: end

19: end
20: if Every signal in S have either unique or no match then
21: Break
22: end

23: end
24: return Identified signals in trace buffer

the state-of-the art signal selection algorithm to select the trace signals. In other words,

we did not choose signals that would help us in trace buffer attack. This research also

points to the need for having security-aware signal selection.

6.2.2 Attack by Taking Advantage of Rijndael’s Key Expansion

As shown in Figure 2-3, the last step of each round is XOR with a round key. The

initial round takes the primary key, and each of the following 10 rounds uses a different

round key. The round key generation follows the Rijndael’s key expansion algorithm

to generate the next 4-word round key [RKi+1,1,RKi+1,2,RKi+1,3,RKi+1,4] based on the

current 4-word round key [RKi ,1,RKi ,2,RKi ,3,RKi ,4].
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RK(i+1,1) = RK(i ,1) ⊕ sbox(lcs(RK(i ,4)))⊕ RCi

RK(i+1,2) = RK(i ,2) ⊕ RK(i+1,1)

RK(i+1,3) = RK(i ,3) ⊕ RK(i+1,2)

RK(i+1,4) = RK(i ,4) ⊕ RK(i+1,3)

(6–1)

Equation 6–1 shows the Rijndael’s key expansion algorithm. For the (i + 1)th

round, the first word RK(i+1,1) is the XOR of three items: the first word of i th round,

the substituted word by applying a one-byte lcs (Left Circular Shift) operation and a

byte-wise sbox substitution on the fourth word of i th round, and the round constant RCi .

The sbox function is byte-to-byte substitution according to a 16 × 16 lookup table as

shown in Fig. 6-4. For the other three words RK(i+1,2),RK(i+1,3), RK(i+1,4), they follow the

same pattern: the XOR of the word itself at i th round and the previous word at (i + 1)th

round. Based on the above observation, we generalize two rules as shown in Equation 6–2,

which will be useful for signal values restoration between cycles (rounds).

Rule 1: sbox(lcs(RK(i ,4))) = RK(i ,1) ⊕ RK(i+1,1) ⊕ RCi

Rule 2: RK(i+1,j−1) = RK(i ,j) ⊕ RK(i+1,j), j = 2, 3, 4
(6–2)

In Rijndael’s round key expansion, the fourth word of current round key is the seed

word for generating the next round key, which is shown in Equation 6–1 and 6–2. The

lcs and sbox operations on the fourth word are the sources to introduce unpredictable

randomness to round keys. We have figured out that the trace buffer contains bits from

the fourth word in the round key register in Section 6.2.1, which would be critical for us to

retrieve the full key.

(1) Analysis: Assume the Fourth Word Known

Table 6-1 shows that if all the 32 bits of the fourth word of the round keys are

known, the 128-bit primary key, which is all 0’s for this example, can be recovered. Round

keys are represented as hexadecimal digits and ‘X’ means ‘unknown’. Assume we know
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the fourth word of the round keys as shown in Table 6-1(A). We first apply Rule 2 on

RK(1∼10,4) (the fourth column of the Table 6-1(B)), we can retrieve the third word of all

round keys except the first round, which is RK(2∼10,3) (the third column). Similarly, we

can retrieve the second column and the first column (RK(3∼10,2) and RK(4∼10,1)). Now we

have successfully retrieved the full round key RK4. The Rijndael’s key expansion defines

the relation between two consecutive round keys, which means we can use Equation 6–1 to

get the previous round key if we have the current round key. With RK4 already retrieved,

we can then get RK3, RK2, RK1 and eventually RK0, which is the primary key.

Table 6-1 shows that we would be able to retrieve RK4 if all the 32 bits of the fourth

word of the round key register are known. In fact, only the first four rows in Table 6-1 are

needed to retrieve RK4. With Rule 2, any four consecutive rounds with the fourth word

known will be able to retrieve a full round key, i.e. the value of RK(i∼i+3),4 will lead to the

recovery of full round key RKi+3.

(2) Restoration from Partial Information in Trace Buffer

However, the trace buffer contains only 25 bits of the fourth word as shown in

Section 6.3.1. The above approach needs four consecutive rounds with the fourth word

known, while we have 7 bits missing for the fourth word of each round. If we try to

brute-force all possibilities, the time complexity is 27∗4 = 228. While this brute-force

attack is within reasonable computation limit, we show that even that is not required if

we put the sbox bijection property into use. The sbox lookup table as shown in Figure 6-4

is the core of Rijndael’s key expansion. It is a bijective mapping between the bytes before

and after sbox substitution. The bijection property of this byte-to-byte mapping makes it

possible to recover missing bits in round keys.

Rule 1 shows the relationship between RK(i ,1), RK(i+1,1), RK(i ,4) and RCi . Given that

RK(i ,1), RK(i+1,1) and RK(i ,4) are partially obtained from the trace buffer content and RCi

is a known constant. We use the example in Figure 6-3 to illustrate how Rule 1 can help

recover missing bits in RK(i ,4). In this example, RK(4,1) and RK(5,1) have 4 bits missing
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Table 6-1. Recover when the fourth word of the round key register are known.
(A) Assume the fourth word of all rounds known
RK1 XXXXXXXX XXXXXXXX XXXXXXXX 62636363
RK2 XXXXXXXX XXXXXXXX XXXXXXXX F9FBFBAA
RK3 XXXXXXXX XXXXXXXX XXXXXXXX 0B0FAC99
RK4 XXXXXXXX XXXXXXXX XXXXXXXX 7E91EE2B
RK5 XXXXXXXX XXXXXXXX XXXXXXXX F34B9290
RK6 XXXXXXXX XXXXXXXX XXXXXXXX 6AB49BA7
RK7 XXXXXXXX XXXXXXXX XXXXXXXX C61BF09B
RK8 XXXXXXXX XXXXXXXX XXXXXXXX 511DFA9F
RK9 XXXXXXXX XXXXXXXX XXXXXXXX 4C664941
RK10 XXXXXXXX XXXXXXXX XXXXXXXX 6F8F188E
(B) Apply Rule 2 to recover RK4
RK1 XXXXXXXX XXXXXXXX XXXXXXXX 62636363
RK2 XXXXXXXX XXXXXXXX 9B9898C9 F9FBFBAA
RK3 XXXXXXXX 696CCFFA F2F45733 0B0FAC99
RK4 EE06DA7B 876A1581 759E42B2 7E91EE2B
RK5 7F2E2B88 F8443E09 8DDA7CBB F34B9290
RK6 EC614B85 1425758C 99FF0937 6AB49BA7
RK7 21751787 3550620B ACAF6B3C C61BF09B
RK8 0EF90333 3BA96138 97060A04 511DFA9F
RK9 B1D4D8E2 8A7DB9DA 1D7BB3DE 4C664941
RK10 B4EF5BCB 3E92E211 23E951CF 6F8F188E
(C) Use Equation 6–1 to get RK3 ∼ RK1, and RK0 (the primary key)
RK0 00000000 00000000 00000000 00000000
RK1 62636363 62636363 62636363 62636363
RK2 9B9898C9 F9FBFBAA 9B9898C9 F9FBFBAA
RK3 90973450 696CCFFA F2F45733 0B0FAC99
RK4 EE06DA7B 876A1581 759E42B2 7E91EE2B

Assume we have the fourth word of all rounds known, we can apply Rule 2 in a cascaded
way and recover all bits in RK4. From RK4, we can use Equation 6–1 to get RK3, RK2,
RK1, and RK0, which is the primary key.

and RK(4,4) has 5 bits missing. We apply Rule 1 as shown in line 7 and derive with the

partially known RK(4,1), RK(5,1) and RK(4,4). After some bit-manipulation, we get sbox

mapping from a 32-bit word to another 32-bit word in line 12∼13. In line 15, the first

byte is 1001x0x1 and we would like to figure out two unknown bits. If we decompose

the byte in half, the left part is 9 and the right part could be four choices: 1, 3, 9 or B.

This means we need to consider sbox(9,1), sbox(9,3), sbox(9,9) or sbox (9,B) as potential
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1: Given partial round key bits:
2: RK(4,1) = (111x11100000x1101101101001xx1011)b
3: RK(5,1) = (011x11110010x1100010101110xx1000)b
4: RK(4,4) = (01xx11101001x0x11x10111000xx1011)b
5: RC4 = (00010000000000000000000000000000)b
6: Apply Rule 1:
7: sbox(lcs(RK(4,4))) = RK(4,1) ⊕ RK(5,1) ⊕ RC4
8: −→
9: sbox(lcs(01xx11101001x0x11x10111000xx1011))
10: = 100x00010010x0001111000111xx0011
11: −→
12: sbox(1001x0x1 1x101110 00xx1011 01xx1110)
13: = 100x0001 0010x000 11110001 11xx0011
14: For each byte, check the sbox lookup table
15: sbox([1001x0x1]) = [100x0001]
16: → sbox([10010001] = [10000001]
17: sbox([1x101110]) = [0010x000]
18: → sbox([11101110] = [00101000]
19: sbox([00xx1011]) = [11110001]
20: → sbox([00101011] = [11110001]
21: sbox([01xx1110]) = [11xx0011]
22: → sbox([01111110] = [11110011]
23: Missing bits of RK(4,4) recovered by sbox lookup table:
24: RK(4,4) = (01111110100100011110111000101011)b

Figure 6-3. An example showing the recovery of missing bits in RK(4,4) by using sbox
lookup table (Rule 1).

matches. However, the right hand side of line 15 indicates that the expected value

100x0001 can be either 81 or 91. Among the four possible choices, only sbox(9,1) fits the

requirement. Therefore we get the unique mapping for the first byte as sbox(9,1) = 81,

i.e., sbox([10010001]) = [10000001] as shown by the yellow circle (Row 9 and Column

1) in the lookup table. As Figure 5 shows, using similar lookup, we can identify the other

three bytes, i.e., sbox([11101110]) = [00101000], sbox([00101011]) = [11110001], and

sbox([01111110]) = [11110011].

