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Abstract Since the standardization of AES/Rijndael
symmetric-key cipher by NIST in 2001, it gained
widespread acceptance in various protocols and withstood
intense scrutiny from the theoretical cryptanalysts. From
the physical implementation point of view, however, AES
remained vulnerable. Practical attacks on AES via fault
injection, differential power analysis, scan-chain and cache-
access timing have been demonstrated so far. In this paper,
we propose a novel and effective attack, termed Trace
Buffer Attack. Trace buffers are extensively used for post-
silicon debug of integrated circuits. We identify the trace
buffer as a source of information leakage. We first report
the detailed process of trace buffer attack assuming that the
register-transfer level (RTL) implementation is available.
We further analyze the AES encryption algorithm and
Rijndael’s key expansion algorithm, and illustrate that trace
buffer attack is feasible without implementation (RTL)
knowledge. Our experimental results show that trace buffer
attack is capable of partially recovering the secret keys of
different AES implementations.
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1 Introduction

As the human civilization is collectively progressing
towards an ubiquitous information age, the corresponding
stakes on ensuring confidentiality, integrity and authentic-
ity are also rising higher. Advanced Encryption Standard
(AES) algorithm with various key lengths (128, 192 and
256) is widely used. The fact that AES stood the intense
scrutiny from attackers over the last 15 years itself makes
it an important benchmark for cryptography and cryptanal-
ysis. So far, the best-known attempt against full AES-128,
by algebraic cryptanalysis, has a computational complex-
ity of 2126.1, which is slightly better than the brute-force
attack and practically infeasible [11]. However, the per-
spective of physical cryptanalysis changes this scenario
completely.

In practice, one routinely faces a situation where the
cryptographic schemes are deployed in different adversar-
ial setting, where keys are compromised, and the internal
memory is not fully opaque. This situation leads to a set of
physical cryptanalysis techniques, commonly known as side
channel attacks. Side channel attacks exploit the physical
implementation of cryptographic algorithms. The physical
implementation might enable leakage, i.e., observations and
measurements on the implementation details, as well as
tampering with them. Such attacks have broken systems
with mathematical security proof. In this scenario, secure
implementation is rapidly becoming as important as the
mathematical security proofs. For example, an AES imple-
mentation with protection against a first-order side-channel
attack is presented in [24]. The protected design is still
vulnerable to more sophisticated attacks and even then,
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incurs 4.6× area- and 3.6× power-overhead, respectively,
compared to the unprotected implementation.

In light of these developments, it is of utmost importance
to remain fully aware of the design vulnerabilities, in the
form of precise information leakage. In this paper, we intro-
duce Trace Buffer Attack (TBA), a novel attack that can
be mounted with the help of post-silicon debug facilities
present in a chip. System-on-Chip (SoC) designs have in-
built trace buffer (described in Section 2) that traces a small
set of internal signals during execution, and the traced signal
values are used during post-silicon (off-line) debug. There
is an inherent conflict between security and observability.
While debug engineers would like to have better observ-
ability, the security experts would like to enforce limited or
no visibility with respect to the security modules in a SoC
design. A trade-off is typically made where trace signals are
carefully selected to maintain security while providing rea-
sonable debug capability. To the best of our knowledge, the
vulnerability of trace buffers in cryptographic implementa-
tion has not been studied in the literature. We conclusively
show that to achieve a certain quantifiable level of debug-
ging ability, security is compromised. We consider AES
as the benchmark algorithm for demonstrating the efficacy
of this attack though, the attack can be mounted on other
ciphers following the same principles outlined in this work.
Our experimental results demonstrate that we can fully
recover the secret key for AES-128 (iterative) implemen-
tation whereas we can partially recover the secret key for
various pipelined AES implementations.

The rest of this paper is organized as follows. Back-
ground on AES and trace buffer is covered in Section 2.
Section 3 surveys related work on AES attack and trace
buffer. Section 4 describes our trace buffer attack with
knowledge of the RTL implementation. Section 5 analyzes
the process to attack without any knowledge of the RTL
implementation. Section 6 presents the experimental stud-
ies followed by proposed countermeasures in Section 7. The
paper is concluded in Section 8.

2 Background

2.1 AES Specification

AES works on a block size of 128 bits and a key size of 128,
192 or 256 bits, which are referred to as AES-128, AES-
192 and AES-256, respectively1. We briefly review AES-
128 here, for further details readers can refer to [3].

The encryption flow of AES is shown in the Fig. 1. AES
accepts a 128-bit plaintext, 128-bit user key and generates

1For the rest of the paper, unless explicitly specified, we will use AES-
128 and AES interchangeably.

128-bit ciphertext. The encryption proceeds through an ini-
tial round and subsequent 10 round repetition of 4 steps.
These steps are SubBytes, ShiftRows, MixColumns and
AddRoundKey. In the final round, MixColumns step is
skipped. For each of these rounds, separate 128-bit round
subkeys are needed. The round subkeys are generated from
the initial user key via a key expansion step. The key
expansion uses Rijndael’s key schedule.

The plaintext is organized as a 4× 4 column-major order
matrix, which is operated through the AES rounds. The
SubBytes step uses a non-linear transformation on every ele-
ment of the matrix. The non-linear transformation is defined
by an 8-bit substitution box, also known as Rijndael S-box.
The ShiftRows step cyclically shifts the bytes in each row
by a certain offset. In the MixColumns step, each column
is multiplied by a fixed matrix. In the AddRoundKey step,
each byte of the matrix is exclusive-OR-ed with each byte
of the current round subkey. This is shown graphically in the
Fig. 1.

