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Abstract
Recent technological advancements enabled integration of a wide variety of Intellectual Property (IP) cores in a single chip, 
popularly known as System-on-a-Chip (SoC). Network-on-Chip (NoC) is a scalable solution that enables communication 
between a large number of IP cores in modern SoC designs. A typical SoC design methodology relies on third-party IPs 
to reduce cost and meet time-to-market constraints, leading to serious security concerns. NoC becomes an ideal target for 
attackers due to its distributed nature across the chip as well as its inherent ability in monitoring communications between 
the individual IP cores. This paper presents a comprehensive NoC trust validation framework using security assertions. 
It makes three important contributions. (1) We define a set of security vulnerabilities for NoC architectures, and propose 
security assertions to monitor these pre-silicon vulnerabilities. (2) In order to ensure that the generated assertions are valid, 
we utilize efficient test generation techniques to activate these security assertions. (3) We develop on-chip triggers based on 
synthesized security assertions as well as efficient security-aware signal selection techniques for effective post-silicon debug. 
Experimental results show that our proposed framework is scalable and effective in capturing security vulnerabilities as well 
as functional bugs with minor hardware overhead.

Keywords Network-on-chip · Security assertions · Hardware security · Security verification · Pre-silicon validation · Post-
silicon debug

1 Introduction

System-on-Chip (SoC) integrates a wide variety of hardware 
components (e.g., processor, memory, controllers, convert-
ers) into a single integrated circuit to provide the backbone 
of modern computing systems. With the rapid adoption of 
multi-processor/multi-core based SoCs, network-on-chip 
(NoC) has become a crucial component for delivering high 
performance in a wide range of applications. Since NoC has 
access to various components in an SoC, it is a prime target 
for security attacks. NoC becomes more vulnerable due to 
the current trend of integrating diverse third-party intellec-
tual property (IP) cores into the SoC design.

In order to meet the performance requirements of differ-
ent IP cores, NoC design has evolved to be quite complex 

as different techniques are employed to accommodate high 
communication bandwidth. Figure 1 shows an example NoC 
architecture consisting of several IPs connected together via 
routers and electrical wires (links). IPs are connected to the 
routers via a network interface (NI). The combination of an 
IP, an NI and a router is referred to as a “node” in the NoC. 
NoC architectures use packets to communicate between IPs. 
For example, when a memory instruction (Load/Store) is 
executed by source IP (S), the private caches located in the 
same node are checked first and if it is a miss, the off-chip 
memory at destination IP (D) has to be accessed to retrieve 
the data. Therefore, a memory fetch request message is cre-
ated and injected in the appropriate virtual network. The 
message created by the IP is first received by the NI, which 
converts it to network packets before sending the packets 
into the network via the local router1.

The packets are routed through the routers and 
links according to the routing protocol stated in the 
route_algorithm until the destination node is reached [1]. 
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The NI connected to D recreates the message from the pack-
ets and passes it to D, which initiates the memory access. 
The response message from memory follows a similar pro-
cess when going from D to S. For example, the red and pink 
lines show sample data and response transfer paths, respec-
tively, using the X-Y routing protocol. Similarly, all IPs inte-
grated into the SoC leverage the resources provided by the 
NoC to communicate with each other.

1.1  Threat Model

With all of the advanced performance features, extra logic 
and buffers involved in the NoC operations, it has definitely 
become a challenge to ensure correct functionality under 
all possible scenarios for the entire NoC [1–4]. Different 
components in the NoC design are susceptible to different 
types of attacks. The most commonly explored attacks can 
be divided into three broad categories: (i) eavesdropping 
attacks through packet duplication, (ii) sabotaging communi-
cation by packet corruption, and (iii) performance degrada-
tion and denial of service through packet starvation, packet 
dropping and packet misrouting. These attacks can even get 
implanted during outsourcing of different stages of NoC 
life cycle to third-party vendors. These attack scenarios are 
described in detail in Sect. 3.

1.2  State of the Art

Traditional SoC validation methodology is unlikely to detect 
security vulnerabilities since it is infeasible to get 100% cov-
erage of functional scenarios for complex (billion-gate) SoC 
designs [5]. For example, malicious implants such as hard-
ware Trojans can stay benign most of the time and act mali-
ciously when a predefined trigger condition is met, which 
can be extremely rare [6]. Moreover, a carefully crafted Tro-
jan has a very low performance and power footprint that can 
be hidden in typical process variations and environmental 
noise margins. While formal verification is promising at pre-
silicon stage, it has two fundamental limitations. The formal 

methods can be applied to only small designs (e.g., indi-
vidual IPs) due to state space explosion. Therefore, it will 
not be able to detect system-level vulnerabilities consisting 
of NoC communicating with multiple IPs. Most importantly, 
an attacker may introduce the vulnerability during the later 
stages in the design (e.g., during synthesis, layout or fabrica-
tion). Therefore, it is critical to monitor security vulnerabili-
ties during runtime (pre-silicon simulation or post-silicon 
execution). In this paper, we show that security assertions 
(and associated synthesized checkers) are effective in runt-
ime validation of security vulnerabilities.

For functional verification of SoCs, assertion-based vali-
dation (ABV) is one of the primary industrial techniques. 
Assertions can be thought of as certain kinds of checkers 
embedded in the design. Failure to adhere to the assertion 
condition can trigger warnings helping in runtime valida-
tion. For example, assertions can check whether the output 
of an adder is always equal to the sum of the two inputs. 
While ABV is widely used for functional validation, there is 
a limited effort in utilizing assertions to detect security vul-
nerabilities [7]. There is a fundamental difference between 
the objectives of functional and security assertions. While 
functional assertions monitor expected behaviors, security 
assertions are designed to monitor unexpected vulnerabili-
ties. We utilize these assertions to carry out the comprehen-
sive validation of NoC security at different stages of the SoC 
development cycle.

The primary objective of our proposed approach is to 
show that the security assertions can be effectively utilized 
for NoC trust validation. The proposed framework enables 
pre-silicon as well as post-silicon security validation of 
NoC-based SoCs. At the pre-silicon stage, the RTL model 
is input to the validation framework whereas the post-silicon 
validation is carried out on the chip model (silicon) which 
has highly restricted observability. Section 4 describes the 
three primary tasks during pre-silicon validation: assertion 
generation, directed test generation, and coverage analysis. 
We generate the security assertions in the first task. The 
next task enables the automated generation of directed tests 

Fig. 1  Example of an NoC con-
necting 16 IPs. The red and pink 
lines show sample paths (using 
X-Y routing) between source (S) 
and destination (D) for data and 
response transfers, respectively
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to activate the security assertions. The final task performs 
injection of vulnerabilities and coverage analysis to demon-
strate that the generated assertions can capture the security 
flaws.

