Journal of Hardware and Systems Security
https://doi.org/10.1007/541635-022-00129-5

=

Check for
updates

Network-on-Chip Trust Validation Using Security Assertions

Aruna Jayasena'® . Binod Kumar? - Subodha Charles? - Hasini Witharana' - Prabhat Mishra’

Accepted: 7 October 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract

Recent technological advancements enabled integration of a wide variety of Intellectual Property (IP) cores in a single chip,
popularly known as System-on-a-Chip (SoC). Network-on-Chip (NoC) is a scalable solution that enables communication
between a large number of IP cores in modern SoC designs. A typical SoC design methodology relies on third-party IPs
to reduce cost and meet time-to-market constraints, leading to serious security concerns. NoC becomes an ideal target for
attackers due to its distributed nature across the chip as well as its inherent ability in monitoring communications between
the individual IP cores. This paper presents a comprehensive NoC trust validation framework using security assertions.
It makes three important contributions. (1) We define a set of security vulnerabilities for NoC architectures, and propose
security assertions to monitor these pre-silicon vulnerabilities. (2) In order to ensure that the generated assertions are valid,
we utilize efficient test generation techniques to activate these security assertions. (3) We develop on-chip triggers based on
synthesized security assertions as well as efficient security-aware signal selection techniques for effective post-silicon debug.
Experimental results show that our proposed framework is scalable and effective in capturing security vulnerabilities as well
as functional bugs with minor hardware overhead.

Keywords Network-on-chip - Security assertions - Hardware security - Security verification - Pre-silicon validation - Post-

silicon debug

1 Introduction

System-on-Chip (SoC) integrates a wide variety of hardware
components (e.g., processor, memory, controllers, convert-
ers) into a single integrated circuit to provide the backbone
of modern computing systems. With the rapid adoption of
multi-processor/multi-core based SoCs, network-on-chip
(NoC) has become a crucial component for delivering high
performance in a wide range of applications. Since NoC has
access to various components in an SoC, it is a prime target
for security attacks. NoC becomes more vulnerable due to
the current trend of integrating diverse third-party intellec-
tual property (IP) cores into the SoC design.

In order to meet the performance requirements of differ-
ent IP cores, NoC design has evolved to be quite complex

P< Aruna Jayasena
arunajayasena@ufl.edu

University of Florida, Gainesville, USA
Indian Institute of Technology, Jodhpur, India

University of Moratuwa, Moratuwa, Sri Lanka

Published online: 07 December 2022

as different techniques are employed to accommodate high
communication bandwidth. Figure 1 shows an example NoC
architecture consisting of several IPs connected together via
routers and electrical wires (links). IPs are connected to the
routers via a network interface (NI). The combination of an
IP, an NI and a router is referred to as a “node” in the NoC.
NoC architectures use packets to communicate between IPs.
For example, when a memory instruction (Load/Store) is
executed by source IP (S), the private caches located in the
same node are checked first and if it is a miss, the off-chip
memory at destination IP (D) has to be accessed to retrieve
the data. Therefore, a memory fetch request message is cre-
ated and injected in the appropriate virtual network. The
message created by the IP is first received by the NI, which
converts it to network packets before sending the packets
into the network via the local router’.

The packets are routed through the routers and
links according to the routing protocol stated in the
route_algorithm until the destination node is reached [1].

I Most NoC architectures facilitate flits, which is a further break-
down of a packet used for flow control purposes. We stick to the level
of packets for the ease of explanation as our method remains the same
at the flit level as well.

@ Springer

http://orcid.org/0000-0002-8347-5065
http://crossmark.crossref.org/dialog/?doi=10.1007/s41635-022-00129-5&domain=pdf

Journal of Hardware and Systems Security

Fig. 1 Example of an NoC con-
necting 16 IPs. The red and pink
lines show sample paths (using
X-Y routing) between source (S)
and destination (D) for data and
response transfers, respectively

The NI connected to D recreates the message from the pack-
ets and passes it to D, which initiates the memory access.
The response message from memory follows a similar pro-
cess when going from D to S. For example, the red and pink
lines show sample data and response transfer paths, respec-
tively, using the X-Y routing protocol. Similarly, all IPs inte-
grated into the SoC leverage the resources provided by the
NoC to communicate with each other.

1.1 Threat Model

With all of the advanced performance features, extra logic
and buffers involved in the NoC operations, it has definitely
become a challenge to ensure correct functionality under
all possible scenarios for the entire NoC [1-4]. Different
components in the NoC design are susceptible to different
types of attacks. The most commonly explored attacks can
be divided into three broad categories: (i) eavesdropping
attacks through packet duplication, (ii) sabotaging communi-
cation by packet corruption, and (iii) performance degrada-
tion and denial of service through packet starvation, packet
dropping and packet misrouting. These attacks can even get
implanted during outsourcing of different stages of NoC
life cycle to third-party vendors. These attack scenarios are
described in detail in Sect. 3.

1.2 State of the Art

Traditional SoC validation methodology is unlikely to detect
security vulnerabilities since it is infeasible to get 100% cov-
erage of functional scenarios for complex (billion-gate) SoC
designs [5]. For example, malicious implants such as hard-
ware Trojans can stay benign most of the time and act mali-
ciously when a predefined trigger condition is met, which
can be extremely rare [6]. Moreover, a carefully crafted Tro-
jan has a very low performance and power footprint that can
be hidden in typical process variations and environmental
noise margins. While formal verification is promising at pre-
silicon stage, it has two fundamental limitations. The formal

@ Springer

...........................

R — e E
x, : /1’ Route Compute o
v VC Allocator 2
Y : III o
A M./

‘ 2 o, Input Switch Allocator :
——— Wi)
‘ B = Buffers 1 !
x x o1 2 0!
HA Q . 1, 8!
- ‘g "5 : +— !
‘ '3 Cross Bar = :
——— \ <, [Input Switch 1 S
‘ *ﬁ i ! Buffers 8 |

T N /

- ~ P

= Processing Element Network

= 7.&7"* Interface

4D . Router == Link

methods can be applied to only small designs (e.g., indi-
vidual IPs) due to state space explosion. Therefore, it will
not be able to detect system-level vulnerabilities consisting
of NoC communicating with multiple IPs. Most importantly,
an attacker may introduce the vulnerability during the later
stages in the design (e.g., during synthesis, layout or fabrica-
tion). Therefore, it is critical to monitor security vulnerabili-
ties during runtime (pre-silicon simulation or post-silicon
execution). In this paper, we show that security assertions
(and associated synthesized checkers) are effective in runt-
ime validation of security vulnerabilities.

For functional verification of SoCs, assertion-based vali-
dation (ABV) is one of the primary industrial techniques.
Assertions can be thought of as certain kinds of checkers
embedded in the design. Failure to adhere to the assertion
condition can trigger warnings helping in runtime valida-
tion. For example, assertions can check whether the output
of an adder is always equal to the sum of the two inputs.
While ABV is widely used for functional validation, there is
a limited effort in utilizing assertions to detect security vul-
nerabilities [7]. There is a fundamental difference between
the objectives of functional and security assertions. While
functional assertions monitor expected behaviors, security
assertions are designed to monitor unexpected vulnerabili-
ties. We utilize these assertions to carry out the comprehen-
sive validation of NoC security at different stages of the SoC
development cycle.

The primary objective of our proposed approach is to
show that the security assertions can be effectively utilized
for NoC trust validation. The proposed framework enables
pre-silicon as well as post-silicon security validation of
NoC-based SoCs. At the pre-silicon stage, the RTL model
is input to the validation framework whereas the post-silicon
validation is carried out on the chip model (silicon) which
has highly restricted observability. Section 4 describes the
three primary tasks during pre-silicon validation: assertion
generation, directed test generation, and coverage analysis.
We generate the security assertions in the first task. The
next task enables the automated generation of directed tests

Journal of Hardware and Systems Security

to activate the security assertions. The final task performs
injection of vulnerabilities and coverage analysis to demon-
strate that the generated assertions can capture the security
flaws.