2.2 Trace Buffer

One of the major challenges in post-silicon validation and
debug is the limited controllability and observability of the
fabricated integrated circuit. Trace buffer is widely used to
improve the observability of circuit and thus assist post-
silicon debug and analysis [16, 29–31]. It is a buffer that
traces (records) some of the internal signals in a silicon chip
during runtime. If an error is encountered, the content of
trace buffer would be dumped out through JTAG interface
for off-line debug and error analysis. Due to design over-
head constraints, the number of trace signals is only a small
fraction of all internal signals in the design. The size of the
trace buffer directly affects the observability that we can get
from the trace buffer.

Figure 2 illustrates how the trace buffer is used dur-
ing post-silicon validation and debug. Signal selection is
done during the design time (pre-silicon phase). Let us
assume that S1, S2, ..., Sn are the selected trace signals.
Figure 2 shows a trace buffer with a total size of n × m

bits, which traces n signals (buffer width) for m cycles
(buffer depth). For example, the ARM ETB [1] trace buffer
provides buffer sizes ranging from 16Kb to 4Mb. In this
case, a 16Kb buffer can trace 32 signals for 512 cycles
(i.e., n=32 and m=512). Once the trace signals are selected,
they need to be routed to the trace buffer. A trigger unit
is also needed that decides when to start and stop record-
ing the trace signals based on specific (error) events. The
trace buffer records the states of the traced signals dur-
ing runtime. During debug time, the states of traced signals
will be dumped out through the standard JTAG interface.
Signal restoration is performed to restore as many states
as possible, which is to maximize the observability of the
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Fig. 1 AES encryption flow

internal signals in the chip. The off-line debug and analy-
sis would be based on the traced signals and the restored
signals.

3 Related Work and Motivation

In this section, we first describe the prior works related
to AES attack. Next, we discuss the inherent conflict on
debug observability versus security. Finally, we present our
adversary model for trace buffer attack.

Fig. 2 Overview of trace buffer in system validation and debug

3.1 AES Attack

Since the pioneering works on differential power analy-
sis [22], numerous side-channel attacks have been devel-
oped. Side-channel attacks can be classified into passive,
semi-invasive and invasive attacks depending on the level
of intrusion necessary for the attacker. The side-channels
are of varied forms ranging from the software execu-
tion pattern such as cache timing [27] to more detailed
hardware-oriented information leakages such as electro-
magnetic waves [17], acoustic waves [18] and optical fault
injections [34]. Recent surveys on timing channels and inva-
sive fault attacks are available in [13] and [8], respectively.
Another approach of constructing an invasive attack orig-
inates from a malicious hardware, secretly inserted into a
chip. These are commonly known as hardware Trojans [15,
20].

Considering the impact that AES has on our everyday
communications, many of the attack techniques report their
efficacy by demonstrating an attack on AES, which is also
the target cipher for the current work. Among the hardware
side-channel attacks reported against AES, attacks based on
scan-chain [5] and external fault injections [25] are most
prominent. For all these attacks, effective countermeasures
are proposed and the inherent resilience of various design
points [4] is studied. It is also shown that there exists an
interplay between the countermeasures of one attack and
the consequently increased vulnerability against another
attack [32].



J Hardw Syst Secur (2017) 1:68–84 71

3.2 Debug Observability Versus Security

Trace buffer provides observability into the circuit so as to
assist post-silicon debug and test. The quality of selected
trace signals will directly affect the observability that we
can get from the circuit. The goal of trace signal selection
is to obtain a set of signals, which can restore the maximum
number of internal states in the chip. Basu et al. [9] proposed
a metric based algorithm that employs total restorability for
selecting the most profitable signals. Chatterjee et al. [12]
proposed a simulation based algorithm which is shown to
be more promising than metric based approaches. Li and
Davoodi [23] proposed a hybrid approach which combines
the advantages of metric and simulation based approaches.
A simulation based approach using augmentation and ILP
techniques by Rahmani et al. [29] demonstrated very high
restoration capability and thus high observability of the
internal signals.

It is accepted in the research community that there is
a strong link between observability/testability and secu-
rity [19] for Design for Testability (DfT) facilities. Scan
chain based DfT has been studied for attacks on block
ciphers, including Data Encryption Standard (DES) [35]
and Advanced Encryption Standard (AES) [36], and stream
ciphers [26]. However, it is surprising that the vulnerabil-
ity of trace buffers in cryptographic implementation is not
studied so far. This forms the core motivation of our work.
We show that an effective security attack is possible by
analyzing the trace buffer content.

3.3 Attack Model

The proposed trace buffer attack has the following assump-
tions:

1) The primary key is stored in secure memory and prop-
erly maintained by key management.

2) The attacker knows the AES encryption algorithm as it
is open to public.

3) High level timing information, as well as the RTL
implementation of the AES, is known to the attacker.

4) The attacker has access to trigger the trace buffer
recording at any time and dump out the traced content
via the JTAG port after designated clock cycles.

5) The attacker does not know which signals are recorded
in the trace buffer.

The assumptions that we have made for trace buffer attack
are similar to the ones made in the literature for scan-chain
attacks [26, 35, 36]. The primary key is assumed to be prop-
erly maintained by key management. The attacker knows
the algorithmic details and the high level timing informa-
tion of the cryptosystem being implemented in the device.
In Assumption (3), we assume that the attacker knows the

RTL implementation of AES for the attack proposed in
Section 4. We realize that this is a very strong assumption.
We remove this assumption to make it a more realistic attack
in Section 5. Assumption (4) is similar to scan chain attacks
concerning the debugging JTAG port. The attacker has the
ability to run the device under test mode, i.e. trigger the
recording of trace buffer and dump out the buffer content.
He can feed the circuit with designated inputs (plaintexts
and fake keys) for cryptanalysis. For Assumption (5), the
attacker does not know which signals are recorded in the
trace buffer. It is the first challenge to be resolved if the
attacker wants to launch an attack.