Section 5 describes the three major tasks in post-silicon 
debug: signal selection, trigger generation, and post-silicon 
debug of security failures. The first task enables security-
aware signal selection without compromising observability 
requirements. The second task leads to the automated gen-
eration of trigger logic based on security assertions. The 
final task performs trace analysis for post-silicon debug of 
security vulnerabilities.

1.3  Contributions

This paper makes the following major contributions:

– Develops security assertions for a wide variety of NoC 
vulnerabilities based on a comprehensive survey to iden-
tify common vulnerabilities and attack scenarios in NoC 
architectures.

– Generates directed tests using bounded model checking 
as well as concolic testing to activate the security asser-
tions. These tests are effective for activating pre-silicon 
security assertions as well as post-silicon (synthesized) 
checkers.

– Enables post-silicon security validation and debugging of 
NoC-based SoC architectures. This involves effective sig-
nal selection and automated offline analysis of selected 
signals.

– Demonstrates the efficacy of utilizing security assertions 
for capturing both pre-silicon vulnerabilities as well as 
post-silicon security failures in NoC-based SoCs.

1.4  Paper Organization

The remainder of the paper is organized as follows. Sec-
tion 2 surveys the related approaches. Section 3 outlines 
the different security threat models considered in this paper. 
Section 4 describes the pre-silicon security validation frame-
work. Section 5 discusses the post-silicon security debug 
of NoC architectures. Section 6 presents the experimental 
results. Finally, Sect. 8 concludes the paper.

2  Background and Related Work

In this section, we first introduce the NoC and its compo-
nents. Next, we discuss the existing efforts related to NoC 
validation at different stages in two broad categories: pre-
silicon security validation and post-silicon debug of security 
vulnerabilities. We provide a qualitative comparison with the 
state-of-the-art approaches in Sect. 6.4.

2.1  Network‑on‑Chip Components

As shown in Sect. 1, the router plays a major role in internal 
operations of the NoC. Specifically, the router is responsible 
for receiving packets, decoding the destination, and forward-
ing it to the correct output. Since NoC consists of multiple 
IP’s that share the same communication medium, there is 
arbitration logic involved to avoid communication interrup-
tions. During the arbitration, the data is stored temporally 
inside the flit_buffer. Therefore, flit_buffer implementation 
typically includes all the simple memory signals such as 
rd_ptr,wr_ptr,wr_en, rd_en . Furthermore, router consists 
of arbiter, route_algorithm , and other miscellaneous compo-
nents. Routing algorithm determines the way to transfer the 
data packets through the network. Post-silicon debug is chal-
lenging due to the integration of all the complex components 
in the NoC. Trace buffers are widely used as a Design-for-
Debug (DfD) structure in traditional post-silicon validation 
methodology [8, 9]. The main purpose of the trace buffer is 
to capture a small set of internal signals during execution 
that can be offloaded for offline analysis.

2.2  Pre‑silicon Security Validation

Formal methods have been extensively used in perform-
ing security verification. Previous work has explored 
proof-based methods [10] and formal verification [11, 12]. 
Sepúlveda et al. [12] explored formal verification in NoC 
considering security vulnerabilities in routing protocols. 
While formal verification is promising, it has two major 
limitations: (i) formal methods cannot be applied on large 
designs due to state space explosion, and (ii) it cannot per-
form runtime attack detection. As discussed in Sect. 3, even 
if there are no Trojans detected during design time, attack-
ers can still launch attacks during runtime which cannot be 
detected using design time formal verification.

While formal methods can provide guarantees, it can be 
infeasible to apply them on large NoC IPs. On the other 
hand, simulation based techniques are scalable but cannot 
give guarantees about the verification completeness. Asser-
tion-based Validation (ABV) provides a middle ground 
by utilizing the best of both worlds. A major challenge in 
post-silicon debug is how to increase the controllability and 
observability of the hardware design. The ability to control 
the internal signal is referred to as controllability, whereas 
observability refers to the ability to view the internal signals 
by propagating them to observable points (such as primary 
outputs). A recent survey [13] shows that ABV has shown 
promising results in validation of functional behaviors 
[14–16] as well as non-functional (e.g., security) require-
ments [17, 18]. Assertions can capture unusual behavior 
and depending on where the assertion is embedded, it can 
give information about the internal state of the design. This 
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increased observability reduces overall hardware validation 
time significantly. While assertions do not directly improve 
controllability, there are efforts to generate tests that can 
activate the assertions. Assertions have been extensively used 
for functional validation of SoC designs, however, the use 
of assertions for security validation of NoC-based SoCs has 
not been well studied in the literature.

2.3  Post‑silicon Security Validation

While pre-silicon security validation can be effective at 
detecting design vulnerabilities, runtime attacks are still 
possible unless adequate defense measures are adopted. For 
example, even if there are no hardware Trojans found during 
pre-silicon verification, attackers can still implant Trojans 
during fabrication and launch attacks during runtime. There 
are many approaches for runtime security monitoring and 
mitigation. Dubrova et al. [19] proposed built-in self test 
(BIST) as a solution to prevent attacks caused by hardware 
Trojans added into the SoC during the manufacturing stage. 
However, BIST cannot address diverse threats and can pro-
vide very limited coverage. Boraten et al. [20] use model 
checkers to alert the SoC if the buffers, VCs, and switch 
allocators are illegally utilized causing DoS attacks. Other 
techniques to mitigate attacks during runtime include traf-
fic monitoring [21–23], partitioning [24] and cryptographic 
defenses [25, 26]. However, the success of these mitigation 
techniques is limited only to a certain set of attack scenar-
ios. Hence, if the mitigation technique is aiming to prevent 
one attack type, it will fail in a different attack scenario. 
Moreover, these runtime mitigation techniques introduce 
significant hardware overhead in terms of area, power and 
performance. Our proposed approach effectively utilizes the 
existing trace buffer design and develops trigger logic to pro-
vide a lightweight solution for seamless detection of runtime 
security vulnerabilities related to NoC operation.