Section 5 describes the three major tasks in post-silicon
debug: signal selection, trigger generation, and post-silicon
debug of security failures. The first task enables security-
aware signal selection without compromising observability
requirements. The second task leads to the automated gen-
eration of trigger logic based on security assertions. The
final task performs trace analysis for post-silicon debug of
security vulnerabilities.

1.3 Contributions
This paper makes the following major contributions:

— Develops security assertions for a wide variety of NoC
vulnerabilities based on a comprehensive survey to iden-
tify common vulnerabilities and attack scenarios in NoC
architectures.

— Generates directed tests using bounded model checking
as well as concolic testing to activate the security asser-
tions. These tests are effective for activating pre-silicon
security assertions as well as post-silicon (synthesized)
checkers.

— Enables post-silicon security validation and debugging of
NoC-based SoC architectures. This involves effective sig-
nal selection and automated offline analysis of selected
signals.

— Demonstrates the efficacy of utilizing security assertions
for capturing both pre-silicon vulnerabilities as well as
post-silicon security failures in NoC-based SoCs.

1.4 Paper Organization

The remainder of the paper is organized as follows. Sec-
tion 2 surveys the related approaches. Section 3 outlines
the different security threat models considered in this paper.
Section 4 describes the pre-silicon security validation frame-
work. Section 5 discusses the post-silicon security debug
of NoC architectures. Section 6 presents the experimental
results. Finally, Sect. 8 concludes the paper.

2 Background and Related Work

In this section, we first introduce the NoC and its compo-
nents. Next, we discuss the existing efforts related to NoC
validation at different stages in two broad categories: pre-
silicon security validation and post-silicon debug of security
vulnerabilities. We provide a qualitative comparison with the
state-of-the-art approaches in Sect. 6.4.

2.1 Network-on-Chip Components

As shown in Sect. 1, the router plays a major role in internal
operations of the NoC. Specifically, the router is responsible
for receiving packets, decoding the destination, and forward-
ing it to the correct output. Since NoC consists of multiple
IP’s that share the same communication medium, there is
arbitration logic involved to avoid communication interrup-
tions. During the arbitration, the data is stored temporally
inside the flit_buffer. Therefore, flit_buffer implementation
typically includes all the simple memory signals such as
rd_ptr,wr_ptr,wr_en, rd_en. Furthermore, router consists
of arbiter, route_algorithm, and other miscellaneous compo-
nents. Routing algorithm determines the way to transfer the
data packets through the network. Post-silicon debug is chal-
lenging due to the integration of all the complex components
in the NoC. Trace buffers are widely used as a Design-for-
Debug (DfD) structure in traditional post-silicon validation
methodology [8, 9]. The main purpose of the trace buffer is
to capture a small set of internal signals during execution
that can be offloaded for offline analysis.

2.2 Pre-silicon Security Validation

Formal methods have been extensively used in perform-
ing security verification. Previous work has explored
proof-based methods [10] and formal verification [11, 12].
Sepulveda et al. [12] explored formal verification in NoC
considering security vulnerabilities in routing protocols.
While formal verification is promising, it has two major
limitations: (i) formal methods cannot be applied on large
designs due to state space explosion, and (ii) it cannot per-
form runtime attack detection. As discussed in Sect. 3, even
if there are no Trojans detected during design time, attack-
ers can still launch attacks during runtime which cannot be
detected using design time formal verification.

While formal methods can provide guarantees, it can be
infeasible to apply them on large NoC IPs. On the other
hand, simulation based techniques are scalable but cannot
give guarantees about the verification completeness. Asser-
tion-based Validation (ABV) provides a middle ground
by utilizing the best of both worlds. A major challenge in
post-silicon debug is how to increase the controllability and
observability of the hardware design. The ability to control
the internal signal is referred to as controllability, whereas
observability refers to the ability to view the internal signals
by propagating them to observable points (such as primary
outputs). A recent survey [13] shows that ABV has shown
promising results in validation of functional behaviors
[14-16] as well as non-functional (e.g., security) require-
ments [17, 18]. Assertions can capture unusual behavior
and depending on where the assertion is embedded, it can
give information about the internal state of the design. This

@ Springer

Journal of Hardware and Systems Security

Fig.2 An example Trojan that
Input

modifies the packet during
transit

increased observability reduces overall hardware validation
time significantly. While assertions do not directly improve
controllability, there are efforts to generate tests that can
activate the assertions. Assertions have been extensively used
for functional validation of SoC designs, however, the use
of assertions for security validation of NoC-based SoCs has
not been well studied in the literature.

2.3 Post-silicon Security Validation

While pre-silicon security validation can be effective at
detecting design vulnerabilities, runtime attacks are still
possible unless adequate defense measures are adopted. For
example, even if there are no hardware Trojans found during
pre-silicon verification, attackers can still implant Trojans
during fabrication and launch attacks during runtime. There
are many approaches for runtime security monitoring and
mitigation. Dubrova et al. [19] proposed built-in self test
(BIST) as a solution to prevent attacks caused by hardware
Trojans added into the SoC during the manufacturing stage.
However, BIST cannot address diverse threats and can pro-
vide very limited coverage. Boraten et al. [20] use model
checkers to alert the SoC if the buffers, VCs, and switch
allocators are illegally utilized causing DoS attacks. Other
techniques to mitigate attacks during runtime include traf-
fic monitoring [21-23], partitioning [24] and cryptographic
defenses [25, 26]. However, the success of these mitigation
techniques is limited only to a certain set of attack scenar-
ios. Hence, if the mitigation technique is aiming to prevent
one attack type, it will fail in a different attack scenario.
Moreover, these runtime mitigation techniques introduce
significant hardware overhead in terms of area, power and
performance. Our proposed approach effectively utilizes the
existing trace buffer design and develops trigger logic to pro-
vide a lightweight solution for seamless detection of runtime
security vulnerabilities related to NoC operation.
Post-silicon validation and debug of SoCs has emerged
as a challenging problem [8, 9]. Recent research efforts have
addressed post-silicon functional validation issues for NoC
architectures [1, 27-29]. Rout et al. [27-29] explored effi-
cient router and trace buffer design for post-silicon valida-
tion of NoC-based SoCs. These techniques mainly cater to

@ Springer

- 4 Activation Code

- a Activation Logic

.4 Malicious Action

Control Logic

ascertaining the functional correctness of NoC designs, and
are not designed for post-silicon security validation. To the
best of our knowledge, our approach is the first attempt in
exploring the effectiveness of security assertions for both
design time (pre-silicon) and runtime (post-silicon) security
validation of NoC architectures.

3 Modeling Different Types of Threats

We consider various attack scenarios outlined in the recent
literature [6]. For example, the attacker can be a rogue
designer who is able to tamper with the NoC IP and implant
Trojans in the routers during design time. Similarly, a com-
promised CAD tool can introduce malicious implants at
various stages of the design cycle such as synthesis, scan-
chain insertion, verification, and layout. An attacker can also
insert malicious implants at the foundry via reverse engi-
neering. A vulnerability can also be created unintentionally
by a CAD tool. Once integrated, the Trojans remain hidden
(deactivated) in order to avoid detection. Pre-programmed
wake times and/or a specific activation logic can be used to
fully activate the Trojans. Even when behaving maliciously,
Trojans exhibit negligible power and performance overhead.
For example, Sepulveda et al. [30] explored a similar threat
model. In fact, our modeling of security assertions builds
on top of the modeling of security properties for formal
verification of pre-silicon models [30]. We follow a func-
tionality-directed approach for developing the assertion set
for pre-silicon verification. In other words, we show how to

Table 1 Notations for properties in Tables 2 3, 4, 5, and 6

Symbol Operator Description

X¢ Next Property should hold in the next cycle

Go Always Property should always hold

Fo Eventually Property will at some point in time (future)
hold

P¢ Previous state Specifies a state at some point in time in
the past

dUw Until ¢ should be true until @ becomes true

Journal of Hardware and Systems Security

Table 2 Properties to detect Packet Duplication

P# Description of Security Properties

dl Always the number of packets entered the router should be equal to the sum of packets in the router and the number of
packets that left the router Y (wr_en A —rd_en A =full) == Y (rd_en A ~wr_en A —empty)

d2 Rd/Wr flags should reset once data has been read from /written to the buffer (wr,

d3 Multiplexers should not alter the input data at the output G((}.