Algorithm 11 shows the steps to restore the primary key from the available trace

buffer content. In Step 1, we first apply Rule 2 in a cascaded way to get partial bits of

the first word in round keys. In Step 2, we then apply Rule 1 and the unique mapping
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Figure 6-4. AES sbox lookup table (the numbers are in hexadecimal format)

property of sbox to further recover missing bits of the fourth word in round keys. After

using sbox, the following steps will be very similar to the example shown in Table 6-1. In

Step 3, we re-apply Rule 2 in a cascaded way to get a full round key. Finally in Step 4, we

use Equation 6–1 to push back from that round key and eventually get the primary key.

Section 6.3-A shows detailed experimental results after each step.

The most critical part in Algorithm 11 is Step 2, i.e., applying Rule 1 to recover

missing bits in RK(i ,4). Note, it is also possible that multiple candidate mappings are

available in the lookup table for the partially known bytes. In that case, we have to

evaluate all possible mappings. Our experiments with different random numbers suggest

that the chances of multiple candidates are very rare.

6.3 Experimental Results

We applied our trace buffer attack on the AES Verilog implementations (the iterative

AES-128, and the pipelined AES-128, AES-192 and AES-256 [? ]) from the OpenCores
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Algorithm 11: Restore Missing Bits in Round Keys

Input: Identifid signals in round keys from trace buffer
Output: Restored round key bits

1: Update identified bits with values (1/0) from trace buffer
2: Update all other bits with unknown values (x)

/* Step 1: Apply Rule 2 */
3: for j ← 4 to 2 do
4: for i ← 1 to 9 do
5: RK(i+1,j−1) = RK(i ,j) ⊕ RK(i+1,j)
6: end

7: end
8: /* Step 2: Apply Rule 1 */
9: for i ← 4 to 9 do

10: Use the bijection property of sbox to recover missing bits in RK(i ,4)
11: end
12: /* Step 3: Apply Rule 2 one more time */
13: for j ← 4 to 2 do
14: for i ← 1 to 9 do
15: RK(i+1,j−1) = RK(i ,j) ⊕ RK(i+1,j)
16: end

17: end
18: /* Step 4: Use Equation 6–1 to get the primary key */
19: for i ← 9 to 1 do
20: RK(i−1,2) = RK(i ,2) ⊕ RK(i ,1)
21: RK(i−1,3) = RK(i ,3) ⊕ RK(i ,2)
22: RK(i−1,4) = RK(i ,4) ⊕ RK(i ,3)
23: RK(i−1,1) = RK(i ,1) ⊕ sbox(lcs(RK(i−1,4)))⊕ RCi−1
24: end
25: return PrimaryKey = RK0

website. The Synopsys Design Compiler is used to synthesize the RTL implementation

into a gate-level netlist. We developed C++ code to simulate the gate-level circuits

and implement the signal restoration algorithms. The experiments were conducted on a

computer with AMD Opteron 2.4GHz core and 32GB memory. We used signal selection

algorithm in [79] to select trace signals for the trace buffers since it produces signals that

can maximize observability compared to the other signal selection techniques.
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6.3.1 Case Study 1: Iterative AES-128

The iterative AES-128 design has 530 flip-flops and about 25,000 basic logic gates.

The 530 flip-flops (registers) include:

• ld r, done, which are one-bit control signals.

• dcnt[0..3], which is a 4-bit register keeping track of the encryption rounds.

• text in r[0..127], which is a 128-bit register holding the plaintext.

• w0[0..31], w1[0..31], w2[0..31], and w3[0..31], which are 32-bit each, holding the
round keys.

• sa00[0..7], sa01[0..7], sa02[0..7], sa03[0..7], sa10[0..7], sa11[0..7], sa12[0..7],
sa13[0..7], sa20[0..7], sa21[0..7], sa22[0..7], sa23[0..7], sa30[0..7], sa31[0..7],
sa32[0..7], sa33[0..7], which are 8-bit registers holding intermediate encrypted text in
bytes.

• u0.rcon[24..31] and u0.r0.rcnt[0..3], which are 12 temporary registers in the key
expansion unit.

• text out[0..127], which is a 128-bit register holding the ciphertext.

(1) Attack without RTL Implementation

As described in Section 6.2, we assume that we don’t have the RTL implementation.

We first use Algorithm 10 to guess which bits of the round keys are recorded in the

(32 × 512) trace buffer. We are able to recognize 28 bits from the round key, including

1 bit from the first word (w0[14]), 2 bits from the third word (w2[17] and w2[29]), and

25 bits from the fourth word (w3[0-3, 6-13, 15-16, 18, 20-27, 30-31]). We conduct the

restoration process according to Algorithm 11. Table 6-2 shows intermediate results after

each step of the restoration process. First, we apply Rule 2 (the relation between different

words) to restore missing bits in the fourth word, which results in Table 6-2(B). We then

apply Rule 1 (the unique mapping property of sbox lookup table ) to get Table 6-2(C).

We apply Rule 2 again to get a full round key RK7, which results in Table 6-2(D). From

RK7, we can use Equation 6–1 to get RK6 ∼ RK1 and eventually get the primary key RK0,

which is all 0’s in this case.
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Table 6-2. Restore the primary key from the available trace buffer content.
(A) Step 0: Bits from the trace buffer
RK1 xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx1xxxxxxxxxxx1xxxxxxxxxxxxxxxxx 01xx00100110x0x10x10001101xx0011
RK2 xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx0xxxxxxxxxxx0xxxxxxxxxxxxxxxxx 11xx10011111x0x11x11101110xx1010
RK3 xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx1xxxxxxxxxxx0xxxxxxxxxxxxxxxxx 00xx10110000x1x11x10110010xx1001
RK4 xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx1xxxxxxxxxxx1xxxxxxxxxxxxxxxxx 01xx11101001x0x11x10111000xx1011
RK5 xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx0xxxxxxxxxxx1xxxxxxxxxxxxxxxxx 11xx00110100x0x11x01001010xx0000
RK6 xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx0xxxxxxxxxxx1xxxxxxxxxxxxxxxxx 01xx10101011x1x01x01101110xx0111
RK7 xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx1xxxxxxxxxxx1xxxxxxxxxxxxxxxxx 11xx01100001x0x11x11000010xx1011
RK8 xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx0xxxxxxxxxxx1xxxxxxxxxxxxxxxxx 01xx00010001x1x11x11101010xx1111
RK9 xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx0xxxxxxxxxxx1xxxxxxxxxxxxxxxxx 01xx11000110x1x00x00100101xx0001
RK10 xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx1xxxxxxxxxxx0xxxxxxxxxxxxxxxxx 01xx11111000x1x10x01100010xx1110

(B) Step 1: Apply Rule 2 in a cascaded way
RK1 xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx1xxxxxxxxxxx1xxxxxxxxxxxxxxxxx 01xx00100110x0x10x10001101xx0011
RK2 xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 100x10111001x0001x01100011xx1001 11xx10011111x0x11x11101110xx1010
RK3 xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx 011x10010110x1001x00111111xx1010 111x00101111x1000x01011100xx0011 00xx10110000x1x11x10110010xx1001
RK4 111x11100000x1101101101001xx1011 100x01110110x0100x01010110xx0001 011x01011001x1100x00001010xx0010 01xx11101001x0x11x10111000xx1011
RK5 011x11110010x1100010101110xx1000 111x10000100x1000x11111000xx1001 100x11011101x0100x11110010xx1011 11xx00110100x0x11x01001010xx0000
RK6 111x11000110x0010100101110xx0101 000x01000010x1010x11010110xx1100 100x10011111x1110x00100100xx0111 01xx10101011x1x01x01101110xx0111
RK7 001x00010111x1010001011110xx0111 001x01010101x0000x10001000xx1011 101x11001010x1110x10101100xx1100 11xx01100001x0x11x11000010xx1011
RK8 000x11101111x0010000001100xx0011 001x10111010x0010x10000100xx1000 100x01110000x1100x00101000xx0100 01xx00010001x1x11x11101010xx1111
RK9 101x00011101x1001101100011xx0010 100x10100111x1011x11100111xx1010 000x11010111x0111x11001111xx1110 01xx11000110x1x00x00100101xx0001
RK10 101x01001110x1110101101111xx1011 001x11101001x0101x10001000xx0001 001x00111110x0010x01000111xx1111 01xx11111000x1x10x01100010xx1110