Compared with the scan chain attacks, the trace buffer
attack introduces the following additional challenges. (1)
The first step for trace buffer attack is similar to scan-based
attack, which is to identify signals. For scan-based attack,
the attacker knows what signals are in the scan flip-flops.
The attacker’s problem is to identify the structure (order)
of the scan chain. However, for trace buffer attack, the
attacker does not even know which signals are selected to be
recorded in the buffer. (2) The number of signals traced is
usually much smaller compared to the length of scan chains
(especially if it is full-scan). The number of traced signals
is limited, which makes it more challenging for the second
step of signal restoration for trace buffer attack. (3) The
trace buffer can record values over a continuous interval.
Trace buffer attack has the advantage to analyze the signal
values between clock cycles (between encryption rounds,
while the scan chain can only scan out the signal values at
one clock cycle. (4) Protection against scan-based attacks
mostly focuses on scrambling the structure of scan chain.
For trace buffer attack, the countermeasures have to focus
on scrambling or direct encryption of the recorded signals.

Preliminary version of this work appeared in conference
proceeding [21] with the discussion of trace buffer attack
when RTL implementation is available. This paper extends
the attack technique, in particular by relaxing the assump-
tion of RTL knowledge and analysing the AES algorithm
for a more realistic attack.

4 Trace Buffer Attack with RTL Knowledge

In this section, we launch the trace buffer attack assum-
ing that the register-transfer level (RTL) implementation
is available. The proposed attack proceeds in two phases.
In the first phase, we attempt to establish the correspon-
dence between the signal values in trace buffer and variables
in the AES design. In the second phase, depending on
the trace buffer size and the number of cycles for which
each signal is dumped, the signal values are fed to the
restoration algorithm. The restoration algorithm attempts to
restore internal signals and eventually recover bits in the
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user-specified primary key. Details of each step are elabo-
rated in the following sections.

4.1 Attack Step 1: Determine Trace Buffer Signals

If an attacker wants to steal the primary key, signal values
in the trace buffer are the starting point of hacking. Unless
the traced data is encrypted or debugging is authentication
based, the attacker can easily dump traced data through
JTAG interface. The challenge for Trace Buffer Attack is
that the attacker does not know what signals are recorded in
the trace buffer. In this section, we assume that the attacker
has access to a few test chips and the RTL description of the
AES design. The one-to-one mapping between the traced
signals and the registers in RTL description can be estab-
lished by running some test chips and matching with RTL
simulation.

Algorithm 1 shows the process to match signals in trace
buffer with registers in the RTL implementation. For each
iteration, we select a random input plaintext Titr and a ran-
dom key Kitr . We run the test chip and the RTL simulation
with the same key and input text for c cycles. Each traced
signal will have a vector of c values stored in the trace
buffer. For each traced signal, we compare its vector with

vectors of all the registers from RTL simulation. If a unique
match is found in the RTL simulation, this traced signal
is identified in the RTL description. We repeat the process
until all the traced signals are uniquely identified.

4.2 Attack Step 2: Signal Restoration

Let us assume that the attacker has finished the preparation
in the previous step and successfully identified the signals in
the trace buffer. The next step is to run the chip in the work-
ing mode with the secret primary key and take advantage of
the trace buffer to initialize the attack. The attacker dumps
out the signal states recorded in the buffer during online
encryption, and tries to analyze the design so as to recover
as many other signals as possible, and eventually obtain the
primary key. In post-silicon debug, restoration of unknown
signals based on trace buffer data is a crucial step in debug-
ging. This section describes signal restoration based on trace
buffer.

The signals can be reconstructed from the traced signals
in two directions: forward and backward restoration. For-
ward restoration pushes the restoration of signals from input
to output, which is the process of inferring output values if
some inputs are known. Backward restoration infers input
values if some outputs are known. Figure 3 illustrates for-
ward and backward restoration with a simple example of
AND gate. Figure 3a shows forward restoration: if one of
the inputs is 0, the output can be inferred to be 0; if both of
the inputs are 1, the output can be inferred to be 1. Figure 3b
and c shows backward restoration: if the output is 1, both
of the inputs can be inferred to be 1. However, if the output
is 0, backward restoration might not be successful as shown
in (c). The restoration process for other logic components
is similar to AND gate. The restoration for registers (flip-
flops) is that the state at current cycle is related to the state
at previous cycle as specified by their truth tables.

Algorithm 2 outlines the major steps in a typical restora-
tion algorithm. We first read in the AES circuit and form

Fig. 3 Illustration of signal restoration for an AND gate
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a hypergraph. Based on the trace buffer content, we per-
form forward and backward restorations to construct value
assignments for un-traced nodes. We use a queue Under-
Process to keep track of nodes which have new values been
restored. The queue is initialized with nodes from the trace
buffer. Each node in the queue is processed by backward and
forward restoration and nodes with newly assigned values
will be put to the end of the queue. This process contin-
ues until no new assignments are created, i.e., the queue
becomes empty. Although this algorithm has exponential
complexity, in reality, it completes the process very fast (as
demonstrated in Section 6) since the number of new values
created decreases significantly after each iteration.