— X(—wr_en)) A (rdy,,, = X(—rd_en))

done
Noorts

oo (select; A (data,i == data,,,))) == 1)

generate security assertions for specific NoC vulnerabilities.
A designer can create additional assertions (if needed).

In this paper, we assume that the Trojans can manifest
through duplication, corruption, starvation, dropping, and
misrouting of packets when packets pass through rout-
ers. Furthermore, we assume that the trace buffer logic is
trustworthy. Similarly, we also consider single vulnerabil-
ity model. Therefore, simultaneous activation of multiple
dependent vulnerabilities is out of scope. Figure 2 shows
a block diagram of a Trojan architecture that can facilitate
the attacks. The capabilities of the Trojan include all pos-
sible attacks that can be caused by a Trojan-infected router
including packet duplication (Sect. 3.1), packet corrup-
tion (Sect. 3.2), packet starvation (Sect. 3.3), packet loss
(Sect. 3.4), and packet misrouting (Sect. 3.5). Based on the
threat model, we derive a set of security properties that will
be embedded in the design for monitoring runtime vulner-
abilities. The notations used to denote these security proper-
ties are shown in Table 1. Tables 2, 3, 4, 5, and 6 outline the
individual properties that should hold during execution for
each category of threat model. The first column indicates
the property number (P#). The second column provides an
intuitive description of the property behavior as well as a
temporal logic description that can be implemented as Sys-
temVerilog assertions.

3.1 Packet Duplication

IPs rely on the NoC to ensure secure data communication.
An attacker can eavesdrop on the packets in an attempt to
leak sensitive information. A common threat model is a
hardware-software coalition attack where a Trojan-infected
router and an accomplice application work together to

Table 3 Properties to detect Packet Corruption

eavesdrop. When packets are received at the input buffer
of the router, the Trojan copies the packets, modifies the
destination address in the header so that the new destination
is an IP that runs an accomplice malicious application, and
places it back in the input buffer. The NoC then routes the
duplicated packets to the malicious application. The same
threat model has been widely used to explore eavesdropping
attacks in NoC [25, 31]. Table 2 outlines the properties that
should hold true to prevent packet duplication.

3.2 Packet Corruption

Integrity of data communicated through the NoC is crucial for
correct execution of tasks. If an attacker corrupts data intention-
ally, it can cause erroneous behavior and/or system failure. Fur-
thermore, since corrupted data can trigger re-transmissions, it
can incur significant power and performance overhead leading
to denial-of-service attacks. The Trojan architecture in Fig. 2
facilitates data corruption by replacing the packet content with
the content in a malicious register. A similar threat model that
discussed eavesdropping, denial-of-service and illegal packet
forwarding, all of which utilized packet corruption at a router
was presented in [32]. Table 3 outlines the properties that
should hold true to prevent packet corruption.

3.3 Packet Starvation

Denial-of-Service (DoS) is one of the most common way
attackers find for attacking the systems. There are multiple
avenues in which the DoS manifestation affects the opera-
tion. Performance guarantees of the design are tightly cou-
pled with operation of certain important components. For
example, the response time of a memory controller that

P# Description of Security Properties
cl Router can issue only one request at a time G((ZQ’S’” req_port;) < 1)
2 Arbiter cannot issue multiple grants at the same time G((f\io’ gnt_port;) < 1)
c3 Error checking code should match the data when data is written to and read from the buffer
G(parity,,,, == 3P(parity;,))
c4 Multiplexers should not alter the input data at the output G((Zi”g”“ (select; A (data,,i == data,,,))) == 1)

@ Springer

Journal of Hardware and Systems Security

Table 4 Properties to detect Packet Starvation

P# Description of Security Properties

sl Rd/Wr pointers should be always sequentially incremented rd_en A (-wr_en A ~empty) < (X(rd_ptr) == (rd_ptr + 1))A
wr_en A (mrd_en A —full) & (X(wr_ptr) == (wr_ptr + 1))

s2 Rd/Wr pointers are not incremented when the buffer is empty/full (rd_en A =wr_en A empty — (rd_ptr == X(rd_ptr)))A
(wr_en A =rd_en A full — (wr_ptr == X(wr_ptr)))

s3 Write address range should be equal to read address range G(rd_address,,,,,, == wr_address,;,,,)

s4 Arbiter should eventually grant the opportunity for every available request (req_port U gnt_port) — F(gnt_port)

s5 Noorts

s6

Route should issue a request whenever data is valid G(data_valid < (

Multiplexers should not alter the input data at the output G((}.

o Teq_port;) ==1)
N/mﬂ\

o (select; A (datay,i == data,,,))) == 1)

provides the interface to off-chip memory can be critical in
serving all the memory requests. If an attacker intentionally
delays packets originating from such a critical component,
the SoC performance can suffer significant degradation.
Delays can lead to catastrophic consequences in real-time
safety-critical applications. A Trojan can selectively delay
packets originating from an IP, which is referred to as
“packet starvation”. Starvation can be caused by a Trojan-
infected router de-prioritizing packets from a particular ori-
gin at the arbiter [33]. In other words, packets are treated
unfairly such that all the input ports do not get an equal
chance of accessing the output. Table 4 outlines the proper-
ties that should hold to prevent packet starvation.

3.4 Packet Loss

From the scenario of packet starvation considered in
Sect. 3.3, packet loss comes out as another manifestation.
In starvation, packets are intentionally delayed and can reach
the destination at some point. However, when the packets are
dropped, unless packets are re-transmitted, the destination
will not receive the packets. Similar to the consequences of
starvation, packet loss can cause severe performance degra-
dation and malfunction [34]. Table 5 outlines the properties
that should hold true to prevent packet loss.

Table 5 Properties to detect Packet Loss

3.5 Packet Misrouting

The NoC uses routing protocols to route packets between the
senders and the receivers. A key requirement of routing proto-
cols is to ensure packet routing without causing deadlocks and
livelocks. A Trojan that corrupts packet header information and/
or routing tables can force some packets to loop around and
force deadlocks and livelocks. Such attacks are capable of ren-
dering single application to full chip failures [35]. Rerouting of
packets is also a critical component in eavesdropping attacks as
explained above (see Packet Duplication). Table 6 outlines the
properties that should hold true to prevent packet misrouting.

4 Pre-silicon Security Validation

Pre-silicon validation section of Fig. 3 shows an overview
of our proposed NoC trust validation framework using secu-
rity assertions. It consists of three major tasks: assertion
generation, test generation, and coverage analysis. First, we
describe how to generate security assertions for the NoC
design (Sect. 4.1). Next, we present how to generate test
cases to activate the security assertions (Sect. 4.2). Finally,
we discuss the assertion coverage to prove the effectiveness
of the security assertions (Sect. 4.3).

P# Description of Security Properties

11 Rd/Wr pointers should be sequentially incremented only when rd_en/wr_en are set rd_en A (nwr_en A mempty) < (X(rd_ptr) == (rd_ptr + 1))A

wr_en A (-rd_en A =full) & (X(wr_ptr) == (wr_ptr + 1))
Npmm

14 Routing algorithm (XY) should be correctly implemented

G((dest, > current, < destport,,, == EAST) V (dest, < current, < destport,
== NORTH) V (destport

next

== SOUTH) v (desz‘y < current, < destport,

Route can issue only one request at a time G((X, /" req_port;) < 1)

N, ports

Route should issue a request whenever data is valid G(data_valid < (¥, /)" req_port;) == 1)

e == WEST) V (dest, > current, < desiport,,,,

== LOCAL))

next

Only one grant can be issued by the arbiter at a time G((Z?/:”S’“ gnt_port;) < 1)

16 Arbiter should eventually grant the opportunity for every available request (req_port U gnt_port) — F(gnt_port)

N, ports

17 Multiplexers should not alter the input data at the output G((}, 7y

(select; A (data,i == data,,,))) == 1)

@ Springer

Journal of Hardware and Systems Security

Table 6 Properties to detect Packet Misrouting

P# Description of Security Properties
ml : : Noorts
Route can issue only one request at a time G((Ziz’o req_port;) < 1)

m?2 Routing algorithm (XY) should be correctly implemented

G((dest, > current, <> destport,,,, == EAST) V (dest, < current, < destport,,,, == WEST)V

(dest, > current, < destport,,, == SOUTH) V (dest, < current, < destport,,, == NORTH) V (destport,,,, == LOCAL))
m3 Only one grant can be issued by the arbiter at a time G((?lol gnt_port;) < 1)
m4 Nports

Multiplexers should not alter the input data at the output G((}.

oo (select; A (data,i == data,,,))) == 1)

4.1 Generation of Security Assertions

To launch an attack identified in Sect. 3, the hardware Trojan
must change the normal behavior of the NoC. Any violation
to the security properties presented in Sect. 3 can be moni-
tored by implementing them as assertion checkers embedded
in the NoC design. Table 7 shows the twelve SystemVer-
ilog assertions that can cover the security properties defined
in Sect. 3 (Tables 2, 3, 4, 5, and 6). If the security checks
defined by the assertions are not violated during runtime, we
can conclude that there are no ongoing attacks.