(C) Step 2: Apply Rule 1 and sbox to recover
RK1 xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx1xxxxxxxxxxx1xxxxxxxxxxxxxxxxx 01xx00100110x0x10x10001101xx0011
RK2 xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 100x10111001x0001x01100011xx1001 11xx10011111x0x11x11101110xx1010
RK3 xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx 011x10010110x1001x00111111xx1010 111x00101111x1000x01011100xx0011 00xx10110000x1x11x10110010xx1001
RK4 111x11100000x1101101101001xx1011 100x01110110x0100x01010110xx0001 011x01011001x1100x00001010xx0010 01111110100100011110111000101011
RK5 011x11110010x1100010101110xx1000 111x10000100x1000x11111000xx1001 100x11011101x0100x11110010xx1011 11110011010010111001001010010000
RK6 111x11000110x0010100101110xx0101 000x01000010x1010x11010110xx1100 100x10011111x1110x00100100xx0111 01101010101101001001101110100111
RK7 001x00010111x1010001011110xx0111 001x01010101x0000x10001000xx1011 101x11001010x1110x10101100xx1100 11000110000110111111000010011011
RK8 000x11101111x0010000001100xx0011 001x10111010x0010x10000100xx1000 100x01110000x1100x00101000xx0100 01010001000111011111101010011111
RK9 101x00011101x1001101100011xx0010 100x10100111x1011x11100111xx1010 000x11010111x0111x11001111xx1110 01001100011001100100100101000001
RK10 101x01001110x1110101101111xx1011 001x11101001x0101x10001000xx0001 001x00111110x0010x01000111xx1111 01xx11111000x1x10x01100010xx1110

(D) Step 3: Apply Rule 2 again to recover
RK1 xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx1xxxxxxxxxxx1xxxxxxxxxxxxxxxxx 01xx00100110x0x10x10001101xx0011
RK2 xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 100x10111001x0001x01100011xx1001 11xx10011111x0x11x11101110xx1010
RK3 xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx 011x10010110x1001x00111111xx1010 111x00101111x1000x01011100xx0011 00xx10110000x1x11x10110010xx1001
RK4 111x11100000x1101101101001xx1011 100x01110110x0100x01010110xx0001 011x01011001x1100x00001010xx0010 01111110100100011110111000101011
RK5 011x11110010x1100010101110xx1000 111x10000100x1000x11111000xx1001 10001101110110100111110010111011 11110011010010111001001010010000
RK6 111x11000110x0010100101110xx0101 00010100001001010111010110001100 10011001111111110000100100110111 01101010101101001001101110100111
RK7 00100001011101010001011110000111 00110101010100000110001000001011 10101100101011110110101100111100 11000110000110111111000010011011
RK8 00001110111110010000001100110011 00111011101010010110000100111000 10010111000001100000101000000100 01010001000111011111101010011111
RK9 10110001110101001101100011100010 10001010011111011011100111011010 00011101011110111011001111011110 01001100011001100100100101000001
RK10 101x01001110x1110101101111xx1011 001x11101001x0101x10001000xx0001 001x00111110x0010x01000111xx1111 01xx11111000x1x10x01100010xx1110

(E) Step 4: Apply Equation 6–1 to push back to get RK0 (which is the primary key)
RK0 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000 00000000000000000000000000000000
RK1 01100010011000110110001101100011 01100010011000110110001101100011 01100010011000110110001101100011 01100010011000110110001101100011
RK2 10011011100110001001100011001001 11111001111110111111101110101010 10011011100110001001100011001001 11111001111110111111101110101010
RK3 10010000100101110011010001010000 01101001011011001100111111111010 11110010111101000101011100110011 00001011000011111010110010011001
RK4 11101110000001101101101001111011 10000111011010100001010110000001 01110101100111100100001010110010 01111110100100011110111000101011
RK5 01111111001011100010101110001000 11111000010001000011111000001001 10001101110110100111110010111011 11110011010010111001001010010000
RK6 11101100011000010100101110000101 00010100001001010111010110001100 10011001111111110000100100110111 01101010101101001001101110100111

There are 28 bits available in the trace buffer, as shown in Table 6-2(A). We first apply
Rule 2 to get Table 6-2(B). We then apply Rule 1 to get Table 6-2(C), and apply Rule
2 again to get a full round key RK7 shown in Table 6-2(D). From RK7, we can use
Equation 6–1 to get RK6, ..., RK1 and eventually get the primary key (RK0), which is
all 0’s in this case.

The attack can successfully retrieve the full key without RTL knowledge. There are

two major reasons why this attack works so well. Firstly, 28 bits of the round key registers

are recorded in the trace buffer. The signal selection algorithm in [79] only greedily

choose signals that are best for observability. The signals in the round key registers

125



happen to be of highest restoration capability for observing other internal signals. The

blindness of selection of these round key signals contributes to information leakage, as

well as high observability. Secondly, the bijection property of sbox function plays a critical

role in recovering the missing bits in the fourth word of the round keys. However, if too

many bits from the round key were not recorded in the buffer, we might need a lot more

brute-force effort in Step 2 of Algorithm 11 to verify missing bits when using the sbox

lookup table. In the next section, we will see that the attack with RTL knowledge is more

powerful in recovering primary key bits.

(2) Attack with RTL Implementation

We explore different trace buffer sizes with buffer widths of 8, 16, and 32, buffer depth

(traced cycles) of 64, 128, 256 and 512 in our experiments. The signals recorded in the

trace buffer are identified by using methods detailed in Section 6.1.2 with the help of RTL

implementation. The identified signals for each buffer width is as follows:

• BufferWidth=8: {dcnt[2], ld r, w3[2], w3[1], w3[30], w3[27], w3[17], w3[13]}

• BufferWidth=16: {dcnt[2], ld r, w3[4], w3[29], w3[27], w3[23], w3[22], w3[18], w3[16],
w3[15], w3[14], w3[13], w3[12], w3[10], w1[9], w3[8]}

• BufferWidth=32: {dcnt[2], ld r, sa03[7], sa13[7], w3[7], w3[6], w3[3], w3[2], w3[1],
w3[31], w3[30], w2[29], w3[27], w3[26], w3[25], w3[24], w3[23], w3[22], w3[21], w3[20],
w3[18], w2[17], w3[16], w3[15], w0[14], w3[13], w3[12], w3[11], w3[10], w3[9], w3[8],
w3[0]}

Table 6-3 shows our results of trace buffer attack on the iterative AES-128 cipher.

The trace buffers with a buffer width of 32 and a buffer depth no less than 128 are able to

recover the full primary key in a few minutes.

Figure 6-5(a) shows the number of bits in the user key leaked with different

buffer sizes. Figure 6-5(b) shows the total number of internal states restored (debug

observability) during restoration. The number of restored primary key bits increases

with bigger buffer width. For the same buffer width, the number of restored key bits

increases slightly as the trace cycles increase, and it will be saturated after buffer depth is
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Table 6-3. Signal restoration for iterative AES-128.
hhhhhhhhhhhhhhhhhhBufferWidth

BufferDepth
64 128 256 512

8

leaked key (bits) 6 6 6 6
memory (MB) 116.4 161.4 252.0 432.0
time (mm:ss) 0:27.75 0:56.07 1:50.35 3:43.26

16

leaked key (bits) 18 25 28 28
memory (MB) 116.4 161.4 252.0 432.0
time (mm:ss) 0:27.82 0:55.94 1:51.00 3:44.10

32

leaked key (bits) 98 128 128 128
memory (MB) 116.4 161.4 252.0 432.0
time (mm:ss) 0:28.01 0:55.98 1:52.81 3:51.38
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Figure 6-5. Security and observability trade-off using different buffer widths and buffer
depths.
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big enough (256 cycles or more). The 8 × 512, 16 × 512 and 32 × 512 trace buffer can

respectively restore 6, 28 and 128 bits of the primary key. The fact that the 32× 512 trace

buffer can restore all 128-bit primary key is not surprising. The success of recovering the

full primary key is due to the observability provided by the trace buffer. The iterative

AES-128 design1 has relatively short pathways with only 530 flip-flops in total. The

32 signals selected out of the 530 flip-flops is the set of signals which could offer best

observability to the debugger.

The attack with RTL implementation is more powerful than without RTL in two

ways. First, the attack with RTL can identify all signals traced in the buffer, which means

the attack with RTL has more information to start with. Second, the restoration in

Algorithm 9 (with RTL knowledge) can deterministically propagate values forward and

backward in the AES circuit, while the restoration in Algorithm 11 (without RTL) would

need a lot more brute-force effort to test and verify all possible mappings if the sbox

lookup table cannot find a unique mapping.

6.3.2 Case Study 2: Pipelined AES Ciphers

The main difference from the iterative version is that the pipelined implementation

unrolls all the encryption rounds to be independent hardware units, which makes the

pipelined version about 10-15 times as large as the iterative. For example, the pipelined

AES-128 cipher has 6720 flip-flops and about 290,000 logic gates, which is roughly 10

times (10 encryption rounds) as large as the iterative AES-128. This poses a greater

challenge for the restoration process, because many signal values are not inferable due

to the long pathways between the known signals. Only signals that are very close to the

input can be propagated backward and possibly restore the primary key bits.

1 For iterative implementation, the restoration is clearly able to recover the key and we
expect the same trend to follow for AES-192 and AES-256.
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Figure 6-6. Pipelined AES-128, AES-192, and AES-256 ciphers: security and observability
trade-off.