Post-silicon validation and debug of SoCs has emerged 
as a challenging problem [8, 9]. Recent research efforts have 
addressed post-silicon functional validation issues for NoC 
architectures [1, 27–29]. Rout et al. [27–29] explored effi-
cient router and trace buffer design for post-silicon valida-
tion of NoC-based SoCs. These techniques mainly cater to 

ascertaining the functional correctness of NoC designs, and 
are not designed for post-silicon security validation. To the 
best of our knowledge, our approach is the first attempt in 
exploring the effectiveness of security assertions for both 
design time (pre-silicon) and runtime (post-silicon) security 
validation of NoC architectures.

3  Modeling Different Types of Threats

We consider various attack scenarios outlined in the recent 
literature  [6]. For example, the attacker can be a rogue 
designer who is able to tamper with the NoC IP and implant 
Trojans in the routers during design time. Similarly, a com-
promised CAD tool can introduce malicious implants at 
various stages of the design cycle such as synthesis, scan-
chain insertion, verification, and layout. An attacker can also 
insert malicious implants at the foundry via reverse engi-
neering. A vulnerability can also be created unintentionally 
by a CAD tool. Once integrated, the Trojans remain hidden 
(deactivated) in order to avoid detection. Pre-programmed 
wake times and/or a specific activation logic can be used to 
fully activate the Trojans. Even when behaving maliciously, 
Trojans exhibit negligible power and performance overhead. 
For example, Sepúlveda et al. [30] explored a similar threat 
model. In fact, our modeling of security assertions builds 
on top of the modeling of security properties for formal 
verification of pre-silicon models [30]. We follow a func-
tionality-directed approach for developing the assertion set 
for pre-silicon verification. In other words, we show how to 

Fig. 2  An example Trojan that 
modifies the packet during 
transit
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Table 1  Notations for properties in Tables 2 3, 4, 5, and 6

Symbol Operator Description

X� Next Property should hold in the next cycle
G� Always Property should always hold
F� Eventually Property will at some point in time (future) 

hold
P� Previous state Specifies a state at some point in time in 

the past
�U� Until � should be true until � becomes true
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generate security assertions for specific NoC vulnerabilities. 
A designer can create additional assertions (if needed).

In this paper, we assume that the Trojans can manifest 
through duplication, corruption, starvation, dropping, and 
misrouting of packets when packets pass through rout-
ers. Furthermore, we assume that the trace buffer logic is 
trustworthy. Similarly, we also consider single vulnerabil-
ity model. Therefore, simultaneous activation of multiple 
dependent vulnerabilities is out of scope. Figure 2 shows 
a block diagram of a Trojan architecture that can facilitate 
the attacks. The capabilities of the Trojan include all pos-
sible attacks that can be caused by a Trojan-infected router 
including packet duplication (Sect. 3.1), packet corrup-
tion (Sect. 3.2), packet starvation (Sect. 3.3), packet loss 
(Sect. 3.4), and packet misrouting (Sect. 3.5). Based on the 
threat model, we derive a set of security properties that will 
be embedded in the design for monitoring runtime vulner-
abilities. The notations used to denote these security proper-
ties are shown in Table 1. Tables 2, 3, 4, 5, and 6 outline the 
individual properties that should hold during execution for 
each category of threat model. The first column indicates 
the property number (P#). The second column provides an 
intuitive description of the property behavior as well as a 
temporal logic description that can be implemented as Sys-
temVerilog assertions.

3.1  Packet Duplication

IPs rely on the NoC to ensure secure data communication. 
An attacker can eavesdrop on the packets in an attempt to 
leak sensitive information. A common threat model is a 
hardware-software coalition attack where a Trojan-infected 
router and an accomplice application work together to 

eavesdrop. When packets are received at the input buffer 
of the router, the Trojan copies the packets, modifies the 
destination address in the header so that the new destination 
is an IP that runs an accomplice malicious application, and 
places it back in the input buffer. The NoC then routes the 
duplicated packets to the malicious application. The same 
threat model has been widely used to explore eavesdropping 
attacks in NoC [25, 31]. Table 2 outlines the properties that 
should hold true to prevent packet duplication.

3.2  Packet Corruption

Integrity of data communicated through the NoC is crucial for 
correct execution of tasks. If an attacker corrupts data intention-
ally, it can cause erroneous behavior and/or system failure. Fur-
thermore, since corrupted data can trigger re-transmissions, it 
can incur significant power and performance overhead leading 
to denial-of-service attacks. The Trojan architecture in Fig. 2 
facilitates data corruption by replacing the packet content with 
the content in a malicious register. A similar threat model that 
discussed eavesdropping, denial-of-service and illegal packet 
forwarding, all of which utilized packet corruption at a router 
was presented in [32]. Table 3 outlines the properties that 
should hold true to prevent packet corruption.

3.3  Packet Starvation

Denial-of-Service (DoS) is one of the most common way 
attackers find for attacking the systems. There are multiple 
avenues in which the DoS manifestation affects the opera-
tion. Performance guarantees of the design are tightly cou-
pled with operation of certain important components. For 
example, the response time of a memory controller that 

Table 2  Properties to detect Packet Duplication

P# Description of Security Properties

d1 Always the number of packets entered the router should be equal to the sum of packets in the router and the number of 
packets that left the router 

∑

(wr_en ∧ ¬rd_en ∧ ¬full) ==
∑

(rd_en ∧ ¬wr_en ∧ ¬empty)

d2 Rd/Wr flags should reset once data has been read from /written to the buffer (wrdone → X(¬wr_en)) ∧ (rddone → X(¬rd_en))

d3 Multiplexers should not alter the input data at the output G((
∑Nports

i=0
(selecti ∧ (dataini == dataout))) == 1)

Table 3  Properties to detect Packet Corruption

P# Description of Security Properties

c1 Router can issue only one request at a time G((
∑Nports

i=0
req_porti) ≤ 1)

c2 Arbiter cannot issue multiple grants at the same time G((
∑Nports

i=0
gnt_porti) ≤ 1)

c3 Error checking code should match the data when data is written to and read from the buffer 
G(parityout == ∃P(parityin))

c4 Multiplexers should not alter the input data at the output G((
∑Nports

i=0
(selecti ∧ (dataini == dataout))) == 1)



 Journal of Hardware and Systems Security

1 3

provides the interface to off-chip memory can be critical in 
serving all the memory requests. If an attacker intentionally 
delays packets originating from such a critical component, 
the SoC performance can suffer significant degradation. 
Delays can lead to catastrophic consequences in real-time 
safety-critical applications. A Trojan can selectively delay 
packets originating from an IP, which is referred to as 
“packet starvation”. Starvation can be caused by a Trojan-
infected router de-prioritizing packets from a particular ori-
gin at the arbiter [33]. In other words, packets are treated 
unfairly such that all the input ports do not get an equal 
chance of accessing the output. Table 4 outlines the proper-
ties that should hold to prevent packet starvation.