5 Trace Buffer Attack Without RTL Knowledge

In this section, we aim to attack the AES cipher without the
knowledge of its RTL implementation. We consider itera-
tive AES-128 with a trace buffer (32×512) of width 32 and
depth 512. We first identify as many signals as we can in the
trace buffer, by referring to the variables in the AES encryp-
tion algorithm. We then show that the primary key can be
retrieved by taking advantage of Rijndael’s key scheduling,

5.1 Mapping Signals to Algorithm Variables

Suppose we have the AES-128 chip as in Case Study 1
(Section 6), we don’t have the implementation at RTL level,
which means that we cannot run the RTL simulation and the
chip side-by-side to compare which signals are recorded in
the trace buffer. What we know from the chip datasheet is
that it takes 13 cycles to complete one encryption. The trace
buffer contains values of 32 internal signals. The intermedi-
ate encrypted text and the round key are most beneficial for
signal restoration to recover the primary key bits. The code
snippet of C implementation of AES-128 is shown in Fig. 4.
The variables {state[0], state[1], state[2], state[3]} rep-
resent the intermediate encrypted text, and the variables
[w0 w1 w2 w3] represent the 128-bit round key. The for
loop of 10 iterations represents the 10 encryption rounds.

We would like to find out whether any signals (bits) in the
trace buffer are from the intermediate encrypted text or the
round key. It takes 13 cycles for the AES chip to complete
one encryption operation, which is one initial round and 10
subsequent rounds in the C program of AES. If one bit is
from the round key [w0 w1 w2 w3], we can represent the
values of this bit over 10 rounds as a 10-bit binary string by
running the C program. The resulting 10-bit string would be
a substring of the same bit/signal in the trace buffer. If we
apply a fixed key and a fixed plaintext when we run the test
chip, a matching algorithm variable bit from the C program
would actually be a 10-bit substring repeating with a period
of 13 in the string of the same signal in the trace buffer.

Algorithm 3 shows the details about how we matched the
signals from trace buffer bits to algorithm variable bits. We
run the C program and the test chip with a same random

Fig. 4 C Code Snippet for AES-128
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plaintext Titr , and a same random key Kitr . Each signal Si

in trace buffer is represented as a 512-bit binary string and
each variable bit Vj,k as a 10-bit binary string. We decide
that (Si , Vj,k) is a possible match if variable bit Vj,k is a
repeating pattern of Si . The algorithm tries to identify as
many signals of S as possible, and it will terminate when
matched signals are uniquely identified and no more unique
match can be found. The complexity of the matching algo-
rithm is O(W ∗ ∑

j Bj ), where W is the buffer width, Bj is
the number of bits in variable Vj ,

∑
j Bj is the total number

of candidate variable bits.

By applying the above method, we can identify 30 out
32 signals in the trace buffer. These 30 signals include two
bits from the intermediate register, and another 28 bits from
the round key register can be matched. The 28 bits from the

128-bit round key register include 1 bit from the first word,
2 bits from the third word, and 25 bits from the fourth
word. More details about these signals are presented in
Section 6.1. Note that we apply the state-of-the art sig-
nal selection algorithm to select the trace signals. In other
words, we did not choose signals that would help us in
trace buffer attack. This research also points to the need for
having security-aware signal selection.

5.2 Attack by Taking Advantage of Rijndael’s Key
Expansion

As shown in Fig. 1, the last step of each round is XOR
with a round key. The initial round takes the primary key,
and each of the following 10 rounds uses a different round
key. The round key generation follows the Rijndael’s key
expansion algorithm to generate the next 4-word round
key [RKi+1,1, RKi+1,2, RKi+1,3, RKi+1,4] based on the
current 4-word round key [RKi,1, RKi,2, RKi,3, RKi,4].

RK(i+1,1) = RK(i,1) ⊕ sbox(lcs(RK(i,4))) ⊕ RCi

RK(i+1,2) = RK(i,2) ⊕ RK(i+1,1)

RK(i+1,3) = RK(i,3) ⊕ RK(i+1,2)

RK(i+1,4) = RK(i,4) ⊕ RK(i+1,3) (1)

Equation 1 shows the Rijndael’s key expansion algo-
rithm. For the (i+1)th round, the first word RK(i+1,1) is the
XOR of three items: the first word of ith round, the substi-
tuted word by applying a one-byte lcs (Left Circular Shift)
operation and a byte-wise sbox substitution on the fourth
word of ith round, and the round constant RCi . The sbox
function is byte-to-byte substitution according to a 16 × 16
lookup table as shown in Fig. 5. For the other three words
RK(i+1,2), RK(i+1,3), RK(i+1,4), they follow the same pat-
tern: the XOR of the word itself at ith round and the previous
word at (i +1)th round. Based on the above observation, we
generalize two rules as shown in Eq. 2, which will be useful
for signal values restoration between cycles (rounds).

Rule 1: sbox(lcs(RK(i,4))) = RK(i,1) ⊕ RK(i+1,1) ⊕ RCi

Rule 2: RK(i+1,j−1) = RK(i,j) ⊕ RK(i+1,j), j = 2, 3, 4

(2)

In Rijndael’s round key expansion, the fourth word of
current round key is the seed word for generating the next
round key, which is shown in Eqs. 1 and 2. The lcs and sbox
operations on the fourth word are the sources to introduce
unpredictable randomness to round keys. We have figured
out that the trace buffer contains bits from the fourth word
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in the round key register in Section 5.1, which would be
critical for us to retrieve the full key.