The mapping between the security properties and the
security assertions is outlined in Fig. 4. The same color indi-
cates the security properties for a specific threat model. For
example, the four security properties related to packet cor-
ruption (c1—c4 in Table 3) are colored in pink. For optimiza-
tion purposes, some properties are combined into a single
assertion since they effectively perform the same functional-
ity. For example, the security assertion A7 can cover three
security properties: c¢1 (from Table 3), I2 (from Table 5) and
m1 (from Table 6).

4.2 Test Generation for Activation of Security
Assertions

We have explored automated test generation using two
complimentary approaches. The first approach uses model

. Pre-Silicon Validation

4

Test
Generation

Vulnerabilities
(Threat Model)

NoC Design
(GUNLYE)]

Assertion
Generation

Security
Assertions

Coverage Vulnerability Injection

Analysis

- o -

Fig.3 Overview of our proposed NoC trust verification framework
using security assertions. It consists of three major tasks for pre-sil-
icon validation: assertion generation, test generation, and coverage

checking that is suitable for small designs with simple asser-
tions. The second approach is scalable for large designs
and complex assertions due to the effective utilization of
concrete simulation and symbolic execution. This section
briefly describes these approaches. Section 6 demonstrates
the effectiveness of these test generation techniques in acti-
vating security assertions for NoC architectures.

Given that the security assertions represent unexpected
behaviors, they are not expected to be activated during the
traditional validation methodology. Therefore, it is important
to generate directed tests to activate the security assertions.
Once an assertion is activated by a directed test, it indicates
that the assertion is valid and it is able to accurately detect
a specific security threat. An assertion is valid if there is at
least one scenario that can violate the assertion. The inva-
lid assertions cannot be activated under any circumstance,
and therefore, those assertions should be removed. Figure 5
shows our test generation framework with two comple-
mentary approaches. We use SAT-based bounded model
checking (BMC) that accepts the NoC design and asser-
tions (negated properties) as inputs. The counterexamples
generated by the EBMC model checker [36] can be used as
a directed test that is guaranteed to activate the respective
security assertion.

Unfortunately, EBMC may fail to handle complex prop-
erties due to state space explosion. In such cases, we use
concolic testing [37] that can effectively utilize concrete

NoC with Embedded
Security Assertions

— N
Signal \
Selection :
1
$:
Trigger Trace 3 1
Design Signals 5 !
w Trace !
analysis 1
1
NoC Design with Trace Buffer Post-Silicon 1
and Trig Debug !

S ’

analysis. For post-silicon validation, it consists of three major tasks of
trigger design, signal selection and debug of post-silicon failures

@ Springer

Journal of Hardware and Systems Security

Table 7 SystemVerilog Security
Assertions

simulation and symbolic execution to generate the required
test patterns. Concolic testing addresses the state space
explosion problem by exploring one path at a time compared
to model checking that tries to explore all possible paths.
To activate the security assertions non-vacuously, we first
convert the security assertions into branch statements and
then use concolic testing to activate the specific branches.

4.3 Assertion Coverage Analysis

One way of checking the correctness of the assertions would be to
inject a wide variety of vulnerabilities into the design and check
whether assertions are able to capture them. Typically for this pur-
pose vulnerability scenarios have to be created only considering
the threat models without focusing on the created assertions. After
injecting the vulnerabilities, the design can be simulated with
the generated tests. The process of injecting vulnerabilities and

A# SystemVerilog Assertions

Al

assert

|=>(wrPtr[i]

assert

|=>(rdPtr[il

property (@(posedge clk) (wr[il&&!rd[il)
==$past (wrPtr[i])+1));

property (@(posedge clk) (rd[i] && !'wr[il])
== $past (rdPtr[il)+1));

A2

assert

(wr[i]

property (@(posedge clk)

&% !'rd[i] && (depth[i] == B))

|=>(rdPtr[i]l==$past (rdPtr[i])));

assert
(rdlil

|=>(rdPtr[i]

property (@(posedge clk)
&% 'wr[i] && (depth[i] == {DEPTHw{1’b0}}))
== $past (rdPtr[i]))) ;

A3

assert

minRdPtr [i]

(maxRdPtr [i] <= maxWrPtr[i] &&
>= minWrPtr[il)

A4

assert
assert

[=>
|=>

twr[i];
'rd[i];

property (@(posedge clk) wr[i]
property (@(posedge clk) rdl[il

Ab

assert

(parity (din)|-> s_eventually parity(dout));

A6

assert

(count (wr_en,!rd_en)==count (!wr_en,rd_en));

A7

assert

($onehot0 (destport));

A8

assert

(dest_x*dest_y<=NoCSize);

A9

assert

((dest_x > current_x && destport_next==EAST)

|1 (dest_x < current_x && destport_next==WEST)
|| (dest_y > current_y && destport_next==SO0UTH)
|l (dest_y < current_y && destport_next==NORTH)
|| (destport_next==LOCAL));

A10 assert ($onehotO(grant));

All assert property

(@(posedge clk) request[jl|->s_eventually grant[j]);

Al12 assert (!$onehot(sel) ||

sel!=1’b0 || (sel[x]==1’b1
&& (mux_in [OUT_WIDTH#*(x)+:0UT_WIDTH]==mux_out))==1);

computing assertion coverage analysis need to be performed in an
iterative fashion until we get 100% coverage of security assertions.

5 Post-silicon Trust Validation Using
Synthesized Checkers

Due to various factors ranging from exponential validation
complexity, slow simulation speed to lack of effective coverage
metric, it is not feasible to capture all functional bugs as well as
security vulnerabilities during pre-silicon validation stage. The
focus of post-silicon validation is to capture these escaped bugs
as well as security vulnerabilities. Post-silicon validation section
of Fig. 3 shows the three major tasks in the post-silicon security
validation framework for NoC architectures: trigger design, sig-
nal selection and debug of post-silicon failures. The remainder
of this section describes these tasks in detail.

A md
17
g ml m3 c4
gl] 2| B |m|15] 16| d
sl | s2 | s3 | d2 [3 [dl[cl | s5] 14]2 s4 | 56
Al T a2 T A3 T asa T As T ae T A7 1 A8 T A9 Tato AT A2 T ™
Assertion

Fig.4 Mapping between security assertions shown in Table 7 and the
security properties outlined in Sect. 3 (Tables 2-6). Each color rep-
resents security properties for the same vulnerability. For example,
the properties shown in pink (cl-c4) represent packet corruption in

@ Springer

Table 3. Note that each security assertion can cover one or more secu-
rity properties. For example, security assertion A7 represents three
security properties (c1, 12 and m1)

Journal of Hardware and Systems Security

Fig.5 Directed test genera-
tion using SAT-based bounded
model checking as well as
concolic testing

Security
Assertions

NoC Design
(RTL Model)

5.1 On-chip Trigger Design Using Security
Assertions

Implementation of assertions can assist in checking design
correctness [4]. Similarly, security assertions [7] can also
be implemented on-chip. Typically, the generation of such
assertions can be done automatically [16]. However, as a
large number of assertions can be obtained through mining
techniques, the implementation of the assertions for on-chip
triggers becomes a difficult problem owing to the associated
overhead. An approach to obtain the on-chip implementation
of assertions (specified in property specification language) is
presented in [38] based on the concepts of automata theory.
However, these techniques do not specifically cater to the
objective of security assertions/properties Specifically, one
of the key objectives of our approach is to create a light-
weight trigger mechanism. Since the enumeration of design
behaviors based on specification tend to be typically large,
we adopt a threat model-centric approach for obtaining secu-
rity assertions.