We explore different trace buffer sizes with buffer widths of 8, 16, 32 and 64, buffer

depth of 512 in our experiments. We set the buffer depth to be 512 cycles, which should

be suitable for the pipelined AES ciphers. Table 6-4 shows the experimental results on the

pipelined implementation of AES-128, AES-192, and AES-256 ciphers by using the attack

method with RTL knowledge. For a buffer width of 64, we are able to respectively restore

20, 19 and 44 bits of the primary key for AES-128, AES-192 and AES-256 in a few hours.

Figure 6-6 shows our experimental results of pipelined AES ciphers as we increase

the trace buffer width. As the trace buffer width increases, both observability and the
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leaked number of key bits increase. The restoration algorithm is not able to restore the full

primary key for any of the pipelined AES ciphers. Nevertheless, considerable knowledge

about the key is gained, which does not suffice to recover the secret though, can aid other

modes of cryptanalysis.

Table 6-4. Pipelined AES-128, AES-192 and AES-256.
hhhhhhhhhhhhhhhhhhBufferWidth

AESciphers
AES-128 AES-192 AES-256

8

leaked key (bits) 4 1 8
memory (GB) 4.66 5.37 6.56
time (h:mm:ss) 3:51:45 4:29:05 6:38:06

16

leaked key (bits) 6 4 16
memory (GB) 4.66 5.37 6.56
time (h:mm:ss) 3:44:14 4:12:22 6:22:59

32

leaked key (bits) 11 8 32
memory (GB) 4.66 5.37 6.56
time (h:mm:ss) 3:19:12 4:10:25 6:31:08

64

leaked key (bits) 20 19 44
memory (GB) 4.66 5.37 6.56
time (h:mm:ss) 3:42:02 4:08:43 6:03:15

6.4 Proposed Countermeasures

Trace buffer attack is possible because the attacker can observe the internal values of

the circuit by taking advantage of the trace buffer used for DfT. One approach to obtain

a secure IC is to blow test circuitry [83] after production test. This technique is broadly

used in the smartcard community, which guarantees that the chip secrecy will not be

abused as a test engineer could do. However, it is not acceptable from the SoC point of

view because this technique disables the test mode activation after production test. This

contradicts the purpose of trace buffer for online monitoring and offline debugging in

post-silicon debug.

In scan chain based DfT, several solutions have been proposed so that scan chains

can provide visibility without compromising security [86–88]. Most of these approaches

scrambles the structure of scan chain and make the scanned outputs difficult or impossible

for the attacker to comprehend. Paul et al. [87] scramble the scan chain by reordering
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the scan cells and only the authorized user can get the correct order. Sengar et al. [88]

insert inverters to scan chains to make it difficult for attackers to understand the internal

scan structure. Another secure scan architecture is proposed in [86], which reorganizes

the scan chain in a tree structure. However, these techniques cannot be directly applied

to trace buffer because we don’t have a chain-like structure in the trace buffer. The

ultimate goal of the countermeasure is to protect the content of the trace buffer. In fact,

any approach that can encrypt a block of memory will be applicable here. We explore a

LFSR-based approach and a PUF-based approach and compare the pros and cons of these

two approaches.

Figure 6-7. LFSR-based Countermeasure

Figure 6-8. PUF-based Countermeasure

The LFSR-based approach, as shown in Figure 6-7, uses a Left Feedback Shift

Register (LFSR) to scramble the traced signals before they are recorded in the trace

buffer. LFSR requires an initial value (i.e. the seed) to set the initial state of the shift
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register, and a well-chosen feedback function (XOR of some bits as in this example).

LFSR can produce a sequence of pseudo-random numbers based on the seed and feedback

function. The pseudo-random number will be added to the traced signals at each clock

cycle. The structure of the LFSR is simple and the overhead for implementing LFSR

would be minimal. Considering a trace buffer of 32-bit width, we need a 32-bit LFSR.

Suppose the feedback function is XOR of eight selected bits, we would need 32 flip-flops

for the shift register, and 7 two-input XOR gates for feedback function. We also need

32 XOR gates for adding the pseudo-random number with the original trace signals.

Thus, the overhead is 32 flip-flops and 39 gates, which is minimal. The drawback with

LFSR-based approach is that the pseudo-random sequence depends on the secrecy of the

seed. The seed needs to be properly maintained as a secret by key management.

The PUF-based approach, as shown in Figure 6-8, uses a Physical Unclonable

Function (PUF) to introduce built-in randomness into the traced signals. The idea of

this countermeasure closely follows a similar countermeasure proposed for scan-chain

attacks [82]. The signals from consecutive clock cycles are XOR-ed according to a PUF

response. Since the PUF response is only known to the valid user, he/she can recover

the trace signal values easily. For a malicious user, recovering the original trace signal

values is hard. PUF provides a challenge-response mechanism, where the mapping from a

challenge to a response is controlled by the manufacturing process as well as the nature of

the Integrated Circuit (IC). This complex control makes PUF structures hard to clone and

at the same time a unique device identification can be obtained. Compared to the look-up

table-based storage of key, PUF provides a large set of challenge-response keys with a

storage requirement that increases linearly with the number of challenge bits. Only a valid

user is aware of the challenge-response sets. The drawback with PUF-based approach

is that a reliable PUF (“strong” PUF) has very high overhead. An arbiter-based strong

PUF [90] has been implemented in 0.02mm2 chip area in 180 nm fabrication technology.
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Another SRAM-based strong PUF [91] is implemented with 0.08mm2 chip area in 65 nm

technology.

Table 6-5. Comparison of LFSR-based and PUF-based countermeasures
Countermeasures Protection Level Area Overhead
LFSR-based approach Low Low
PUF-based approach High High

As shown in Table 6-5, PUF-based approach provides stronger protection than

LFSR-based method but incurs higher area overhead. An LFSR is a linear system, which

leads to easy cryptanalysis [92]. A recent work on fault countermeasures [93] has shown

that a bad choice of internal randomness source can lead to the complete failure of the

countermeasure itself. For the PUF-based countermeasure, the randomness comes from the

manufacturing process as well as the nature of the Integrated Circuit (IC). Compared with

block-cipher or stream-cipher (including LFSR) based countermeasures, the PUF-based

countermeasure will be the most robust. To protect from trace buffer attack, the designer

needs to trade-off between protection level and area overhead of different countermeasures.

PUF-based countermeasure should always be chosen if area overhead is acceptable.

6.5 Summary

In this chapter, we introduce a novel attack, Trace Buffer Attack, on the AES cipher.

The attack is mounted with the help of trace buffers, which provides observability for

post-silicon debug. We identify this as a source of information leakage and experimentally

demonstrate that AES, the currently dominant block cipher, is vulnerable. We show that

we can mount a strong attack with the knowledge of the RTL implementation. We are

also able to take advantage of the patterns in Rijndael’s key expansion, and restore the

primary key even when RTL implementation is not available. With a trace buffer size

of 32 × 128, the full key of the iterative AES-128 can be restored in a few minutes. For

pipelined AES, partial key can be restored in a few hours. This work illustrates the need

for security-aware trace signal selection, and highlights the need for further research in

understanding the trade-off between security and debug observability.
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CHAPTER 7
STATISTICAL TEST GENERATION FOR TROJAN DETECTION

In this chapter, we propose a Trojan detection approach that can take advantage of

both side channel analysis and functional test generation. Designed for improving side

channel sensitivity for Trojan detection, our approach is significantly more effective than

the test generation methods purely for functional testing. Instead of aiming on finding

a vector to activate a set of rare nodes, we focus on creating a set of vector pairs to

maximize switching in rare nodes.

The goal of our work is to generate efficient test vectors for Trojan detection

using side-channel analysis. Functional test can detect Trojan effect only when it is

fully triggered and its payload is propagated to the primary outputs, which makes

functional test infeasible to detect Trojans in most cases. Side channel analysis can detect

well-hidden Trojans by inspecting the side channel signals, for example, transient current

in the circuit. If the switching effect introduced by the Trojan circuit is distinguishable,

in the presence of process variation, the Trojan will get caught. In this paper we propose

a comprehensive test generation framework to assist side channel analysis for hardware

Trojan detection. Our algorithm creates multiple excitation of rare switching which is

important in making side-channel based Trojan detection effective. Moreover, we also try

to simultaneously minimize the background switching to maximize the relative switching.

We use the relative switching of the Trojan with respect to the whole circuit to

indicate the sensitivity of the side channel signals. The statistical test patterns can

maximize relative Trojan detection sensitivity under any process noise. Process variation is

not expected to affect our side channel sensitivity computation since we consider switching

activity instead of actual current or power values. The assumptions we have made are

similar to the state-of-the-art side-channel analysis based Trojan detection approaches.

The proposed method can be combined with any existing process calibration approaches
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(such as one in [116] or [117]) to minimize the false positives/negatives - i.e. maximize

Trojan coverage.

To make side channel analysis successful in detecting Trojans, we need to: (1)

maximize the switching activity in the Trojan circuit; (2) minimize the switching activity

in other parts of the circuit so that the relative switching effect is maximized. The main

idea of this paper is to generate high quality test patterns which can achieve these two

goals and increase the sensitivity of side channel analysis. The following are the major

contributions of this paper:

1. It presents, for the first time in our knowledge, a statistical test generation approach
for increasing side-channel analysis based Trojan detection sensitivity. The proposed
approach can be applicable to any transient current based Trojan detection
approach.