(1) Analysis: Assume the Fourth Word Known

Table 1 shows that if all the 32 bits of the fourth word
of the round keys are known, the 128-bit primary key,
which is all 0’s for this example, can be recovered. Round
keys are represented as hexadecimal digits and ‘X’ means
‘unknown’. Assume we know the fourth word of the round
keys as shown in Table 1(A). We first apply Rule 2 on
RK(1∼10,4) (the fourth column of the Table 1(B)), we can
retrieve the third word of all round keys except the first
round, which is RK(2∼10,3) (the third column). Similarly,
we can retrieve the second column and the first column
(RK(3∼10,2) and RK(4∼10,1)). Now we have successfully
retrieved the full round key RK4. The Rijndael’s key
expansion defines the relation between two consecutive

Table 1 Assume we have the fourth word of all rounds known, we
can apply Rule 2 in a cascaded way and recover all bits in RK4. From
RK4, we can use Eq. 1 to get RK3, RK2, RK1, and RK0, which is the
primary key

(A) Assume the fourth word of all rounds known

RK1 XXXXXXXX XXXXXXXX XXXXXXXX 62636363

RK2 XXXXXXXX XXXXXXXX XXXXXXXX F9FBFBAA

RK3 XXXXXXXX XXXXXXXX XXXXXXXX 0B0FAC99

RK4 XXXXXXXX XXXXXXXX XXXXXXXX 7E91EE2B

RK5 XXXXXXXX XXXXXXXX XXXXXXXX F34B9290

RK6 XXXXXXXX XXXXXXXX XXXXXXXX 6AB49BA7

RK7 XXXXXXXX XXXXXXXX XXXXXXXX C61BF09B

RK8 XXXXXXXX XXXXXXXX XXXXXXXX 511DFA9F

RK9 XXXXXXXX XXXXXXXX XXXXXXXX 4C664941

RK10 XXXXXXXX XXXXXXXX XXXXXXXX 6F8F188E

(B) Apply Rule 2 to recover RK4

RK1 XXXXXXXX XXXXXXXX XXXXXXXX 62636363

RK2 XXXXXXXX XXXXXXXX 9B9898C9 F9FBFBAA

RK3 XXXXXXXX 696CCFFA F2F45733 0B0FAC99

RK4 EE06DA7B 876A1581 759E42B2 7E91EE2B

RK5 7F2E2B88 F8443E09 8DDA7CBB F34B9290

RK6 EC614B85 1425758C 99FF0937 6AB49BA7

RK7 21751787 3550620B ACAF6B3C C61BF09B

RK8 0EF90333 3BA96138 97060A04 511DFA9F

RK9 B1D4D8E2 8A7DB9DA 1D7BB3DE 4C664941

RK10 B4EF5BCB 3E92E211 23E951CF 6F8F188E

(C) Use Eq. 1 to get RK3 ∼ RK1, and RK0 (the primary key)

RK0 00000000 00000000 00000000 00000000

RK1 62636363 62636363 62636363 62636363

RK2 9B9898C9 F9FBFBAA 9B9898C9 F9FBFBAA

RK3 90973450 696CCFFA F2F45733 0B0FAC99

RK4 EE06DA7B 876A1581 759E42B2 7E91EE2B

round keys, which means we can use Eq. 1 to get the previ-
ous round key if we have the current round key. With RK4

already retrieved, we can then get RK3, RK2, RK1 and
eventually RK0, which is the primary key.

Table 1 shows that we would be able to retrieve RK4 if
all the 32 bits of the fourth word of the round key register
are known. In fact, only the first four rows in Table 1 are
needed to retrieve RK4. With Rule 2, any four consecutive
rounds with the fourth word known will be able to retrieve a
full round key, i.e. the value of RK(i∼i+3),4 will lead to the
recovery of full round key RKi+3.

(2) Restoration from Partial Information in Trace Buffer

However, the trace buffer contains only 25 bits of the
fourth word as shown in Section 6.1. The above approach
needs four consecutive rounds with the fourth word known,
while we have 7 bits missing for the fourth word of each
round. If we try to brute-force all possibilities, the time com-
plexity is 27∗4 = 228. While this brute-force attack is within
reasonable computation limit, we show that even that is not
required if we put the sbox bijection property into use. The
sbox lookup table as shown in Fig. 5 is the core of Rijndael’s
key expansion. It is a bijective mapping between the bytes
before and after sbox substitution. The bijection property
of this byte-to-byte mapping makes it possible to recover
missing bits in round keys.

Rule 1 shows the relationship between RK(i,1),
RK(i+1,1), RK(i,4) and RCi . Given that RK(i,1), RK(i+1,1)

and RK(i,4) are partially obtained from the trace buffer con-
tent and RCi is a known constant. We use the example in
Fig. 6 to illustrate how Rule 1 can help recover missing
bits in RK(i,4). In this example, RK(4,1) and RK(5,1) have 4
bits missing and RK(4,4) has 5 bits missing. We apply Rule
1 as shown in line 7 and derive with the partially known
RK(4,1), RK(5,1) and RK(4,4). After some bit-manipulation,

Fig. 5 AES sbox lookup table (the numbers are in hexadecimal
format)
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Fig. 6 An example showing the recovery of missing bits in RK(4,4)
by using sbox lookup table (Rule 1)

we get sbox mapping from a 32-bit word to another 32-bit
word in line 12∼13. In line 15, the first byte is 1001x0x1
and we would like to figure out two unknown bits. If we
decompose the byte in half, the left part is 9 and the right
part could be four choices: 1, 3, 9 or B. This means we
need to consider sbox(9,1), sbox(9,3), sbox(9,9) or sbox
(9,B) as potential matches. However, the right hand side
of line 15 indicates that the expected value 100x0001
can be either 81 or 91. Among the four possible choices,
only sbox(9,1) fits the requirement. Therefore we get the
unique mapping for the first byte as sbox(9,1) = 81, i.e.,
sbox([10010001]) = [10000001] as shown by the yellow
circle (Row 9 and Column 1) in the lookup table. Using
similar lookup, we can identify the other three bytes, i.e.,
sbox([11101110]) = [00101000], sbox([00101011]) =
[11110001], and sbox([01111110]) = [11110011].