The assertions described in Fig. 4 were modeled based
on the behavior of the threat models. The approach that
was used to convert the assertions into relevant triggers is
as follows. Initially, we categorized the assertions based on
their types: implication assertions, immediate assertions,
and concurrent assertions. Implication assertions follow
the format of (a — b) where a and b can be sequence of
expressions. Here, a is considered as the antecedent while
b is considered as the consequent. Implication assertions
simply monitor sequences based on satisfying specific
criteria. For example, A2 in Fig. 4 (s2 in Table 4) is an
implication-type security assertion. Immediate assertions
are in the format of assert(a == b), that check a property
when the control reaches an exact location in the code.
For example, A7 in Fig. 4 (c1 in Table 3) is an immediate
type security assertion. Concurrent assertions are in the
format of assert property(—(a&b)) that are checked in each
clock cycle to verify the behavior. Based on safety and
liveness properties, assertions outlined in Table 7 can be
divided into two categories. The safety properties (e.g., Al
in Table 7) try to ensure that nothing bad will happen dur-
ing execution. The liveness properties (e.g., AS in Table 7)
try to ensure that something good will eventually happen.

Negated
Properties

Model
Checking

Counterexamp

Concolic

Testing Test Vectors

5.2 Security-Aware Trace Signal Selection

Since NoC design contains numerous signals, selecting
appropriate signals becomes a challenging problem dur-
ing the design stage. Algorithm 1 outlines the proposed
method for selecting trace signals to be stored in on-chip
trace buffers to maximize the coverage of security asser-
tions. With the help of dependency graph analysis, the
trace signals are selected for aiding in post-silicon vali-
dation. In Algorithm 1, sv represents design variables
(i.e., the variables in the RTL design). Similarly, Q rep-
resents the modules of the design (whereas M denotes
the total number of modules in the RTL design). Dur-
ing execution, the on-chip trace buffers contain the traced
signals (denoted by Tr,,, in Algorithm 1) that need to
be dumped for error/vulnerability localization using fine-
grained analysis.

Algorithm 1: TraceSignalSelection
Input: Design,M,SA
Output: Trsignals
sv <+ 0;
Design = RTL description of the Design;
M = number of modules of Design;
02 ={21,02.... 021 };
SA = security assertions;
for each module §2; in {2 do
A + assertion(s) related to §2; from SA;
sv; < variables from (2; present in A;
SV < sv U sv;;
DG; <+ construct dependency graph for sv;
Edge; < calculate number of edges connected to
each sv; from constructed dependency graph;

© 00 N O O W N

[
= O

12 end

13 Rank variables of sv across {2 by Edge; values;

14 TTsignals < variables from sv as per given
trace-buffer width limit;

To enable effective on-chip debug and security validation,
trace signals must be selected carefully. It is a major chal-
lenge to identify efficient trace signals due to the exponen-
tial nature of possible trace signal combinations as well as
conflicting requirements such as error detection and internal
visibility enhancement [39]. We explain the proposed algo-
rithm using an illustrative example. Consider the following

@ Springer

Journal of Hardware and Systems Security

Fig.6 An example signal
dependency graph for flit_buffer

rd_select_addr

SystemVerilog assertion: (a == 1)&&(b == 0) — (¢ == 0).
Here, c is the destination signal, and a and b can be register-
variables (flip-flops), primary inputs or wires (internal nets).
The above assertion basically means that signal c is false
when signal a is true and signal b is false. The condition
present in the left-hand side (referred to as antecedent) can
be translated into triggers and the same applies to the signal
condition in the right-hand side (referred to as consequent).
The goal of the signal selection is to trace variables that will
be able to infer the values of signals a, b and c.

One illustration of the dependency graph is shown in
Fig. 6 where the nodes represent different signals in the
design and the edges depict the dependencies between them
(inferred from the assignments in the RTL design descrip-
tion). This illustration corresponds to flit_buffer module of
the NoC design. Based on these graphs, we select the sig-
nals that are maximally connected with other signals. The
underlying reasoning is that maximum number of signals
needed for functional behavior checking can be obtained for
selection. To select variables related to security, we analyzed
different types of security assertions developed in Sect. 4.1.
Thereafter, the variables that were involved in the security
assertions are chosen as probable candidates of trace signals.
We perform a commonality search between the variables
chosen from the security assertions and those chosen from
dependency variable analysis.

As discussed in Sect. 6.1, the trace buffer width is limited
and a portion of it is used by the trace header data. There-
fore, we cannot select all the signals to the trace buffer. We

fifo_ram dout

wr_ptr_array

wr_select_addr

vce_wr_addr

vc_not_empty vc_num_wr

dout

fifo _ram din

have to find the most beneficial signals that can be used to
regenerate other signals during the offline analysis. For this
task, we have generated the variable dependency graph for
each component of the NoC design. Then we order (sort) all
the signals in different modules based on their connectiv-
ity (number of edges) with the other signals. This method
arranges all the variables in each module in descending
order of their restoration capability. Then we have selected
the most relevant signals for a particular trigger giving the
priority based on the ordered variables until we reach the
trace width limit. For triggers implemented at route_mesh
and arbiter, the trace width was enough to fit all the vari-
ables. However, for several flit_buffer triggers that had more
signals, we applied the above technique to select the most
profitable ones in terms of restorability. For example, the
selected trace signals for flit_buffer related triggers are listed
in Table 8.

Note that our objective is to maximize assertion coverage
with minor impact on overall observability. Therefore, we
cannot take signals only from assertions. If we have a lot of
assertions in the design, it is possible that selecting signals
from only assertions can maximize both overall observabil-
ity and assertion coverage.

5.3 Post-silicon Debug of Security Vulnerabilities

After the activation of on-chip triggers, the fixed number of
trace buffers can store certain important information related
to the design execution. The contents of these buffers need

Table 8 Selected trace signals

- A Trigger ID
for flit_buffer triggers

Signals

T1/T2 (wr)
TU/T2 (rd)
T3
T4
T5
T6

depth,wr_ptr,wr_ptr_next,wr_addr,vc_wr_addr,wr_en
depth,rd_ptr,rd_ptr_next,rd_addr,vc_num_rd,vc_rd_addr,rd_en
depth,rd_ptr,rd_ptr_next,rd_addr,vc_num_rd,vc_rd_addr,rd_en
depth,wr_ptr,rd_ptr,wr_addr,rd_addr,wr_en,rd_en
flit_source(dout),flit_destination(dout),parity_data

depth,rd_counter,wr_counter

@ Springer

Journal of Hardware and Systems Security

to be off-loaded and analyzed for several purposes. The con-
tents of these buffers provide the understanding of internal
signals after the activation of triggers leading to analysis of
the bug (or, the security threat) in a fine-grained manner.

Algorithm 2: PostSiliconTraceAnalysis

Input: Dy, SA
Output: Validation Result
D;,= data from traced flip-flops/signals;
ImpSA < Implication-type assertions from SA;
for each ImpSA; in ImpSA do
pq < antecedent signals of ImpSA;;
pe < consequent signals of ImpSA;;
Check signals values of pg in Dy
if p, signal values as per ImpSA; then
Check signals values of pc in Dy,
if p. different from ImpSA; then
| ImpS A, fails;
end
if p. signal values as per ImpSA; then
| ImpSA; passes;
end
end
if po different as per ImpSA; then
| ImpSA; passes vacuously ;
end
end
Validation Result + failed/passed SA;;

© 0 N O oA WN

[e T N T S Y
N0 cs N RO

N B R
o ©

The methodology for offline trace analysis for implica-
tion-type assertions is presented in Algorithm 2. The valida-
tion algorithm relies on checking the security assertions (SA)
on the off-loaded data (D,, in line 1) from the trace buffer.
This checking of off-loaded data in line 8 is based on the sig-
nal value comparisons with the antecedents and consequents
of the respective security assertions (SA). Note that for non-
implication type of assertions, the validation/checking is
relatively simpler and based on the comparison of values of
signals in the respective assertions. The observed violation
(ValidationResult in line 20) of the security property can
hint towards a possible attack scenario. Note that because
of the on-chip trigger framework, it becomes compulsory
that the respective trigger must have been activated. There-
fore, with the help of this framework, we can ensure that
the detection of the security attacks is achieved in a quick
manner with minimal detection latency. Signal selection and
post-silicon validation results are presented in Tables 9 and
13, respectively.