3.4  Packet Loss

From the scenario of packet starvation considered in 
Sect. 3.3, packet loss comes out as another manifestation. 
In starvation, packets are intentionally delayed and can reach 
the destination at some point. However, when the packets are 
dropped, unless packets are re-transmitted, the destination 
will not receive the packets. Similar to the consequences of 
starvation, packet loss can cause severe performance degra-
dation and malfunction [34]. Table 5 outlines the properties 
that should hold true to prevent packet loss.

3.5  Packet Misrouting

The NoC uses routing protocols to route packets between the 
senders and the receivers. A key requirement of routing proto-
cols is to ensure packet routing without causing deadlocks and 
livelocks. A Trojan that corrupts packet header information and/
or routing tables can force some packets to loop around and 
force deadlocks and livelocks. Such attacks are capable of ren-
dering single application to full chip failures [35]. Rerouting of 
packets is also a critical component in eavesdropping attacks as 
explained above (see Packet Duplication). Table 6 outlines the 
properties that should hold true to prevent packet misrouting.

4  Pre‑silicon Security Validation

Pre-silicon validation section of Fig. 3 shows an overview 
of our proposed NoC trust validation framework using secu-
rity assertions. It consists of three major tasks: assertion 
generation, test generation, and coverage analysis. First, we 
describe how to generate security assertions for the NoC 
design (Sect. 4.1). Next, we present how to generate test 
cases to activate the security assertions (Sect. 4.2). Finally, 
we discuss the assertion coverage to prove the effectiveness 
of the security assertions (Sect. 4.3).

Table 4  Properties to detect Packet Starvation

P# Description of Security Properties

s1 Rd/Wr pointers should be always sequentially incremented rd_en ∧ (¬wr_en ∧ ¬empty) ↔ (X(rd_ptr) == (rd_ptr + 1))∧ 
wr_en ∧ (¬rd_en ∧ ¬full) ↔ (X(wr_ptr) == (wr_ptr + 1))

s2 Rd/Wr pointers are not incremented when the buffer is empty/full (rd_en ∧ ¬wr_en ∧ empty → (rd_ptr == X(rd_ptr)))∧ 
(wr_en ∧ ¬rd_en ∧ full → (wr_ptr == X(wr_ptr)))

s3 Write address range should be equal to read address range G(rd_addressrange == wr_addressrange)

s4 Arbiter should eventually grant the opportunity for every available request (req_port U gnt_port) → F(gnt_port)

s5 Route should issue a request whenever data is valid G(data_valid ↔ (
∑Nports

i=0
req_porti) == 1)

s6 Multiplexers should not alter the input data at the output G((
∑Nports

i=0
(selecti ∧ (dataini == dataout))) == 1)

Table 5  Properties to detect Packet Loss

P# Description of Security Properties

l1 Rd/Wr pointers should be sequentially incremented only when rd_en/wr_en are set rd_en ∧ (¬wr_en ∧ ¬empty) ↔ (X(rd_ptr) == (rd_ptr + 1))∧ 
wr_en ∧ (¬rd_en ∧ ¬full) ↔ (X(wr_ptr) == (wr_ptr + 1))

l2 Route can issue only one request at a time G((
∑Nports

i=0
req_porti) ≤ 1)

l3 Route should issue a request whenever data is valid G(data_valid ↔ (
∑Nports

i=0
req_porti) == 1)

l4 Routing algorithm (XY) should be correctly implemented 
G((destx > currentx ↔ destportnext == EAST) ∨ (destx < currentx ↔ destportnext == WEST) ∨ (desty > currenty ↔ destportnext
== SOUTH) ∨ (desty < currenty ↔ destportnext == NORTH) ∨ (destportnext == LOCAL))

l5 Only one grant can be issued by the arbiter at a time G((
∑Nports

i=0
gnt_porti) ≤ 1)

l6 Arbiter should eventually grant the opportunity for every available request (req_port U gnt_port) → F(gnt_port)

l7 Multiplexers should not alter the input data at the output G((
∑Nports

i=0
(selecti ∧ (dataini == dataout))) == 1)
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4.1  Generation of Security Assertions

To launch an attack identified in Sect. 3, the hardware Trojan 
must change the normal behavior of the NoC. Any violation 
to the security properties presented in Sect. 3 can be moni-
tored by implementing them as assertion checkers embedded 
in the NoC design. Table 7 shows the twelve SystemVer-
ilog assertions that can cover the security properties defined 
in Sect. 3 (Tables 2, 3, 4, 5, and 6). If the security checks 
defined by the assertions are not violated during runtime, we 
can conclude that there are no ongoing attacks.

The mapping between the security properties and the 
security assertions is outlined in Fig. 4. The same color indi-
cates the security properties for a specific threat model. For 
example, the four security properties related to packet cor-
ruption (c1–c4 in Table 3) are colored in pink. For optimiza-
tion purposes, some properties are combined into a single 
assertion since they effectively perform the same functional-
ity. For example, the security assertion A7 can cover three 
security properties: c1 (from Table 3), l2 (from Table 5) and 
m1 (from Table 6).

4.2  Test Generation for Activation of Security 
Assertions

We have explored automated test generation using two 
complimentary approaches. The first approach uses model 

checking that is suitable for small designs with simple asser-
tions. The second approach is scalable for large designs 
and complex assertions due to the effective utilization of 
concrete simulation and symbolic execution. This section 
briefly describes these approaches. Section 6 demonstrates 
the effectiveness of these test generation techniques in acti-
vating security assertions for NoC architectures.