Algorithm 4 shows the steps to restore the primary key
from the available trace buffer content. In Step 1, we first
apply Rule 2 in a cascaded way to get partial bits of the first
word in round keys. In Step 2, we then apply Rule 1 and the
unique mapping property of sbox to further recover missing
bits of the fourth word in round keys. After using sbox, the

following steps will be very similar to the example shown
in Table 1. In Step 3, we re-apply Rule 2 in a cascaded way
to get a full round key. Finally in Step 4, we use Equation 1
to push back from that round key and eventually get the pri-
mary key. Section 6-A shows detailed experimental results
after each step.

The most critical part in Algorithm 4 is Step 2, i.e., apply-
ing Rule 1 to recover missing bits in RK(i,4). Note, it is also
possible that multiple candidate mappings are available in
the lookup table for the partially known bytes. In that case,
we have to evaluate all possible mappings. Our experiments
with different random numbers suggest that the chances of
multiple candidates are very rare.
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6 Experimental Results

We applied our trace buffer attack on the AES Verilog
implementations (the iterative AES-128, and the pipelined
AES-128, AES-192 and AES-256 [2]) from the OpenCores
website. The Synopsys Design Compiler is used to synthe-
size the RTL implementation into a gate-level netlist. We
developed C++ code to simulate the gate-level circuits and
implement the signal restoration algorithms. The experi-
ments were conducted on a computer with AMD Opteron
2.4GHz core and 32GB memory. We used signal selection
algorithm in [29] to select trace signals for the trace buffers
since it produces signals that can maximize observability
compared to the other signal selection techniques.

6.1 Case Study 1: Iterative AES-128

The iterative AES-128 design has 530 flip-flops and about
25,000 basic logic gates. The 530 flip-flops (registers)
include:

• ld r, done, which are one-bit control signals.
• dcnt[0..3], which is a 4-bit register keeping track of the

encryption rounds.
• text in r[0..127], which is a 128-bit register holding the

plaintext.
• w0[0..31], w1[0..31], w2[0..31], and w3[0..31], which

are 32-bit each, holding the round keys.
• sa00[0..7], sa01[0..7], sa02[0..7], sa03[0..7],

sa10[0..7], sa11[0..7], sa12[0..7], sa13[0..7],
sa20[0..7], sa21[0..7], sa22[0..7], sa23[0..7],
sa30[0..7], sa31[0..7], sa32[0..7], sa33[0..7], which
are 8-bit registers holding intermediate encrypted text
in bytes.

• u0.rcon[24..31] and u0.r0.rcnt[0..3], which are 12 tem-
porary registers in the key expansion unit.

• text out[0..127], which is a 128-bit register holding the
ciphertext.

(1) Attack Without RTL Implementation

As described in Section 5, we assume that we don’t have
the RTL implementation. We first use Algorithm 3 to guess
which bits of the round keys are recorded in the (32 × 512)
trace buffer. We are able to recognize 28 bits from the
round key, including 1 bit from the first word (w0[14]),
2 bits from the third word (w2[17] and w2[29]), and 25
bits from the fourth word (w3[0-3, 6-13, 15-16, 18, 20-27,
30-31]). We conduct the restoration process according to
Algorithm 4. Table 2 shows intermediate results after each
step of the restoration process. First, we apply Rule 2 (the
relation between different words) to restore missing bits in
the fourth word, which results in Table 2(B). We then apply
Rule 1 (the unique mapping property of sbox lookup table )

to get Table 2(C). We apply Rule 2 again to get a full round
key RK7, which results in Table 2(D). From RK7, we can
use Equation 1 to get RK6 ∼ RK1 and eventually get the
primary key RK0, which is all 0’s in this case.

The attack can successfully retrieve the full key with-
out RTL knowledge. There are two major reasons why this
attack works so well. Firstly, 28 bits of the round key reg-
isters are recorded in the trace buffer. The signal selection
algorithm in [29] only greedily choose signals that are best
for observability. The signals in the round key registers hap-
pen to be of highest restoration capability for observing
other internal signals. The blindness of selection of these
round key signals contributes to information leakage, as
well as high observability. Secondly, the bijection property
of sbox function plays a critical role in recovering the miss-
ing bits in the fourth word of the round keys. However,
if too many bits from the round key were not recorded in
the buffer, we might need a lot more brute-force effort in
Step 2 of Algorithm 4 to verify missing bits when using the
sbox lookup table. In the next section, we will see that the
attack with RTL knowledge is more powerful in recovering
primary key bits.

(2) Attack with RTL Implementation

We explore different trace buffer sizes with buffer widths
of 8, 16, and 32, buffer depth (traced cycles) of 64, 128,
256 and 512 in our experiments. The signals recorded in
the trace buffer are identified by using methods detailed
in Section 4.1 with the help of RTL implementation. The
identified signals for each buffer width is as follows:

• BufferWidth=8: {dcnt[2], ld r, w3[2], w3[1], w3[30],
w3[27], w3[17], w3[13]}

• BufferWidth=16: {dcnt[2], ld r, w3[4], w3[29], w3[27],
w3[23], w3[22], w3[18], w3[16], w3[15], w3[14],
w3[13], w3[12], w3[10], w1[9], w3[8]}

• BufferWidth=32: {dcnt[2], ld r, sa03[7], sa13[7],
w3[7], w3[6], w3[3], w3[2], w3[1], w3[31], w3[30],
w2[29], w3[27], w3[26], w3[25], w3[24], w3[23],
w3[22], w3[21], w3[20], w3[18], w2[17], w3[16],
w3[15], w0[14], w3[13], w3[12], w3[11], w3[10],
w3[9], w3[8], w3[0]}

Table 3 shows our results of trace buffer attack on the
iterative AES-128 cipher. The trace buffers with a buffer
width of 32 and a buffer depth no less than 128 are able to
recover the full primary key in a few minutes.