2. The methodology, referred to as MERS (Multiple Excitation of Rare Switching)
for statistical test generation, can derive a compact testset that can trigger each of
the rare nodes to satisfy rare switching for multiple times. MERS can have a good
coverage of all rare nodes and greatly increase the switching effect inside arbitrary
Trojans in unknown locations of the circuit.

3. Two reordering methods are proposed to reduce the total switching of the circuit
and thus further increase the sensitivity of side channel analysis. First, a simple and
low-cost method based on Hamming distance of input vector pairs is introduced
to reorder the tests. Next, we develop another simulation based method to more
effectively balance switching in rare nodes and the total switching.

Our side-channel based approach is targeted towards detecting unknown Trojans,

which means it will remain equally effective even if the adversary is aware of the proposed

method. This is due to the following two reasons: (1) the proposed test generation method

is statistical in nature - so, unlike conventional deterministic test approaches, it maximizes

the activation probability for arbitrary Trojans designed with any trigger condition; and

(2) it maximizes the detection sensitivity of unknown Trojans, however “stealthy”, by

amplifying its effect in side-channel signature. Our simulation platform inserts large

number of arbitrary Trojans in a design and shows that the proposed approach is highly

effective in detecting them.
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The rest of the chapter is organized as follows. Section 7.1 presents the MERS test

generation algorithm and the test reordering algorithms to improve sensitivity of side

channel analysis. Section 7.2 describes the experiment setup and presents results on a set

of ISCAS benchmarks with detailed analysis. Section 7.3 concludes the paper.

(a) A 4-trigger Trojan

(b) A 8-trigger Trojan

Figure 7-1. Trojans with rare nodes as trigger conditions. The 4-trigger Trojan will only
be activated by the rare combination 1011 and the 8-trigger Trojan will only
be activated by the rare combination 10110011.

7.1 MERS: Increasing the Trojan Detection Sensitivity

In this section, we present the proposed methodology for side-channel aware test

generation in details. The methodology is based on the concept of statistically maximizing

the switching activity in all the rarely triggered circuit nodes.
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The effectiveness of a test pattern for side channel analysis is measured in two ways:

(1) the ability to create most switching inside a Trojan or fully activate a Trojan; (2)

the ability to create high Trojan-to-circuit switching. We measure DeltaSwitch as the

switching introduced by the Trojan, which is the difference of number of switches between

the golden circuit and the Trojan-infected circuit. We measure RelativeSwitch as the ratio

of DeltaSwitch to the total number of switches (TotalSwitch) in the golden circuit. An

effective test vector should be capable to create large DeltaSwitch, and more importantly

to have large RelativeSwitch, as it is directly related to the sensitivity for side channel

analysis.

RelativeSwitch = DeltaSwitch/TotalSwitch (7–1)

The major challenges for generating high-quality test vectors are (1) we are not sure of

the location where the Trojan is inserted in the circuit; (2) the Trojan is stealthy and has

very low activity when it is not triggered. These characteristics have made random tests

not effective in magnifying the side channel signal for Trojan detection. Fig. 7-1 shows

two example Trojan instances. The 4-trigger Trojan will only be activated by the rare

combination 1011 and the 8-trigger Trojan will only be activated by the rare combination

10110011. If the possibility of each rare node to take its rare value is 0.1, the probability

to have these two Trojans fully triggered is 10−4 and 10−8, respectively.

Our test generation approach (MERS) is based on creating a set of test vectors for

each candidate rare node individually to have rare switching for multiple (at least N)

times. Our approach utilizes the principle of n-detect [115] tests to increase the likelihood

of partially or fully activating a Trojan. MERS can generate a high-quality testset for

these rare nodes individually to have rare switching for N times. If N is sufficiently large,

a Trojan with triggering conditions from these rare nodes is likely to have high switching

activity even though it might not be fully activated.
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Algorithm 12: Multiple Excitation of Rare Switching (MERS)

Input: Circuit netlist, rare switching requirement (N), list of rare nodes
(R = {r1, r2, ..., rm}),
list of random patterns (V = {v1, v2, ..., vn})

Output: MERS test patterns (T )

// simulate and sort random vectors

1: for each random vector v in V do
2: Simulate the circuit with the input vector v
3: Count the number of nodes (RV ) in R with their rare values satisfied

4: end
5: Sort vectors in V in descending order of RV
6: for each node ri in R do
7: Set its rare switching counter (Si) to 0
8: end

// mutate vector to find improved vector pairs

9: Initialize previous vector tp as a vector of all 0’s
10: for each vector vj in V do
11: Simulate the circuit with vector pair (tp, vj)
12: Count the number of rare switches (RS)
13: Set v ′j = vj
14: for each bit in v ′j do
15: Mutate the bit and re-simulate the circuit with vector pair (tp, v

′
j )

16: Count the number of rare switches (R ′
S)

17: if R ′
S > RS then

18: Accept the mutation to v ′j
19: end

20: end
21: Update Si for all nodes in R due to vector v ′j
22: if v ′j increases Si for at least one rare node then
23: Add the mutated vector v ′j to T

24: Set tp = v
′
j

25: end
26: if Si ≥ N for all nodes in R then
27: Break
28: end

29: end
30: return MERS test patterns T

7.1.1 Multiple Excitation of Rare Switching

The basic idea of MERS is that if we have a rare node switch N times where N is

sufficiently large, it significantly improves the chances of switching in a Trojan associated
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with that rare node. The rare switching in our algorithm specially refers to a rare node

switching from its non-rare value to its rare value. The reason to choose this criteria is

two-fold: (1) it is more difficult to switch from non-rare to rare value than from rare to

non-rare value; (2) it defines the switching between the previous vector and the current

vector, and it usually helps to create an extra switching between the current vector and

the next vector. This will increase the probability of switching of a Trojan which has rare

nodes as its trigger conditions. Our approach is also applicable to sequential Trojans,

which requires the rare combinations to happen a certain number of times to be fully

triggered.

Algorithm 12 shows the steps of MERS to generate high quality tests for creating

switches in rare nodes, so as to assist side channel analysis for hardware Trojan detection.

The algorithm is fed with the golden circuit netlist, the list of random test patterns (V )

and a list of rare nodes (R) (which is obtained by random simulation beforehand). First,

we simulate each random pattern and count the number of rare nodes (RV ) that take

their rare values. We sort the random patterns in descending order of RV , which means

that the vector with ability to activate the most number of rare nodes goes first. Next,

we initialize the rare switching counter Si for each rare node to 0. In the next step, we

mutate vectors from the random pattern set to generate high quality tests. We mutate

the current vector one bit at a time and we accept the mutated bit only if the mutated

vector can increase the number of nodes to have rare switching. In this step, only those

rare nodes with RS < N are considered. The mutation process repeats until each rare

node has achieved at least N rare switches. The output of the test generation process is

a compact set that improves the switching capability in rare nodes, compared to random

patterns. The complexity of the algorithm is O(nm), where n is the total number of test

vectors mutated during the process, and m is the number of bits in primary inputs. The

runtime to generate MERS tests can be found in Table 7-1.
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The testset generated by MERS is expected to be very effective in increasing the

likelihood of rare nodes to switch and thus increasing the activities in Trojans. In

other words, MERS testset is capable of maximizing the DeltaSwitch (the numerator

in Equation 7–1). MERS testset is already a very high quality testset in terms of criteria

for DeltaSwitch. However, MERS testset also creates more switching in other parts of the

circuit, when it is making efforts to switch rare nodes. This characteristic of increased

TotalSwitch would be further illustrated in the Section 7.2. In order to maximize relative

switching, we need to have TotalSwitch in control as well. In the following subsections, we

propose two methods to tune the MERS testset, so that it can: (1) still be effective for

DeltaSwitch, (2) reduce TotalSwitch and improve the effectiveness for RelativeSwitch. The

first method is a heuristic approach based on hamming distance of test vectors, which can

reduce the total switching. The second one is simulation based, in which we try to balance

the rare switching and the total switching while we explore all the candidate vectors.

7.1.2 Hamming Distance Based Reordering

If two consecutive input vectors have the same values in most bits, it is very possible

that the internal nodes will also have a lot of values in common. A simple heuristic to

reduce total switching in circuit is to have similar input vectors. We use the Hamming

distance between two vectors to represent the similarity. Algorithm 13 shows our approach

to reorder the testset by Hamming distance. The algorithm is a greedy approach to

explore all candidate vectors and take the best one in terms of Hamming distance. We

first check the Hamming distances between the previous vector and all the remaining

vectors, then we select the vector which has the minimum Hamming distance as the next

following vector. The time complexity of Algorithm 13 is O(n2), where n is the testset

size. Fortunately, it is of low cost to calculate the Hamming distance between two input

vectors. The actual run-time is very short because n (number of test patterns produced by

MERS) is small, in the order of tens of thousands.
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Algorithm 13: Tests Reordering by Hamming Distance (MERS-h)

Input: List of Test Patterns (Torig = {t1, t2, ..., tn}) produced by Algorithm 1
Output: Improved Test Patterns (Thamm)

1: Initialize Thamm = {}
2: Initialize previous test tp as a vector of all 0’s
3: while Torig is not empty do
4: mindist = int max
5: bestidx = −1
6: for all remaining tests tj in Torig do
7: if mindist > hamming dist(tp, tj) then
8: mindist = hamming dist(tp, tj)
9: bestidx = j

10: end

11: end
12: Add tbestidx to the end of Thamm
13: Remove tbestidx from Torig
14: Update tp = tbestidx
15: end
16: return Thamm

7.1.3 Simulation Based Reordering

The reordering problem to improve the relative switching is actually a multi-objective

optimization problem: maximize the DeltaSwitch and minimize the TotalSwitch as in

Equation 7–1. We don’t know the DeltaSwitch, because the location and type of the

Trojan is unknown. However, rare switching between two vectors is a good indicator

for DeltaSwitch, which means a large number of rare switching would imply a large

DeltaSwitch in Trojan. We redefine the optimization goal as to maximize the rare

switching and minimize the total switching at the same time between vector pairs.