Given that the security assertions represent unexpected 
behaviors, they are not expected to be activated during the 
traditional validation methodology. Therefore, it is important 
to generate directed tests to activate the security assertions. 
Once an assertion is activated by a directed test, it indicates 
that the assertion is valid and it is able to accurately detect 
a specific security threat. An assertion is valid if there is at 
least one scenario that can violate the assertion. The inva-
lid assertions cannot be activated under any circumstance, 
and therefore, those assertions should be removed. Figure 5 
shows our test generation framework with two comple-
mentary approaches. We use SAT-based bounded model 
checking (BMC) that accepts the NoC design and asser-
tions (negated properties) as inputs. The counterexamples 
generated by the EBMC model checker [36] can be used as 
a directed test that is guaranteed to activate the respective 
security assertion.

Unfortunately, EBMC may fail to handle complex prop-
erties due to state space explosion. In such cases, we use 
concolic testing [37] that can effectively utilize concrete 

Table 6  Properties to detect Packet Misrouting

P# Description of Security Properties

m1 Route can issue only one request at a time G((
∑Nports

i=0
req_porti) ≤ 1)

m2 Routing algorithm (XY) should be correctly implemented 
G((destx > currentx ↔ destportnext == EAST) ∨ (destx < currentx ↔ destportnext == WEST)∨

(desty > currenty ↔ destportnext == SOUTH) ∨ (desty < currenty ↔ destportnext == NORTH) ∨ (destportnext == LOCAL))

m3 Only one grant can be issued by the arbiter at a time G((
∑Nports

i=0
gnt_porti) ≤ 1)

m4 Multiplexers should not alter the input data at the output G((
∑Nports

i=0
(selecti ∧ (dataini == dataout))) == 1)
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Fig. 3  Overview of our proposed NoC trust verification framework 
using security assertions. It consists of three major tasks for pre-sil-
icon validation: assertion generation, test generation, and coverage 

analysis. For post-silicon validation, it consists of three major tasks of 
trigger design, signal selection and debug of post-silicon failures
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simulation and symbolic execution to generate the required 
test patterns. Concolic testing addresses the state space 
explosion problem by exploring one path at a time compared 
to model checking that tries to explore all possible paths. 
To activate the security assertions non-vacuously, we first 
convert the security assertions into branch statements and 
then use concolic testing to activate the specific branches.

4.3  Assertion Coverage Analysis

One way of checking the correctness of the assertions would be to 
inject a wide variety of vulnerabilities into the design and check 
whether assertions are able to capture them. Typically for this pur-
pose vulnerability scenarios have to be created only considering 
the threat models without focusing on the created assertions. After 
injecting the vulnerabilities, the design can be simulated with 
the generated tests. The process of injecting vulnerabilities and 

computing assertion coverage analysis need to be performed in an 
iterative fashion until we get 100% coverage of security assertions.

5  Post‑silicon Trust Validation Using 
Synthesized Checkers

Due to various factors ranging from exponential validation 
complexity, slow simulation speed to lack of effective coverage 
metric, it is not feasible to capture all functional bugs as well as 
security vulnerabilities during pre-silicon validation stage. The 
focus of post-silicon validation is to capture these escaped bugs 
as well as security vulnerabilities. Post-silicon validation section 
of Fig. 3 shows the three major tasks in the post-silicon security 
validation framework for NoC architectures: trigger design, sig-
nal selection and debug of post-silicon failures. The remainder 
of this section describes these tasks in detail.

Table 7  SystemVerilog Security 
Assertions

s2 s3

A3A1 A4 A5 A6 A7 A8 A9 A10 A11 A12

s1 d2 c3 d1 c1 s5 l4 c2 s4

l1 l2

m1

l3 m2 l5

m3

l6

c4

s6

l7

m4

d3

Assertion

P
ro
p
er
ty

A2

Fig. 4  Mapping between security assertions shown in Table 7 and the 
security properties outlined in Sect.  3 (Tables  2-6). Each color rep-
resents security properties for the same vulnerability. For example, 
the properties shown in pink (c1–c4) represent packet corruption in 

Table 3. Note that each security assertion can cover one or more secu-
rity properties. For example, security assertion A7 represents three 
security properties (c1, l2 and m1)
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5.1  On‑chip Trigger Design Using Security 
Assertions

Implementation of assertions can assist in checking design 
correctness [4]. Similarly, security assertions [7] can also 
be implemented on-chip. Typically, the generation of such 
assertions can be done automatically [16]. However, as a 
large number of assertions can be obtained through mining 
techniques, the implementation of the assertions for on-chip 
triggers becomes a difficult problem owing to the associated 
overhead. An approach to obtain the on-chip implementation 
of assertions (specified in property specification language) is 
presented in [38] based on the concepts of automata theory. 
However, these techniques do not specifically cater to the 
objective of security assertions/properties Specifically, one 
of the key objectives of our approach is to create a light-
weight trigger mechanism. Since the enumeration of design 
behaviors based on specification tend to be typically large, 
we adopt a threat model-centric approach for obtaining secu-
rity assertions.

The assertions described in Fig. 4 were modeled based 
on the behavior of the threat models. The approach that 
was used to convert the assertions into relevant triggers is 
as follows. Initially, we categorized the assertions based on 
their types: implication assertions, immediate assertions, 
and concurrent assertions. Implication assertions follow 
the format of (a → b) where a and b can be sequence of 
expressions. Here, a is considered as the antecedent while 
b is considered as the consequent. Implication assertions 
simply monitor sequences based on satisfying specific 
criteria. For example, A2 in Fig. 4 (s2 in Table 4) is an 
implication-type security assertion. Immediate assertions 
are in the format of assert(a == b) , that check a property 
when the control reaches an exact location in the code. 
For example, A7 in Fig. 4 (c1 in Table 3) is an immediate 
type security assertion. Concurrent assertions are in the 
format of assert property(¬(a&b)) that are checked in each 
clock cycle to verify the behavior. Based on safety and 
liveness properties, assertions outlined in Table 7 can be 
divided into two categories. The safety properties (e.g., A1 
in Table 7) try to ensure that nothing bad will happen dur-
ing execution. The liveness properties (e.g., A5 in Table 7) 
try to ensure that something good will eventually happen.