6 Experiments

This section demonstrates the effectiveness of the proposed
NoC trust validation framework. First, we describe the
experimental setup. Next, we present the vulnerability injec-
tion mechanism and how effective the proposed framework

RO R1 R2 R3
x| %X X %
IPO IP1 1P2 IP3
* R4 x RS R6 R7
x| %
IP4 IP5 IP6 IP7
R8 R9 R10 R11
X %X X %
IP8 IP9 IP10 P11
R12 R13 R14 R15
X %X
P12 P13 P14 IP15

Fig. 7 4x4 Mesh NoC-based SoC used for the experimental setup

is for pre-silicon and post-silicon security validation. All
data generated or analyzed during this study are included
in this section.

6.1 NoC Benchmark with Re-configurable Mesh

We created a re-configurable mesh NoC setup (Fig. 7 pre-
sent the 4x4 configuration) consisting of “morlk” proces-
sors in each core using the open-source ProNoC tool [40].
This Verilog RTL design has the configuration parameters
of the NoC as shown in Table 9. A simple message passing
scenario was designed to send three packets of data from
each IP core to the IP core numbered 10. The designed sce-
nario was implemented in C programming language. Using
mor 1k tool-chain, the required binaries were created for each
IP core. The binary files were then subsequently placed in
the RAM modules of relevant IP cores.

The simulation was done using ModelSim to verify the
behavior. Once the functional accuracy of the experimen-
tal setup was verified, the selected security properties were
implemented using System Verilog assertions. The assertions
were implemented at the corresponding router components
in the NoC RTL model. Table 10 provides information about
the security assertion implementation. The first column
provides the module (file) name in the ProNoC benchmark
suite. The second column indicates the assertions imple-
mented in that module.

We considered both safety and liveness related assertions
introduced in Sect. 4.1. Implementation of liveness asser-
tions is more complex compared to safety assertions since
liveness behaviors include the “eventual” operator. Finding
an exact upper bound for “eventual” operator is not possible
using only the RTL design. Therefore, we derived an upper
bound for the consequent to happen using simulations and
used in the assertions.

@ Springer

Journal of Hardware and Systems Security

In order to ensure that the generated assertions are valid,
we have used directed test generation method discussed in
Sect. 4. Once the pre-silicon assertions are validated, they
can be mapped as post-silicon checkers. Note that System-
Verilog assertions are not synthesizable as post-silicon
checkers. Previous work has proposed several alternatives
to address this. Omar et al. [41] proposed a method that gen-
erates RTL netlists from assertions. We propose a different
approach by creating equivalent trigger logic corresponding
to each assertion. For example, Listing 1 shows the System-
Verilog description of assertion A9 as well as its equivalent
trigger logic representation.

Listing 1: Synthesizable Verilog implementation of the
trigger and trace logic corresponding to the A9 asser-
tion shown in Table 7.

// Trigger

assign trigger_9 =
!'((dest_x > current_x && destport_next==FEAST)
|| (dest-x < current_x && destport_next==WEST)
|| (dest_y > current_y && destport_next==SOUTH)
|| (dest_y < current_y && destport_next==NORTH)
|| (destport_-next==LOCAL));

//Trace

assign trace= trigger_97
{{5{1’bX}},4°d11,current_x ,current_y ,dest_x ,
dest_y ,destport ,destport_next ,{13{1’bX}}}:48°d0;

For post-silicon validation, we injected vulnerabilities
and performed different debug experiments using Model-
sim simulator. A centralized trace buffer was created, with
a buffer length of fixed number of bits. (In the case of 4x4
configuration, trace width is 48 bits). Individual trigger cir-
cuits were designed and implemented to convert each of
the security assertion (discussed in Sect. 4.1) to a synthe-
sizable trigger logic and all the SystemVerilog assertions
were removed from the design. The Design-for-Debug (DfD)
circuit was created with a dedicated packet structure for the
trace. Trace buffer width used for different NoC configura-
tions is presented in Table 14. Figure 8 illustrates the bit
structure for the trace packet. The first bit (R/IP) is used to
identify the source of the trace, whether it was originated
from the NoC or an IP. The next set of bits represent the

Table 10 Mapping of implemented assertions to different NoC mod-
ules

Module Implemented Assertions

flit_buffer.sv Al, A2, A3, A4, A5, A6

route_mesh.sv A7, A8, A9
arbiter.sv Al10, A1l
main_comp.sv Al2

routerID or IP-ID (4 bits for representing 16 routers/IPs in
4x4 instance). The next four bits represent the trace ID. The
remaining bits store the selected trace signals.

6.2 Pre-silicon Security Validation

In this section, we primarily discuss the test generation
approaches for activating security assertions. Specifically,
we explored the following two approaches for automated
generation of directed tests.

6.2.1 Assertion Validation Using EBMC

The previous sections presented the approach for creating
assertions to monitor vulnerabilities. In this section, we dis-
cuss the assertion validation results using the test generation
framework outlined in Sect. 4.2. We used the bounded model
checker EBMC [36] to generate directed tests. The gener-
ated tests were used to verify whether the added assertions
are valid by activating these assertions. Table 11 presents
the time (s) and space (MB) taken by EBMC [36] to acti-
vate the assertions. All the experiments were performed on
a machine with an Intel i7-10510U CPU @ 1.80GHz CPU
with 16GB RAM.

6.2.2 Assertion Validation Using Concolic Testing

As shown in Table 11, we are able to activate all but two
assertions (A5 and A6) using EBMC [36]. These two asser-
tions exceeded the capability of the model checker due to
state space explosion (insufficient memory). We used concolic
testing [37] to activate AS and A6. Results in Table 11 show
the time and memory requirement for test generation using

Table 9 Parameters used in the
experimental setup

Parameter

Value

Router Type

VCs per port

Payload width

NoC arbitration type
Buffer flits per VC
Routing algorithm
VC/SW combination type

Virtual channel (VC) based router
2

32

Round robin

4

X-Y routing

Comb-Nonspec: VC allocator combined with non-speculative SW
allocator where the validity of speculative requests are checked at the
beginning of SW allocation

@ Springer

Journal of Hardware and Systems Security

Table 11 Test generation time

. . Framework EBMC [36] Concolic
and memory requirement using [37]
EBMC and concolic testing to
activate assertions Assertion Al A2 A4 A7 A8 A9 AI0 All Al2 A5 A6
Time (s) 0.08 008 009 008 002 002 002 001 002 002 115 1.89

Memory (MB) 11.7 12.0

11.8 112 45 39 46 48 52 51

642 658

concolic testing. Overall, we generated tests for activating
all the assertions mentioned in Fig. 4 using either EBMC or
concolic testing. Therefore, we can confirm that the security
assertions are valid and satisfy the design requirements.

6.3 Post-silicon Security Debug

This section has two objectives. First, we show that the syn-
thesized checkers are capable of detecting any injected vulner-
abilities. Next, we perform the overhead analysis of synthesiz-
ing security assertions on different NoC configurations.

6.3.1 Detection of Functional and Security Bugs

Several attack scenarios were created by closely following
the threat models without considering the assertions or trig-
gers. These bugs and attacks were inserted in different routers
(selected randomly) to be activated at random clock cycles.
Separate Modelsim simulations were carried out for each of
these attack scenarios (one randomly inserted vulnerability at
a time). Table 13 presents different cases of evaluation with
the proposed debug framework. The first column provides dif-
ferent types of vulnerabilities. The second column indicates
whether it is a functional bug or a security vulnerability. The
third column indicates the activated trigger. The last column
shows the average latency for each detecting each vulnerabil-
ity. From the off-loaded trace contents, we checked for possible
violation of the security assertions. As expected, triggers T5
and T6 require different numbers of cycles since they capture
liveness behavior whereas the activation of the remaining trig-
gers can be detected in one clock cycle.