We formalize the problem as shown in Equation 7–2. We need to explore the best weights

to balance between the two objectives:

maximize (w1 ∗ RareSwitch − w2 ∗ TotalSwitch) (7–2)

We propose an approach as shown in Algorithm 14 based on real simulation of the

test vectors to maximize the combined objective. We introduce a concept of profit to
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Algorithm 14: Tests Reordering by Simulation (MERS-s)

Input: List of Test Patterns (Torig = {t1, t2, ..., tn}) produced by Algorithm 1
Output: Improved Test Patterns (Tsim)

1: Initialize Tsim = {}
2: Initialize previous test tp as a vector of all 0’s
3: while Torig is not empty do
4: maxp = int min
5: bestidx = −1
6: for all remaining tests tj in Torig do
7: Simulate the circuit with vector pair (tp, tj)
8: Count the number of RareSwitch and TotalSwitch
9: profit = C ∗ RareSwitch − TotalSwitch

10: if maxp < profit then
11: maxp = profit
12: bestidx = j

13: end

14: end
15: Add tbestidx to the end of Tsim
16: Remove tbestidx from Torig
17: Update tp = tbestidx
18: end
19: return Tsim

indicate the fitness of a test vector to follow the previous test vector. profit is defined as

(C ∗ RareSwitch − TotalSwitch), where C is the ratio of two weights w1 and w2. It is

meant to maximize the rare switching (activity in Trojan circuits) and minimize the total

switching of the whole circuit. In the experiment section, we will explore different weight

ratios and check the influence of weight ratios on side channel sensitivity.

Algorithm 14 shows our approach to tune the testset by simulation with profit as

a reordering criterion. By exhaustively checking the profit between the previous vector

and all the remaining vectors, we select the vector which has the maximum profit as the

next following vector. The time complexity of Algorithm 14 is O(n2), where n is the test

length. However, it is much slower than Algorithm 13, because it is time-consuming to

simulate input vector pairs and calculate profit.

142



Figure 7-2. Test generation framework for side-channel analysis based Trojan detection.

7.2 Experiments

7.2.1 Experimental Setup

The test generation framework, including the MERS core algorithms and the

evaluation framework, is implemented using C. As shown in Fig. 7-2, the test generation

framework can simulate circuit netlists, generate MERS testset, further tune the testset,

and evaluate the effectiveness of testsets on random Trojans. We evaluated our approach

on a subset of ISCAS-85 and ISCAS-89 benchmark circuits. The sequential circuits are

converted into full scan mode. We also implemented the MERO [100] approach with

parameter N of 1000 for comparison We did our experiments on a server with AMD

Opteron Processor 6378 (2.4GHz). The runtime for different benchmarks and different
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methods is shown in Table 7-1. The table also shows the number of rare nodes in each

benchmark, and we used 0.1 as the rare threshold to select rare nodes.

Table 7-1. Runtime for MERS test generation and test reordering.

Benchmark
Nodes

(rare / total)
Run-time (s)

MERS MERS-h reordering MERS-s reordering
c2670 63 / 1010 13370.86 7.24 4925.23
c3540 331 / 1184 6097.51 9.43 18166.94
c5315 255 / 2485 45595.97 11.04 39073.81
c6288 45 / 2448 4154.62 0.31 2802.85
c7552 306 / 3720 81405.89 25.2 63502.19
s13207 592 / 2504 12511.95 365.02 29064.72
s15850 679 / 3004 19903.44 728.14 38181.49
s35932 896 / 6500 7295.74 39.53 31201.04

7.2.2 Evaluation Criteria

When applying a testset to a circuit with Trojan, there are four criteria to evaluate

the effectiveness of the testset:

• AvgDeltaSwitch: the average delta switch when applying the testset on this
Trojan-infected circuit.

• MaxDeltaSwitch: the maximum delta switch when applying the testset.

• AvgRelativeSwitch: the average relative switch when applying the testset.

• MaxRelativeSwitch: the maximum relative switch when applying the testset.
We choose this criterion as the Side Channel Sensitivity because this directly
determines whether a Trojan can be detected through side-channel analysis.

AvgDeltaSwitch and MaxDeltaSwitch reflect the activity in Trojan, and AvgRelativeSwitch

as MaxRelativeSwitch reflect the sensitivity of the side channel signal created by the

Trojan. Among these four metrics, we care the most about MaxRelativeSwitch, which is

most important in side-channel analysis for Trojan detection.

As for evaluation of testsets, we would expect a high-quality testset to have a

good coverage over all possible Trojans. In our experiments, we apply the testset to

1000 randomly inserted Trojan samples and compute these four values for each Trojan

instance. We would then take the average of these four metrics, which would reflect the
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capability of the testset to assist side channel analysis for different Trojans. The average

MaxRelativeSwitch would be most suitable for Side Channel Sensitivity evaluation, which

is to maximize the sensitivity for an arbitrary Trojan in unknown circuit location.

(a) c2670: Distribution of MaxDeltaSwitch over 1000 random
samples of 8-trigger Trojans.

(b) c3540: Distribution of MaxDeltaSwitch over 1000 random
samples of 8-trigger Trojans.

Figure 7-3. Impact of N (number of times that a rare node have rare switching) on
MaxDeltaSwitch for benchmarks (a) c2670 and (b) c3540.
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7.2.3 Exploration of N

Fig. 7-3 shows the distribution of MaxDeltaSwitch over 1000 random 8-trigger

Trojan samples for two ISCAS-85 benchmarks. We choose different N to generate

MERS testsets, to compare with the Random (10K vectors) testset. For each testset,

the box plot shows (minimum, first quartile, median, third quartile, maximum) values

of MaxDeltaSwitch of the 1000 Trojan samples. It is clear from these plots that the

distribution of MaxDeltaSwitch is constantly improving with increasing N. For c2670,

the average MaxDeltaSwitch (as shown by the red lines) can reach 18.67 for MERS

(N = 1000), while Random testset is only 12.15. For c3540, the average MaxDeltaSwitch

can reach 11.13 for MERS (N = 1000), while Random testset is only 9.19. The fact

that the quality of MERS tests improves with increasing N is not surprising. It is similar

to N-detect tests for stuck-at faults, where fault coverage is expected to improve with

increasing N. The testset size also increases with N. The sizes of testsets for MERS (N =

10, 20, 50, 100, 200, 500, 1000) are (71, 140, 347, 656, 1262, 3142, 6199) for c2670, and

(161, 302, 742, 1441, 2858, 7070, 14250) for c3540. In most of our experiments, we will

choose a value of N = 1000, which is a good balance between testset quality and testset

size. For fair comparison with Random testset, we will only take the first 10K vectors of

MERS testset if it is larger than 10K.

7.2.4 Side-effect of MERS: Increased TotalSwitch

Fig. 7-4 shows the average MaxDeltaSwitch and the average TotalSwitch of the

testsets for 1000 8-trigger Trojan samples for different values of N. For both of the

two benchmarks, the average TotalSwitch increases with N as well as the average

MaxDeltaSwitch. It is obvious that all the MERS testsets have much larger average

TotalSwitch, compared with the Random testset. For c2670, the average TotalSwitch

for MERS (N = 1000) is 644.9, which is about 1.25X times of that of the Random

testset (515.7). For c3540, the average TotalSwitch for MERS (N = 1000) is 808, while

Random testset is only 649.2. The insight that we can get from here is that MERS tends
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(a) c2670

(b) c3540

Figure 7-4. MaxDeltaSwitch versus TotalSwitch for different N for benchmarks (a) c2670
and (b) c3540.

to increase the TotalSwitch of the circuit, although it is designed to increase switches

in rare nodes. The following subsection will show that the proposed reordering methods

would be effective to reduce TotalSwitch and thus increase side channel sensitivity.

7.2.5 Reordering and Exploration of C

The effectiveness of the two reordering methods can be observed in Fig. 7-5 and Fig.

7-6. As shown in Fig. 7-5, MERS-h can reduce TotalSwitch and thus increase the relative
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(a) c2670

(b) c3540

Figure 7-5. Side Channel Sensitivity versus Total Switch for Random, the original MERS,
MERS-h and MERS-s (with different C ) for benchmarks (a) c2670 and (b)
c3540.

switching (i.e. the Side Channel Sensitivity), compared with the original MERS testset.