5.2  Security‑Aware Trace Signal Selection

Since NoC design contains numerous signals, selecting 
appropriate signals becomes a challenging problem dur-
ing the design stage. Algorithm 1 outlines the proposed 
method for selecting trace signals to be stored in on-chip 
trace buffers to maximize the coverage of security asser-
tions. With the help of dependency graph analysis, the 
trace signals are selected for aiding in post-silicon vali-
dation. In Algorithm 1, sv represents design variables 
(i.e., the variables in the RTL design). Similarly, Ω rep-
resents the modules of the design (whereas M denotes 
the total number of modules in the RTL design). Dur-
ing execution, the on-chip trace buffers contain the traced 
signals (denoted by Trsignals in Algorithm 1) that need to 
be dumped for error/vulnerability localization using fine-
grained analysis.

To enable effective on-chip debug and security validation, 
trace signals must be selected carefully. It is a major chal-
lenge to identify efficient trace signals due to the exponen-
tial nature of possible trace signal combinations as well as 
conflicting requirements such as error detection and internal 
visibility enhancement [39]. We explain the proposed algo-
rithm using an illustrative example. Consider the following 

Fig. 5  Directed test genera-
tion using SAT-based bounded 
model checking as well as 
concolic testing
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SystemVerilog assertion: (a == 1)&&(b == 0) ↦ (c == 0) . 
Here, c is the destination signal, and a and b can be register-
variables (flip-flops), primary inputs or wires (internal nets). 
The above assertion basically means that signal c is false 
when signal a is true and signal b is false. The condition 
present in the left-hand side (referred to as antecedent) can 
be translated into triggers and the same applies to the signal 
condition in the right-hand side (referred to as consequent). 
The goal of the signal selection is to trace variables that will 
be able to infer the values of signals a, b and c.

One illustration of the dependency graph is shown in 
Fig. 6 where the nodes represent different signals in the 
design and the edges depict the dependencies between them 
(inferred from the assignments in the RTL design descrip-
tion). This illustration corresponds to flit_buffer module of 
the NoC design. Based on these graphs, we select the sig-
nals that are maximally connected with other signals. The 
underlying reasoning is that maximum number of signals 
needed for functional behavior checking can be obtained for 
selection. To select variables related to security, we analyzed 
different types of security assertions developed in Sect. 4.1. 
Thereafter, the variables that were involved in the security 
assertions are chosen as probable candidates of trace signals. 
We perform a commonality search between the variables 
chosen from the security assertions and those chosen from 
dependency variable analysis.

As discussed in Sect. 6.1, the trace buffer width is limited 
and a portion of it is used by the trace header data. There-
fore, we cannot select all the signals to the trace buffer. We 

have to find the most beneficial signals that can be used to 
regenerate other signals during the offline analysis. For this 
task, we have generated the variable dependency graph for 
each component of the NoC design. Then we order (sort) all 
the signals in different modules based on their connectiv-
ity (number of edges) with the other signals. This method 
arranges all the variables in each module in descending 
order of their restoration capability. Then we have selected 
the most relevant signals for a particular trigger giving the 
priority based on the ordered variables until we reach the 
trace width limit. For triggers implemented at route_mesh 
and arbiter, the trace width was enough to fit all the vari-
ables. However, for several flit_buffer triggers that had more 
signals, we applied the above technique to select the most 
profitable ones in terms of restorability. For example, the 
selected trace signals for flit_buffer related triggers are listed 
in Table 8.

Note that our objective is to maximize assertion coverage 
with minor impact on overall observability. Therefore, we 
cannot take signals only from assertions. If we have a lot of 
assertions in the design, it is possible that selecting signals 
from only assertions can maximize both overall observabil-
ity and assertion coverage.

5.3  Post‑silicon Debug of Security Vulnerabilities

After the activation of on-chip triggers, the fixed number of 
trace buffers can store certain important information related 
to the design execution. The contents of these buffers need 

Fig. 6  An example signal 
dependency graph for flit_buffer

Table 8  Selected trace signals 
for flit_buffer triggers

Trigger ID Signals

T1/T2 (wr) depth,wr_ptr,wr_ptr_next,wr_addr,vc_wr_addr,wr_en
T1/T2 (rd) depth,rd_ptr,rd_ptr_next,rd_addr,vc_num_rd,vc_rd_addr,rd_en
T3 depth,rd_ptr,rd_ptr_next,rd_addr,vc_num_rd,vc_rd_addr,rd_en
T4 depth,wr_ptr,rd_ptr,wr_addr,rd_addr,wr_en,rd_en
T5 flit_source(dout),flit_destination(dout),parity_data
T6 depth,rd_counter,wr_counter
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to be off-loaded and analyzed for several purposes. The con-
tents of these buffers provide the understanding of internal 
signals after the activation of triggers leading to analysis of 
the bug (or, the security threat) in a fine-grained manner. 

The methodology for offline trace analysis for implica-
tion-type assertions is presented in Algorithm 2. The valida-
tion algorithm relies on checking the security assertions (SA) 
on the off-loaded data ( Dtr in line 1) from the trace buffer. 
This checking of off-loaded data in line 8 is based on the sig-
nal value comparisons with the antecedents and consequents 
of the respective security assertions (SA). Note that for non-
implication type of assertions, the validation/checking is 
relatively simpler and based on the comparison of values of 
signals in the respective assertions. The observed violation 
(ValidationResult in line 20) of the security property can 
hint towards a possible attack scenario. Note that because 
of the on-chip trigger framework, it becomes compulsory 
that the respective trigger must have been activated. There-
fore, with the help of this framework, we can ensure that 
the detection of the security attacks is achieved in a quick 
manner with minimal detection latency. Signal selection and 
post-silicon validation results are presented in Tables 9 and 
13, respectively.

6  Experiments

This section demonstrates the effectiveness of the proposed 
NoC trust validation framework. First, we describe the 
experimental setup. Next, we present the vulnerability injec-
tion mechanism and how effective the proposed framework 

is for pre-silicon and post-silicon security validation. All 
data generated or analyzed during this study are included 
in this section.

6.1  NoC Benchmark with Re‑configurable Mesh

We created a re-configurable mesh NoC setup (Fig. 7 pre-
sent the 4 × 4 configuration) consisting of “mor1k” proces-
sors in each core using the open-source ProNoC tool [40]. 
This Verilog RTL design has the configuration parameters 
of the NoC as shown in Table 9. A simple message passing 
scenario was designed to send three packets of data from 
each IP core to the IP core numbered 10. The designed sce-
nario was implemented in C programming language. Using 
mor1k tool-chain, the required binaries were created for each 
IP core. The binary files were then subsequently placed in 
the RAM modules of relevant IP cores.