6.3.2 Scalability Analysis via Overhead Calculation

As discussed in Sect. 4.1, we consider both safety (e.g., Al)
and liveness (e.g., AS) related assertions. The corresponding
triggers also inherit the inherent issues. As a result, the imple-
mentation is simple for safety related triggers (e.g., T1). How-
ever, implementation of liveness checking triggers (e.g., T5)
involves complex logic than other types of triggers. In order
to monitor the overhead of individual trigger, we have selected
4x4 multi-processor system-on-chip (MpSoC) configuration.

We have synthesized the design with the DfD circuit
using Yosys [42] open synthesis tool. Table 12 shows the
hardware overhead for individual security trigger. The

first row provides the ID of each trigger. The second row
shows the respective assertion. For example, if assertion
A2 fails, trigger T2 will be activated. The last row shows
overhead of each trigger.

In order to demonstrate the scalability of the approach,
we have used several MPSoC configurations. Table 14
presents the hardware overhead for the proposed meth-
odology for2x2,3x3,4x4,6x6and 8 x 8§ configura-
tions. For each configuration, DfD circuit along with the
trace width was accordingly adjusted. The total hardware
overhead of the approach is negligible (less than 1% of
the NoC area).

6.4 Comparison with Prior Efforts

The proposed approach is an attempt towards exploring
the effectiveness of security assertions for validation. In
existing literature, other methods have been proposed for
the detection of design bugs or security threats. We present
a qualitative comparison with other verification/validation
methodologies in Table 15.

We analyze the merits of different methodologies on
certain parameters: stage at which verification is being
done (post-silicon or pre-silicon), types of bugs studied
(functional or security or both), overhead (low or high
over percentage of the chip area), scalability and whether
runtime configurability is supported or not. Our proposed
framework outperforms existing methods in all of these
categories.

7 Applicability and Limitations

The primary objective of this paper is to demonstrate that asser-
tion-based validation can be effectively utilized for designing
security and trustworthy NoC architectures. Specifically, we
have shown that we can utilize security assertions for pre-silicon
trust validation as well as post-silicon security debug. Figure 3
shows different tasks of the validation methodology, including
assertion generation, test generation for activation of assertions,

R/IP| RID/IPID

Trace ID Trace Signals

Fig.8 Abstract trace packet structure that facilitates bug/threat locali-
zation and offline debug

@ Springer

Journal of Hardware and Systems Security

Table 12 Overhead analysis for individual security triggers in 4x4 NoC configuration

Trigger ID T1 T2 T3 T4 TS T7 T8 T9 T10 T11 T12 Total
Relevant Assertion Al A2 A3 A4 AS A7 A8 A9 A10 All Al12
Trigger Overhead 0.01% 0.01% 0.02% 0.02% 0.19% 0.04% 0.01% 0.01% 0.01% 0.01% 0.02% 0.01% 0.36%
Ta.ble 13 Bug injections r.esults Vulnerability Type Trigger Latency
with average cycles to activate
the trigger from the activation Eavesdropping attack Security T5/T6 446/445
of the bug Packet corruption (Fifo input) Security T5 7
Packet missing (Fifo input) Security T1/T5/T6 1/330/329
Packet missing (Fifo output) Security T1/T5/T6 1/336/335
Packet dropping (Arbiter) Security T11 1
Wr/rd pointer fails when buffer is not full/empty Functional Tl 1
Wr/rd pointer increments when buffer is full/empty ~ Functional T2 1
Packet destination changing (Flit buffer) Security T5 450
Packet misrouting (Algorithm bug) Functional and Security ~ T9 1
Invalid destination ports from route Functional T8 1
Multiple destination port selection (Route) Functional T7 1
Faulty multiplexer module Functional and Security =~ T12 1
Multiple grants (Arbiter) Functional T10 1
Packet starvation (Flit buffer) Security T3 256
Packet duplication (Flit buffer) Security T4 1

and assertion coverage analysis, trigger generation, trace signal
selection, post-silicon debug. Since each task is independent,
we can replace it with an improved solution without affecting
the other components. For example, we outline how to manually
create NoC-specific security assertions in Sect. 4.1. This com-
ponent can be improved by an automatic assertion generation
framework, or using a combination of manually written asser-
tions with automatically generated assertions. Similarly, we
propose a connectivity based signal selection algorithm. Signal
selection can be improved by utilizing existing trace signal selec-
tion algorithms [8, 9] considering diverse factors such as con-
gestion (layout) constraints, restoration ratio, or dynamic signal
selection based on the debug context. In other words, any signal
selection algorithm is suitable in our framework as long as the
objective is to maximize the assertion coverage with minimal
impact on overall observability (restorability).

Table 14 Overhead for different NoC configurations

NOC Size

2x2 3x3 4x4 6x6 8x8

Number of Triggers 252 567 1008 2268 4032

Trace Width (bits) 32 48 48 64 64
DfD Overhead 0.22% 0.17% 0.19% 0.57% 0.59%
Trigger Overhead 041% 0.35% 036% 0.81% 091%

@ Springer

Table 15 Qualitative comparison with other methods

Technique Stage Bug Type Overhead Scalable Runtime
[39] post-silicon functional low no no
[12] pre-silicon security low no no
[1] post-silicon functional high yes yes
[2] post-silicon functional high no yes
[27] post-silicon functional low no no
Prop. both both low yes yes

8 Conclusion

The increasing utilization of Network-on-Chip (NoC) in
designing modern System-on-Chip (SoC) architectures
manifests into NoC being a prime target for attackers. This
paper presented an approach of NoC trust validation using
security assertions at both the pre-silicon and post-silicon
stages. The proposed approach is complementary to exist-
ing NoC verification techniques that provide only design
time guarantees. Our proposed approach is applicable for
both design time (pre-silicon) analysis and runtime moni-
toring of post-silicon vulnerabilities. We defined a set of
vulnerabilities for NoC architectures, and proposed security
assertions to monitor these vulnerabilities. On-chip triggers
derived from these security assertions provide an opportu-
nity to enable the debugging features with minimal latency

Journal of Hardware and Systems Security

and area overhead. With the help of on-chip trace buffers,
we presented a methodology for effective offline analysis
of post-silicon traces. Experimental results using an NoC
benchmark demonstrated that our approach is effective in
NoC vulnerability analysis using security assertions with
negligible hardware overhead.

Statements and Declarations

Funding This work was partially supported by grants from National
Science Foundation (CCF-1908131) and Semiconductor Research Cor-
poration (2020-CT-2934).

Competing Interests The authors have no relevant financial or non-
financial interests to disclose.

Author Contributions All authors contributed to the study conception
and design. Manuscript preparation, experimental setup, and analysis
were performed by Aruna Jayasena and Binod Kumar. The assertion
validation part was performed by Hasini Witharana. The first draft of
the manuscript was written by Subodha Charles and Prabhat Mishra
and all authors commented on previous versions of the manuscript. All
authors read and approved the final manuscript.

Data Availability All the data and the analysis results that were gener-
ated during the experiments are available in the manuscript.