For MERS-s with different weight ratio C , side channel sensitivity improves steadily

with a small C , and then goes down when C is too large. As the weight ratio to balance

DeltaSwitch and TotalSwitch, a large C will outweigh the influence of TotalSwitch,

which will make it not much different from the original MERS testset. In the following

148



(a) c2670: Distribution of Side Channel Sensitivity over 1000
random samples of 8-trigger Trojans.

(b) c3540: Distribution of Side Channel Sensitivity over 1000
random samples of 8-trigger Trojans.

Figure 7-6. Distribution of Side Channel Sensitivity for Random, the original MERS,
MERS-h and MERS-s (with different C) for benchmarks (a) c2670 and (b)
c3540.

experiments, we choose the weight ratio as C = 5, as it reaches a good balance between

the total switching and rare switching.

Fig. 7-6 shows detailed distribution of Side Channel Sensitivity for 1000 8-trigger

Trojan samples with different choices of C . The reordering methods are working well to
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improve Side Channel Sensitivity, which is built on the fact that the original MERS testset

is already of high quality in terms of DeltaSwitch, or switching in Trojans.

7.2.6 Effectiveness of MERS in Creating Trojan Activity

Table 7-2 shows that MERS (N=1000) is very effective in creating DeltaSwitch caused

by Trojan. The average Max Delta Switch increases by 31.11% and the average Avg Delta

Switch by 187.33% on average for different benchmarks, compared with Random testset.

This shows the effectiveness of MERS in creating Trojan activity.

Table 7-3 shows that MERS is also helpful in improving RelativeSwitch. The average

AvgRelativeSwitch increased by 158.16%, compared with Random testsets. For average

MaxRelativeSwitch (Side Channel Sensitivity), MERS has an average improvement of

18.89%. However, Side Channel Sensitivity for benchmark c3540 and c6288 is not doing

as well as that of Random testsets. This is due to the fact that the MERS testset also

increase the total switching, when it is making efforts to make rare nodes switching. This

phenomenon is illustrated and explained in Fig. 7-4 and Fig. 7-5, and this side effect can

improved by the two reordering algorithms as shown in Table 7-4 and 7-5.

Table 7-2. Comparison of MERS (N=1000) with Random (10K) for average
MaxDeltaSwitch and average AvgDeltaSwitch.

Benchmark
Average MaxDeltaSwitch Average AvgDeltaSwitch
Random MERS Improve. Random MERS Improve.

c2670 12.15 18.67 53.67% 1.4289 6.8561 379.83%
c3540 9.19 11.13 21.16% 1.3716 2.9058 111.85%
c5315 9.51 13.80 45.16% 1.3116 3.9300 199.64%
c6288 6.63 7.26 9.63% 1.0636 4.8448 355.50%
c7552 8.53 12.00 40.76% 1.3488 2.7700 105.36%
s13207 6.63 8.83 33.18% 0.6428 0.9771 52.01%
s15850 7.53 10.84 43.99% 0.7465 1.3609 82.29%
s35932 15.16 15.37 1.35% 2.1803 6.8060 212.16%
Avg. Improve. – – 31.11% – – 187.33%
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Table 7-3. Comparison of MERS (N=1000) with Random (10K) for average
MaxRelativeSwitch (Side Channel Sensitivity) and average AvgRelativeSwitch.

Average MaxRelativeSwitch
(Side Channel Sensitivity)

Average AvgRelativeSwitch
Benchmark

Random MERS Improvement Random MERS Improvement
c2670 0.02469 0.03108 25.90% 0.00255 0.01054 314.14%
c3540 0.02670 0.01933 -27.59% 0.00214 0.00361 69.12%
c5315 0.00526 0.00766 45.72% 0.00075 0.00200 165.65%
c6288 0.00534 0.00395 -26.06% 0.00059 0.00219 270.68%
c7552 0.00452 0.00852 88.48% 0.00058 0.00113 94.65%
s13207 0.00756 0.00844 11.64% 0.00066 0.00085 28.22%
s15850 0.00593 0.00716 20.70% 0.00053 0.00082 54.25%
s35932 0.00523 0.00587 12.29% 0.00060 0.00223 268.54%
Avg. Improve. – – 18.89% – – 158.16%

7.2.7 Side Channel Sensitivity Improvement

To this point, we have explored the parameters: N for MERS and C for MERS-s, we

choose N = 1000 and C = 5 in the following experiment to compare our proposed schemes

with Random testset and MERO. Table 7-4 and 7-5 show the improvement of proposed

approaches on Side Channel Sensitivity for 4-trigger and 8-trigger Trojans.

Table 7-4 shows that MERS, MERS-h and MERS-s have 10.37%, 138.44% and

152.26% improvement over the Random testsets, respectively. While the original MERS

testsets is 23.95% worse than MERO testsets, MERS-h and MERS-s have 52.62% and

62.01% improvement over MERO. Table 7-5 shows the results for 8-trigger Trojans.

Compared with Random testsets, MERS, MERS-h and MERS-s can have 18.89%, 107.53%

and 96.61% improvement, respectively. The original MERS testsets is 12.43% worse than

MERO testsets. MERS-h and MERS-s testsets can improve the Side Channel Sensitivity

by 40.79% and 38.50%.

In this section, we explored the impact of different values of N for MERS and

observed the effectiveness of MERS to maximize Trojan activity as N increases. We

confirmed the superiority of MERS testsets over Random testsets in Section 7.2.6 on

creating switching activity in randomly sampled Trojans. We observed that the total
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switching was also likely to increase while MERS was making efforts to maximize rare

switching in Trojans. The two reordering methods (MERS-h and MERS-s) successfully

had the total switching under control while maintaining the rare switching high. The

comparison with Random and MERO testsets shows the effectiveness of our test

generation framework in maximizing Side Channel Sensitivity for Trojan detection.

Table 7-4. Comparison of average Side Channel Sensitivity between Random (10K),
MERO, and MERS testsets, N=1000, C=5 for MERS-s, over 1000 random
samples of 4-trigger Trojans.

Benchmark
Comparison
Testsets

Proposed
Schemes

Improvement
to Random

Improvement
to MERO

Random MERO MERS MERS-h MERS-s MERS MERS-h MERS-s MERS MERS-h MERS-s
c2670 0.01703 0.02571 0.02231 0.03035 0.03308 31.01% 78.27% 94.31% -13.23% 18.07% 28.69%
c3540 0.02144 0.04238 0.01336 0.10677 0.11067 -37.71% 397.97% 416.16% -68.48% 151.96% 161.16%
c5315 0.00445 0.01082 0.00747 0.01287 0.01586 67.79% 188.97% 256.29% -30.97% 18.89% 46.59%
c6288 0.00480 0.00395 0.00313 0.00741 0.00896 -34.81% 54.47% 86.85% -20.88% 87.50% 126.80%
c7552 0.00351 0.00737 0.00491 0.01250 0.01168 39.61% 255.63% 232.38% -33.46% 69.50% 58.42%
s13207 0.00568 0.00617 0.00619 0.00773 0.00826 9.07% 36.24% 45.49% 0.31% 25.29% 33.80%
s15850 0.00447 0.00487 0.00474 0.00691 0.00634 6.14% 54.83% 42.06% -2.75% 41.86% 30.17%
s35932 0.00354 0.00463 0.00361 0.00500 0.00512 1.89% 41.17% 44.53% -22.12% 7.90% 10.48%

Avg. Improve. – – – – – 10.37% 138.44% 152.26% -23.95% 52.62% 62.01%

Table 7-5. Comparison of average Side Channel Sensitivity between Random (10K),
MERO, and MERS testsets, N=1000, C=5 for MERS-s, over 1000 random
samples of 8-trigger Trojans.

Benchmark
Comparison

testsets
Proposed
Schemes

Improvement
to Random

Improvement
to MERO

Random MERO MERS MERS-h MERS-s MERS MERS-h MERS-s MERS MERS-h MERS-s
c2670 0.02469 0.03204 0.03108 0.03729 0.03984 25.90% 51.05% 61.40% -3.01% 16.37% 24.35%
c3540 0.02670 0.05532 0.01933 0.11974 0.10037 -27.59% 348.53% 275.96% -65.05% 116.47% 81.44%
c5315 0.00526 0.00875 0.00766 0.01020 0.01129 45.72% 94.03% 114.78% -12.38% 16.66% 29.14%
c6288 0.00534 0.00412 0.00395 0.00649 0.00790 -26.06% 21.55% 47.97% -4.20% 57.49% 91.72%
c7552 0.00452 0.00914 0.00852 0.01437 0.01149 88.48% 217.78% 154.00% -6.70% 57.31% 25.74%
s13207 0.00756 0.00838 0.00844 0.01053 0.01112 11.64% 39.24% 47.05% 0.69% 25.58% 32.63%
s15850 0.00593 0.00722 0.00716 0.00923 0.00818 20.70% 55.69% 37.94% -0.87% 27.86% 13.28%
s35932 0.00523 0.00638 0.00587 0.00692 0.00700 12.29% 32.39% 33.80% -7.90% 8.58% 9.74%

Avg. Improve. – – – – – 18.89% 107.53% 96.61% -12.43% 40.79% 38.50%

7.2.8 Calibration and Multiple-Parameter Side-Channel Analysis

MERS can be combined with any existing process calibration approaches

[116][117][118] to minimize the false positives/negatives - i.e. maximize Trojan coverage.