Figure 7a shows the number of bits in the user key
leaked with different buffer sizes. Figure 7b shows the total
number of internal states restored (debug observability) dur-
ing restoration. The number of restored primary key bits
increases with bigger buffer width. For the same buffer
width, the number of restored key bits increases slightly as
the trace cycles increase, and it will be saturated after buffer



78 J Hardw Syst Secur (2017) 1:68–84

Ta
bl
e
2

T
he

ab
ov
e
sh
ow

s
th
e
st
ep
s
to

re
st
or
e
th
e
pr
im

ar
y
ke
y
fr
om

th
e
av
ai
la
bl
e
tr
ac
e
bu
ff
er

co
nt
en
t.
T
he
re

ar
e
28

bi
ts
av
ai
la
bl
e
in

th
e
tr
ac
e
bu
ff
er
,a
s
sh
ow

n
in

Ta
bl
e
2(
A
).
W
e
fi
rs
t
ap
pl
y

R
ul
e
2
to

ge
tT

ab
le
2(
B
).
W
e
th
en

ap
pl
y
R
ul
e
1
to

ge
tT

ab
le
2(
C
),
an
d
ap
pl
y
R
ul
e
2
ag
ai
n
to

ge
t

a
fu
ll
ro
un
d
ke
y

R
K

7
sh
ow

n
in

Ta
bl
e
2(
D
).
Fr
om

R
K

7
,w

e
ca
n
us
e
E
qu
at
io
n
1
to

ge
tR

K
6
,.
..,

R
K

1
an
d
ev
en
tu
al
ly

ge
tt
he

pr
im

ar
y
ke
y
(R

K
0
),
w
hi
ch

is
al
l0

’s
in

th
is
ca
se

(A
)
St
ep

0:
B
its

fr
om

th
e
tr
ac
e
bu
ff
er

R
K

1
xx
xx
xx
xx
xx
xx
xx
xx
x1
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
1x
xx
xx
xx
xx
xx
1x
xx
xx
xx
xx
xx
xx
xx
xx

01
xx
00
10
01
10
x0
x1
0x
10
00
11
01
xx
00
11

R
K

2
xx
xx
xx
xx
xx
xx
xx
xx
x0
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
0x
xx
xx
xx
xx
xx
0x
xx
xx
xx
xx
xx
xx
xx
xx

11
xx
10
01
11
11
x0
x1
1x
11
10
11
10
xx
10
10

R
K

3
xx
xx
xx
xx
xx
xx
xx
xx
x0
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
1x
xx
xx
xx
xx
xx
0x
xx
xx
xx
xx
xx
xx
xx
xx

00
xx
10
11
00
00
x1
x1
1x
10
11
00
10
xx
10
01

R
K

4
xx
xx
xx
xx
xx
xx
xx
xx
x1
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
1x
xx
xx
xx
xx
xx
1x
xx
xx
xx
xx
xx
xx
xx
xx

01
xx
11
10
10
01
x0
x1
1x
10
11
10
00
xx
10
11

R
K

5
xx
xx
xx
xx
xx
xx
xx
xx
x0
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
0x
xx
xx
xx
xx
xx
1x
xx
xx
xx
xx
xx
xx
xx
xx

11
xx
00
11
01
00
x0
x1
1x
01
00
10
10
xx
00
00

R
K

6
xx
xx
xx
xx
xx
xx
xx
xx
x1
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
0x
xx
xx
xx
xx
xx
1x
xx
xx
xx
xx
xx
xx
xx
xx

01
xx
10
10
10
11
x1
x0
1x
01
10
11
10
xx
01
11

R
K

7
xx
xx
xx
xx
xx
xx
xx
xx
x0
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
1x
xx
xx
xx
xx
xx
1x
xx
xx
xx
xx
xx
xx
xx
xx

11
xx
01
10
00
01
x0
x1
1x
11
00
00
10
xx
10
11

R
K

8
xx
xx
xx
xx
xx
xx
xx
xx
x0
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
0x
xx
xx
xx
xx
xx
1x
xx
xx
xx
xx
xx
xx
xx
xx

01
xx
00
01
00
01
x1
x1
1x
11
10
10
10
xx
11
11

R
K

9
xx
xx
xx
xx
xx
xx
xx
xx
x1
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
0x
xx
xx
xx
xx
xx
1x
xx
xx
xx
xx
xx
xx
xx
xx

01
xx
11
00
01
10
x1
x0
0x
00
10
01
01
xx
00
01

R
K

10
xx
xx
xx
xx
xx
xx
xx
xx
x1
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
1x
xx
xx
xx
xx
xx
0x
xx
xx
xx
xx
xx
xx
xx
xx

01
xx
11
11
10
00
x1
x1
0x
01
10
00
10
xx
11
10

(B
)
St
ep

1:
A
pp
ly

R
ul
e
2
in

a
ca
sc
ad
ed

w
ay

R
K

1
xx
xx
xx
xx
xx
xx
xx
xx
x1
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
1x
xx
xx
xx
xx
xx
1x
xx
xx
xx
xx
xx
xx
xx
xx

01
xx
00
10
01
10
x0
x1
0x
10
00
11
01
xx
00
11

R
K

2
xx
xx
xx
xx
xx
xx
xx
xx
x0
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