References

1. Parikh R, Bertacco V (2014) Forever: A complementary formal
and runtime verification approach to correct noc functionality.
ACM Trans Embed Comput Syst 13(3s):104:1-104:30. https://
doi.org/10.1145/2514871

2. Abdel-Khalek R, Parikh R, DeOrio A, Bertacco V (2011) Func-
tional correctness for cmp interconnects. In: ICCD, pp 352-359.
http://doi.org/10.1109/ICCD.2011.6081423

3. Arteris (2009) Flexnoc resilience package. http:/arteris.com/flexnoc-
resilience-package-functional-safety, [Online]

4. Foster H, Lacey D, Krolnik A (2003) Assertion-Based Design,
2nd edn. Kluwer Academic Publishers, USA

5. Tehranipoor M, Koushanfar F (2010) A survey of hardware trojan
taxonomy and detection. IEEE Des Test Comput 27(1):10-25

6. Bhunia S, Tehranipoor M (2018) The Hardware Trojan War.
Springer’ 18

7. Lyu Y, Mishra P (2020b) System-on-chip security asser-
tions. https://arxiv.org/pdf/2001.06719.pdf

8. Mishra P, Farahmandi F (2019) Post-Silicon Validation and
Debug. Springer

9. Mishra P, Morad R, Ziv A, Ray S (2017) Post-silicon validation in
the soc era: A tutorial introduction. IEEE Design & Test 34(3):68-92

10. Love E, Jin Y, Makris Y (2011) Proof-carrying hardware intel-
lectual property: A pathway to trusted module acquisition. IEEE
TIFS 7(1):25-40

11. Guo X, Dutta RG, Mishra P, Jin Y (2016) Scalable soc trust verifica-
tion using integrated theorem proving and model checking. In: HOST

12. SepulvedaJ, Aboul-Hassan D, Sigl G, Becker B, Sauer M (2018)
Towards the formal verification of security properties of a net-
work-on-chip router. In: ETS

13. Witharana H, Lyu Y, Charles S, Mishra P (2022) A survey on assertion-
based hardware verification. ACM Computing Surveys (CSUR)

14. Boule M, Zilic Z (2008) Automata-based assertion-checker syn-
thesis of psl properties. TODAES 13(1):1-21

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Gupta A (2002) Assertion-based verification turns the corner.
IEEE Des Test Comput 19(4):131-132

Vasudevan S, Sheridan D, Patel S, Tcheng D, Tuohy B, Johnson
D (2010) Goldmine: Automatic assertion generation using data
mining and static analysis. In: DATE, pp 626—629

Bombieri N, Busato F, Danese A, Piccolboni L, Pravadelli G
(2019) Mangrove: An inference-based dynamic invariant mining
for gpu architectures. IEEE Trans on Comp 69(4):606-620
Danese A, Bertacco V, Pravadelli G (2018) Symbolic assertion
mining for security validation. In: DATE, pp 1550-1555
Dubrova E, Nislund M, Carlsson G, Smeets B (2014) Keyed logic
bist for trojan detection in soc. In: SoC

Boraten T, DiTomaso D, Kodi AK (2016) Secure model checkers
for network-on-chip (noc) architectures. In: GLSVLSI

Charles S, Mishra P (2020) Lightweight and trust-aware routing
in noc-based socs. In: 2020 ISVLSI, IEEE, pp 160-167

Charles S, Lyu Y, Mishra P (2019) Real-time detection and locali-
zation of dos attacks in noc based socs. In: DATE

Prodromou A, Panteli A, Nicopoulos C, Sazeides Y (2012)
Nocalert: An on-line and real-time fault detection mechanism for
network-on-chip architectures. In: MICRO

Wassel H, Gao Y, Jason K, Huffmire T, Kastner R, Chong F,
Sherwood T (2013) Surfnoc: A low latency and provably non-
interfering approach to secure networks-on-chip. In: ISCA
Charles S, Logan M, Mishra P (2020) Lightweight Anonymous
Routing in NoC based SoCs. In: DATE

Intel (2016) Using tinycrypt library, intel developer zone. http://
software.intel.com/en-us/node/734330

Rout S, Basu K, Deb S (2019a) Efficient post-silicon validation
of network-on-chip using wireless links. In: VLSID, pp 371-376
Rout S, Patil SB, Chaudhari VI, Deb S (2019b) Efficient router
architecture for trace reduction during noc post-silicon validation.
In: SOCC, pp 230-235

Rout S, Badri M, Deb S (2020) Reutilization of trace buffers for perfor-
mance enhancement of noc based mpsocs. In: ASP-DAC, pp 97-102
Sepilveda J, Zankl A, Flérez D, Sigl G (2017) Towards protected
mpsoc communication for information protection against a mali-
cious noc. Procedia Computer Science 108:1103-1112

Ancajas DM, Chakraborty K, Roy S (2014) Fort-nocs: Mitigating
the threat of a compromised noc. In: DAC

Hussain M, Malekpour A, Guo H, Parameswaran S (2018) Eetd:
An energy efficient design for runtime hardware trojan detection
in untrusted network-on-chip. In: ISVLSI

Pasricha S, Dutt N (2010) On-chip communication architectures:
system on chip interconnect. Morgan Kaufmann

JYV MK, Swain AK, Kumar S, Sahoo SR, Mahapatra K (2018)
Run time mitigation of performance degradation hardware trojan
attacks in network on chip. In: ISVLSI

Biswas AK, Nandy S, Narayan R (2015) Router attack toward
noc-enabled mpsoc and monitoring countermeasures against such
threat. Circuits Systems Signal Process 34(10):3241-3290
Mukherjee R, Kroening D, Melham T (2015) Hardware verifica-
tion using software analyzers. In: ISVLSI

Lyu Y, Mishra P (2020a) Automated test generation for activation
of assertions in rtl models. In: ASP-DAC

Boule M, Zilic Z (2005) Incorporating efficient assertion checkers
into hardware emulation. In: ICCD, pp 221-228. http://doi.org/
10.1109/ICCD.2005.66

Kumar B, Basu K, Fujita M, Singh V (2020) Post-silicon gate-
level error localization with effective and combined trace signal
selection. IEEE Trans Comput-Aided Des Integr Circuits Syst
39(1):248-261. https://doi.org/10.1109/TCAD.2018.2883899
Monemi A, Tang JW, Palesi M, Marsono MN (2017) Pronoc:
A low latency network-on-chip based many-core system-on-chip
prototyping platform. MICPRO 54:60-74

@ Springer

https://doi.org/10.1145/2514871
https://doi.org/10.1145/2514871
http://doi.org/10.1109/ICCD.2011.6081423
http://arteris.com/flexnoc-resilience-package-functional-safety
http://arteris.com/flexnoc-resilience-package-functional-safety
https://arxiv.org/pdf/2001.06719.pdf
http://software.intel.com/en-us/node/734330
http://software.intel.com/en-us/node/734330
http://doi.org/10.1109/ICCD.2005.66
http://doi.org/10.1109/ICCD.2005.66
https://doi.org/10.1109/TCAD.2018.2883899

Journal of Hardware and Systems Security

41. Amin O, Ramzy Y, Ibrahem O, Fouad A, Mohamed K, Abdelsalam M
(2016) System verilog assertions synthesis based compiler. In: MTV

42. Clifford W (2013) Yosys open synthesis suite. http://www.clifford.
at/yosys/

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://www.clifford.at/yosys/
http://www.clifford.at/yosys/

	Network-on-Chip Trust Validation Using Security Assertions
	Abstract
	1 Introduction
	1.1 Threat Model
	1.2 State of the Art
	1.3 Contributions
	1.4 Paper Organization

	2 Background and Related Work
	2.1 Network-on-Chip Components
	2.2 Pre-silicon Security Validation
	2.3 Post-silicon Security Validation

	3 Modeling Different Types of Threats
	3.1 Packet Duplication
	3.2 Packet Corruption
	3.3 Packet Starvation
	3.4 Packet Loss
	3.5 Packet Misrouting

	4 Pre-silicon Security Validation
	4.1 Generation of Security Assertions
	4.2 Test Generation for Activation of Security Assertions
	4.3 Assertion Coverage Analysis

	5 Post-silicon Trust Validation Using Synthesized Checkers
	5.1 On-chip Trigger Design Using Security Assertions
	5.2 Security-Aware Trace Signal Selection
	5.3 Post-silicon Debug of Security Vulnerabilities

	6 Experiments
	6.1 NoC Benchmark with Re-configurable Mesh
	6.2 Pre-silicon Security Validation
	6.2.1 Assertion Validation Using EBMC
	6.2.2 Assertion Validation Using Concolic Testing

	6.3 Post-silicon Security Debug
	6.3.1 Detection of Functional and Security Bugs
	6.3.2 Scalability Analysis via Overhead Calculation

	6.4 Comparison with Prior Efforts

	7 Applicability and Limitations
	8 Conclusion
	References