The simulation was done using ModelSim to verify the 
behavior. Once the functional accuracy of the experimen-
tal setup was verified, the selected security properties were 
implemented using SystemVerilog assertions. The assertions 
were implemented at the corresponding router components 
in the NoC RTL model. Table 10 provides information about 
the security assertion implementation. The first column 
provides the module (file) name in the ProNoC benchmark 
suite. The second column indicates the assertions imple-
mented in that module.

We considered both safety and liveness related assertions 
introduced in Sect. 4.1. Implementation of liveness asser-
tions is more complex compared to safety assertions since 
liveness behaviors include the “eventual” operator. Finding 
an exact upper bound for “eventual” operator is not possible 
using only the RTL design. Therefore, we derived an upper 
bound for the consequent to happen using simulations and 
used in the assertions.

Fig. 7  4× 4 Mesh NoC-based SoC used for the experimental setup
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In order to ensure that the generated assertions are valid, 
we have used directed test generation method discussed in 
Sect. 4. Once the pre-silicon assertions are validated, they 
can be mapped as post-silicon checkers. Note that System-
Verilog assertions are not synthesizable as post-silicon 
checkers. Previous work has proposed several alternatives 
to address this. Omar et al. [41] proposed a method that gen-
erates RTL netlists from assertions. We propose a different 
approach by creating equivalent trigger logic corresponding 
to each assertion. For example, Listing 1 shows the System-
Verilog description of assertion A9 as well as its equivalent 
trigger logic representation.

For post-silicon validation, we injected vulnerabilities 
and performed different debug experiments using Model-
sim simulator. A centralized trace buffer was created, with 
a buffer length of fixed number of bits. (In the case of 4 × 4 
configuration, trace width is 48 bits). Individual trigger cir-
cuits were designed and implemented to convert each of 
the security assertion (discussed in Sect. 4.1) to a synthe-
sizable trigger logic and all the SystemVerilog assertions 
were removed from the design. The Design-for-Debug (DfD) 
circuit was created with a dedicated packet structure for the 
trace. Trace buffer width used for different NoC configura-
tions is presented in Table 14. Figure 8 illustrates the bit 
structure for the trace packet. The first bit (R/IP) is used to 
identify the source of the trace, whether it was originated 
from the NoC or an IP. The next set of bits represent the 

routerID or IP-ID (4 bits for representing 16 routers/IPs in 
4 × 4 instance). The next four bits represent the trace ID. The 
remaining bits store the selected trace signals.

6.2  Pre‑silicon Security Validation

In this section, we primarily discuss the test generation 
approaches for activating security assertions. Specifically, 
we explored the following two approaches for automated 
generation of directed tests.

6.2.1  Assertion Validation Using EBMC

The previous sections presented the approach for creating 
assertions to monitor vulnerabilities. In this section, we dis-
cuss the assertion validation results using the test generation 
framework outlined in Sect. 4.2. We used the bounded model 
checker EBMC [36] to generate directed tests. The gener-
ated tests were used to verify whether the added assertions 
are valid by activating these assertions. Table 11 presents 
the time (s) and space (MB) taken by EBMC [36] to acti-
vate the assertions. All the experiments were performed on 
a machine with an Intel i7-10510U CPU @ 1.80GHz CPU 
with 16GB RAM.

6.2.2  Assertion Validation Using Concolic Testing

As shown in Table 11, we are able to activate all but two 
assertions (A5 and A6) using EBMC [36]. These two asser-
tions exceeded the capability of the model checker due to  
state space explosion (insufficient memory). We used concolic 
testing [37] to activate A5 and A6. Results in Table 11 show 
the time and memory requirement for test generation using 

Table 9  Parameters used in the 
experimental setup

Parameter Value

Router Type Virtual channel (VC) based router
VCs per port 2
Payload width 32
NoC arbitration type Round robin
Buffer flits per VC 4
Routing algorithm X-Y routing
VC/SW combination type Comb-Nonspec: VC allocator combined with non-speculative SW 

allocator where the validity of speculative requests are checked at the 
beginning of SW allocation

Table 10  Mapping of implemented assertions to different NoC mod-
ules

Module Implemented Assertions

flit_buffer.sv A1, A2, A3, A4, A5, A6
route_mesh.sv A7, A8, A9
arbiter.sv A10, A11
main_comp.sv A12
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concolic testing. Overall, we generated tests for activating 
all the assertions mentioned in Fig. 4 using either EBMC or 
concolic testing. Therefore, we can confirm that the security 
assertions are valid and satisfy the design requirements.

6.3  Post‑silicon Security Debug

This section has two objectives. First, we show that the syn-
thesized checkers are capable of detecting any injected vulner-
abilities. Next, we perform the overhead analysis of synthesiz-
ing security assertions on different NoC configurations.

6.3.1  Detection of Functional and Security Bugs

Several attack scenarios were created by closely following 
the threat models without considering the assertions or trig-
gers. These bugs and attacks were inserted in different routers 
(selected randomly) to be activated at random clock cycles. 
Separate Modelsim simulations were carried out for each of 
these attack scenarios (one randomly inserted vulnerability at 
a time). Table 13 presents different cases of evaluation with 
the proposed debug framework. The first column provides dif-
ferent types of vulnerabilities. The second column indicates 
whether it is a functional bug or a security vulnerability. The 
third column indicates the activated trigger. The last column 
shows the average latency for each detecting each vulnerabil-
ity. From the off-loaded trace contents, we checked for possible 
violation of the security assertions. As expected, triggers T5 
and T6 require different numbers of cycles since they capture 
liveness behavior whereas the activation of the remaining trig-
gers can be detected in one clock cycle.

6.3.2  Scalability Analysis via Overhead Calculation

As discussed in Sect. 4.1, we consider both safety (e.g., A1) 
and liveness (e.g., A5) related assertions. The corresponding 
triggers also inherit the inherent issues. As a result, the imple-
mentation is simple for safety related triggers (e.g., T1). How-
ever, implementation of liveness checking triggers (e.g., T5) 
involves complex logic than other types of triggers. In order 
to monitor the overhead of individual trigger, we have selected 
4 × 4 multi-processor system-on-chip (MpSoC) configuration.