Most side-channel analysis based approaches perform process variation calibration by

using golden chips at different process corners. This helps us obtain the limiting threshold

values, beyond which any chip is classified as Trojan-infected. MERS simultaneously
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maximize the switching in Trojan and minimize the background switching, so as to

maximize the relative switching. It is intuitive to use the dynamic current (IDDT ) as

the side channel signature, since MERS tests would contribute greatly to the dynamic

current if a Trojan exists. By calibration or reference to that of a golden chip, MERS

helps side channel analysis to reduce the intra-die systematic process variations. Moreover,

as shown in [118], various measurable parameters can be used for multiple-parameter

side-channel-based Trojan detection where at least one parameter is affected by the Trojan

and other parameters are used to calibrate the process noise. For example, the quiescent

or leakage current (IDDQ) and the maximum operating frequency (Fmax) will also be

influenced when there is a Trojan. Although MERS might not contribute to IDDQ nor

Fmax , they can serve as side channel references to calibrate process noise. [118] has shown

the joint effect of these three variables (IDDT , IDDQ and Fmax). MERS can increase IDDT ,

which would greatly improve the accuracy of [118] to isolate a Trojan-infected chip in the

multiple-parameter space from process induced variations.

7.2.9 Scalability to Large Designs

For a large design, the supply current of a golden chip for a high-activity vector

can be large compared with the additional current consumed by a small Trojan. The

variation in the current value due to process noise can be very large, which would mask

the effect of the Trojan on the measured current and lead to difficulty for accurate Trojan

detection. MERS is scalable to large circuits and can be combined with region-based

test generation approaches, which segment a circuit into nearly-isolated regions (i.e. with

low connectivity between them). In this case, MERS can be applied separately to each

region. For example, in case of a processor, MERS can be employed separately to its

regions, such as, integer execution unit, floating point datapaths, control logic, and result

bus logic. MERS can work with [118] to isolate a region and prevent unwanted switching

in independent functional modules, by taking advantage of the power gating techniques

conventionally used by low-power designs, such as clock gating, supply gating, or operand
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isolation. MERS can also be applied a more flexible region-based side channel analysis

approach proposed in [119]. They perform a functional decomposition to divide a large

design into several small blocks or regions, so that they can activate them one region

at a time. MERS can be used as the test generation algorithm to generate vectors that

maximize the activity within each region. The decision to report a chip as Trojan-infected

would be based on the dispersion of its region current matrix of all regions with respect to

the golden chip. Future work will include integration of MERS with region-based circuit

partitioning techniques to further enhance its effectiveness and its evaluation on larger

industry-standard designs.

7.3 Summary

We have presented a framework for statistical test generation, called MERS, which

can significantly improve the Trojan detection sensitivity in side-channel analysis based

Trojan detection. The approach aims at statistically increasing switching activity in an

unknown Trojan to amplify the Trojan effect in presence of large process variations.

Such a test generation approach will, in general, be effective for any side-channel

analysis approaches that rely on activity in Trojan circuits (e.g. transient current or

EM based methods). Furthermore, MERS is effective for any Trojan forms/sizes, where

a Trojan is implanted through alterations in a circuit structure - the most dominant

mode of Trojan implantation. Our simulation results on a set of benchmark circuits

show that the proposed approach can improve the side channel sensitivity by more than

96.61%, compared with random tests for a large set of arbitrary Trojans. It shows that a

judicious statistical test generation such as MERS can serve as an essential component in

a side-channel Trojan detection approach.
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CHAPTER 8
CONCLUSIONS AND FUTURE WORK

SoCs are widely used in designing both IoT devices and embedded systems in a wide

variety of domains. The vulnerabilities of SoCs pose unique threats to the reliability

and security of the system. This dissertation described a set of novel techniques and

methodologies for SoC vulnerability analysis and mitigation. This chapter concludes this

dissertation and outlines possible directions for future research.

8.1 Conclusions

To design reliable and secure SoCs, it is crucial to analyze the possible vulnerabilities

of different SoCs and find countermeasures for them. We investigated cache vulnerability

due to soft errors, utilization of debug infrastructure (e.g., trace buffer) for attack, and

malicious modifications (hardware Trojans) in SoC designs. This dissertation developed

techniques to investigate and protect against these vulnerabilities.

In Chapter 3, we aimed at reducing cache vulnerability during dynamic cache

reconfiguration (DCR). By tuning the cache configuration to satisfy the specific

requirement of each application, conventional DCR approaches focus on improving the

performance and/or energy consumption. But conventional DCR approaches may result

in unacceptable cache vulnerability. We developed algorithms to reduce vulnerability with

energy and performance considerations during DCR. We proposed a vulnerability-aware

energy-optimization (VAEO) approach, which can significantly improve the reliability of

both instruction and data caches.

In Chapter 4, we applied DCR on the partially protected caches (PPC) architecture.

The PPC architecture has two data caches at the same level of memory hierarchy, one

protected cache and one unprotected cache. PPC provides an effective mechanism to

reduce cache vulnerability. However, it introduces unacceptable energy and performance

overhead. We presented a reconfigurable cache architecture to combine the advantages

of PPC (vulnerability reduction) and cache reconfiguration (energy and performance
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improvement). Synergistic integration of cache reconfiguration and data partitioning

improves both vulnerability and energy efficiency. We also presented two fast exploration

strategies that can achieve up to 6X speed-up, with negligible impact on the quality of

exploration results.

In Chapter 5, we applied cache reconfiguration on multicore systems. We presented

a vulnerability-aware energy optimization technique for real-time multicore systems.

Our approach integrates dynamic cache reconfiguration (DCR) of private L1 caches

and cache partitioning (CP) of the shared L2 cache. L2 CP is effective in reducing

inter-core interference, while applying L1 DCR can further reduce the energy consumption

under the performance and vulnerability constraints. Our task profiling technique based

on the independence between tasks can drastically reduce the complexity of design

space exploration. Our proposed algorithm uses dynamic programming by discretizing

the energy values, which can efficiently search the space to find optimal L1 cache

configurations for each task and L2 cache partition factors for each core.

In Chapter 6, we investigated the vulnerability of trace buffer in post-silicon debug,

and introduced a novel attack, Trace Buffer Attack, on the AES cipher. The attack is

mounted with the help of trace buffers, which provides observability for post-silicon debug.

We identify this as a source of information leakage. We show that we can mount a strong

attack with the knowledge of the RTL implementation. We are also able to take advantage

of the patterns in Rijndael’s key expansion, and restore the primary key even when RTL

implementation is not available. Our work illustrates the need for security-aware trace

signal selection, and highlights the need for further research in understanding the trade-off

between security and debug observability. We also proposed two countermeasures to

protect trace buffer against this kind of attack.

In Chapter 7, we presented a framework for statistical test generation, called MERS,

for hardware Trojan detection. Our test generation strategy creates multiple excitations of

rare switching (MERS) on rare nodes to increase Trojan switching activity. It statistically
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increases switching activity in an unknown Trojan to amplify the Trojan effect in the

presence of large process variations. It can significantly improve the Trojan detection

sensitivity in side-channel analysis based Trojan detection. Our approach will be effective

for any side-channel analysis approaches that rely on activity in Trojan circuits (e.g.

transient current or EM based methods).

In conclusion, this dissertation presented a comprehensive study of different SoCs

on vulnerability analysis and mitigation. We developed a set of techniques to reduce

cache vulnerability, protect against trace buffer attack, and detect hardware Trojans. Our

research will enable designers and security engineers to improve the reliability and security

of SoCs.

8.2 Future Research Directions

As more and more SoCs are deployed, vulnerabilities of SoCs will continue to

undermine the reliability and security of our systems. The research described in this

dissertation can be extended in the following directions:

Our approaches for cache vulnerability reduction can be extended to systems allowing

preemptive execution. This can be achieved by partitioning tasks into phases and profiling

each partition, and preempted task can resume execution using the configuration for the

current partition. In case of statically scheduled systems, we exactly know the preemption

points, therefore, we can profile accurately even for preemptive tasks. However, for

dynamically scheduled systems, we need to profile a task at phase boundaries and during

runtime choose the configuration using nearest neighbor approach.

Our approaches for cache vulnerability reduction are based on static profiling of

applications before runtime. Static profiling takes very long simulation time and it might

not be suitable for systems where applications have very different runtime behaviors. A

natural extension is to make our approach work online without static profiling beforehand.

This can be achieved by means of intermittent execution and periodic prediction of

vulnerability behavior.
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We have shown that the trace buffer can be a source of information leakage for

hardware cryptographic devices. Scan chain is also a popular debug facility in post-silicon

debug. If an attacker takes advantage of both the trace buffer and scan chain, he/she can

get more internal information of the cryptographic devices. It is therefore important to

consider the situation that the attacker might employ both the trace buffer and scan chain

for a more sophisticated attack.

Our hardware Trojan detection approach can increase the relative switching of the

unknown Trojan circuit. Our experiments based on simulation have shown that the

side-channel sensitivity is greatly increased. The next step is to use our approach on both

ASIC and reconfigurable systems. In this way, we can see the effect of process variation

and measurement noise on side-channel sensitivity, as well as the detection accuracy of

Trojans.
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