We have synthesized the design with the DfD circuit 
using Yosys [42] open synthesis tool. Table 12 shows the 
hardware overhead for individual security trigger. The 

first row provides the ID of each trigger. The second row 
shows the respective assertion. For example, if assertion 
A2 fails, trigger T2 will be activated. The last row shows 
overhead of each trigger.

In order to demonstrate the scalability of the approach, 
we have used several MPSoC configurations. Table 14 
presents the hardware overhead for the proposed meth-
odology for 2 × 2 , 3 × 3 , 4 × 4 , 6 × 6 and 8 × 8 configura-
tions. For each configuration, DfD circuit along with the 
trace width was accordingly adjusted. The total hardware 
overhead of the approach is negligible (less than 1% of 
the NoC area).

6.4  Comparison with Prior Efforts

The proposed approach is an attempt towards exploring 
the effectiveness of security assertions for validation. In 
existing literature, other methods have been proposed for 
the detection of design bugs or security threats. We present 
a qualitative comparison with other verification/validation 
methodologies in Table 15.

We analyze the merits of different methodologies on 
certain parameters: stage at which verification is being 
done (post-silicon or pre-silicon), types of bugs studied 
(functional or security or both), overhead (low or high 
over percentage of the chip area), scalability and whether 
runtime configurability is supported or not. Our proposed 
framework outperforms existing methods in all of these 
categories.

7  Applicability and Limitations

The primary objective of this paper is to demonstrate that asser-
tion-based validation can be effectively utilized for designing 
security and trustworthy NoC architectures. Specifically, we 
have shown that we can utilize security assertions for pre-silicon 
trust validation as well as post-silicon security debug. Figure 3 
shows different tasks of the validation methodology, including 
assertion generation, test generation for activation of assertions, 

Table 11  Test generation time 
and memory requirement using 
EBMC and concolic testing to 
activate assertions

Framework EBMC [36] Concolic 
[37]

Assertion A1 A2 A3 A4 A7 A8 A9 A10 A11 A12 A5 A6
Time (s) 0.08 0.08 0.09 0.08 0.02 0.02 0.02 0.01 0.02 0.02 1.15 1.89
Memory (MB) 11.7 12.0 11.8 11.2 4.5 3.9 4.6 4.8 5.2 5.1 64.2 65.8

Fig. 8  Abstract trace packet structure that facilitates bug/threat locali-
zation and offline debug



 Journal of Hardware and Systems Security

1 3

and assertion coverage analysis, trigger generation, trace signal 
selection, post-silicon debug. Since each task is independent, 
we can replace it with an improved solution without affecting 
the other components. For example, we outline how to manually 
create NoC-specific security assertions in Sect. 4.1. This com-
ponent can be improved by an automatic assertion generation 
framework, or using a combination of manually written asser-
tions with automatically generated assertions. Similarly, we 
propose a connectivity based signal selection algorithm. Signal 
selection can be improved by utilizing existing trace signal selec-
tion algorithms [8, 9] considering diverse factors such as con-
gestion (layout) constraints, restoration ratio, or dynamic signal 
selection based on the debug context. In other words, any signal 
selection algorithm is suitable in our framework as long as the 
objective is to maximize the assertion coverage with minimal 
impact on overall observability (restorability).

8  Conclusion

The increasing utilization of Network-on-Chip (NoC) in 
designing modern System-on-Chip (SoC) architectures 
manifests into NoC being a prime target for attackers. This 
paper presented an approach of NoC trust validation using 
security assertions at both the pre-silicon and post-silicon 
stages. The proposed approach is complementary to exist-
ing NoC verification techniques that provide only design 
time guarantees. Our proposed approach is applicable for 
both design time (pre-silicon) analysis and runtime moni-
toring of post-silicon vulnerabilities. We defined a set of 
vulnerabilities for NoC architectures, and proposed security 
assertions to monitor these vulnerabilities. On-chip triggers 
derived from these security assertions provide an opportu-
nity to enable the debugging features with minimal latency 

Table 12  Overhead analysis for individual security triggers in 4 × 4 NoC configuration

Trigger ID T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 Total

Relevant Assertion A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
Trigger Overhead 0.01% 0.01% 0.02% 0.02% 0.19% 0.04% 0.01% 0.01% 0.01% 0.01% 0.02% 0.01% 0.36%

Table 13  Bug injections results 
with average cycles to activate 
the trigger from the activation 
of the bug

Vulnerability Type Trigger Latency

Eavesdropping attack Security T5/T6 446/445
Packet corruption (Fifo input) Security T5 7
Packet missing (Fifo input) Security T1/T5/T6 1/330/329
Packet missing (Fifo output) Security T1/T5/T6 1/336/335
Packet dropping (Arbiter) Security T11 1
Wr/rd pointer fails when buffer is not full/empty Functional T1 1
Wr/rd pointer increments when buffer is full/empty Functional T2 1
Packet destination changing (Flit buffer) Security T5 450
Packet misrouting (Algorithm bug) Functional and Security T9 1
Invalid destination ports from route Functional T8 1
Multiple destination port selection (Route) Functional T7 1
Faulty multiplexer module Functional and Security T12 1
Multiple grants (Arbiter) Functional T10 1
Packet starvation (Flit buffer) Security T3 256
Packet duplication (Flit buffer) Security T4 1

Table 14  Overhead for different NoC configurations

NOC Size

2x2 3x3 4x4 6x6 8x8

Number of Triggers 252 567 1008 2268 4032
Trace Width (bits) 32 48 48 64 64
DfD Overhead 0.22% 0.17% 0.19% 0.57% 0.59%
Trigger Overhead 0.41% 0.35% 0.36% 0.81% 0.91%

Table 15  Qualitative comparison with other methods

Technique Stage Bug Type Overhead Scalable Runtime

[39] post-silicon functional low no no
[12] pre-silicon security low no no
[1] post-silicon functional high yes yes
[2] post-silicon functional high no yes
[27] post-silicon functional low no no
Prop. both both low yes yes



Journal of Hardware and Systems Security 

1 3

and area overhead. With the help of on-chip trace buffers, 
we presented a methodology for effective offline analysis 
of post-silicon traces. Experimental results using an NoC 
benchmark demonstrated that our approach is effective in 
NoC vulnerability analysis using security assertions with 
negligible hardware overhead.
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