10
0x
10
11
10
01
x0
00
1x
01
10
00
11
xx
10
01

11
xx
10
01
11
11
x0
x1
1x
11
10
11
10
xx
10
10

R
K

3
xx
xx
xx
xx
xx
xx
xx
xx
x0
xx
xx
xx
xx
xx
xx
xx

01
1x
10
01
01
10
x1
00
1x
00
11
11
11
xx
10
10

11
1x
00
10
11
11
x1
00
0x
01
01
11
00
xx
00
11

00
xx
10
11
00
00
x1
x1
1x
10
11
00
10
xx
10
01

R
K

4
11
1x
11
10
00
00
x1
10
11
01
10
10
01
xx
10
11

10
0x
01
11
01
10
x0
10
0x
01
01
01
10
xx
00
01

01
1x
01
01
10
01
x1
10
0x
00
00
10
10
xx
00
10

01
xx
11
10
10
01
x0
x1
1x
10
11
10
00
xx
10
11

R
K

5
01
1x
11
11
00
10
x1
10
00
10
10
11
10
xx
10
00

11
1x
10
00
01
00
x1
00
0x
11
11
10
00
xx
10
01

10
0x
11
01
11
01
x0
10
0x
11
11
00
10
xx
10
11

11
xx
00
11
01
00
x0
x1
1x
01
00
10
10
xx
00
00

R
K

6
11
1x
11
00
01
10
x0
01
01
00
10
11
10
xx
01
01

00
0x
01
00
00
10
x1
01
0x
11
01
01
10
xx
11
00

10
0x
10
01
11
11
x1
11
0x
00
10
01
00
xx
01
11

01
xx
10
10
10
11
x1
x0
1x
01
10
11
10
xx
01
11

R
K

7
00
1x
00
01
01
11
x1
01
00
01
01
11
10
xx
01
11

00
1x
01
01
01
01
x0
00
0x
10
00
10
00
xx
10
11

10
1x
11
00
10
10
x1
11
0x
10
10
11
00
xx
11
00

11
xx
01
10
00
01
x0
x1
1x
11
00
00
10
xx
10
11

R
K

8
00
0x
11
10
11
11
x0
01
00
00
00
11
00
xx
00
11

00
1x
10
11
10
10
x0
01
0x
10
00
01
00
xx
10
00

10
0x
01
11
00
00
x1
10
0x
00
10
10
00
xx
01
00

01
xx
00
01
00
01
x1
x1
1x
11
10
10
10
xx
11
11

R
K

9
10
1x
00
01
11
01
x1
00
11
01
10
00
11
xx
00
10

10
0x
10
10
01
11
x1
01
1x
11
10
01
11
xx
10
10

00
0x
11
01
01
11
x0
11
1x
11
00
11
11
xx
11
10

01
xx
11
00
01
10
x1
x0
0x
00
10
01
01
xx
00
01

R
K

10
10
1x
01
00
11
10
x1
11
01
01
10
11
11
xx
10
11

00
1x
11
10
10
01
x0
10
1x
10
00
10
00
xx
00
01

00
1x
00
11
11
10
x0
01
0x
01
00
01
11
xx
11
11

01
xx
11
11
10
00
x1
x1
0x
01
10
00
10
xx
11
10

(C
)
St
ep

2:
A
pp
ly

R
ul
e
1
an
d
sb
ox

to
re
co
ve
r

R
K

1
xx
xx
xx
xx
xx
xx
xx
xx
x1
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
1x
xx
xx
xx
xx
xx
1x
xx
xx
xx
xx
xx
xx
xx
xx

01
xx
00
10
01
10
x0
x1
0x
10
00
11
01
xx
00
11

R
K

2
xx
xx
xx
xx
xx
xx
xx
xx
x0
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

10
0x
10
11
10
01
x0
00
1x
01
10
00
11
xx
10
01

11
xx
10
01
11
11
x0
x1
1x
11
10
11
10
xx
10
10

R
K

3
xx
xx
xx
xx
xx
xx
xx
xx
x0
xx
xx
xx
xx
xx
xx
xx

01
1x
10
01
01
10
x1
00
1x
00
11
11
11
xx
10
10

11
1x
00
10
11
11
x1
00
0x
01
01
11
00
xx
00
11

00
xx
10
11
00
00
x1
x1
1x
10
11
00
10
xx
10
01

R
K

4
11
1x
11
10
00
00
x1
10
11
01
10
10
01
xx
10
11

10
0x
01
11
01
10
x0
10
0x
01
01
01
10
xx
00
01

01
1x
01
01
10
01
x1
10
0x
00
00
10
10
xx
00
10

01
11
11
10
10
01
00
01
11
10
11
10
00
10
10
11

R
K

5
01
1x
11
11
00
10
x1
10
00
10
10
11
10
xx
10
00

11
1x
10
00
01
00
x1
00
0x
11
11
10
00
xx
10
01

10
0x
11
01
11
01
x0
10
0x
11
11
00
10
xx
10
11

11
11
00
11
01
00
10
11
10
01
00
10
10
01
00
00

R
K

6
11
1x
11
00
01
10
x0
01
01
00
10
11
10
xx
01
01

00
0x
01
00
00
10
x1
01
0x
11
01
01
10
xx
11
00

10
0x
10
01
11
11
x1
11
0x
00
10
01
00
xx
01
11

01
10
10
10
10
11
01
00
10
01
10
11
10
10
01
11

R
K

7
00
1x
00
01
01
11
x1
01
00
01
01
11
10
xx
01
11

00
1x
01
01
01
01
x0
00
0x
10
00
10
00
xx
10
11

10
1x
11
00
10
10
x1
11
0x
10
10
11
00
xx
11
00

11
00
01
10
00
01
10
11
11
11
00
00
10
01
10
11

R
K

8
00
0x
11
10
11
11
x0
01
00
00
00
11
00
xx
00
11

00
1x
10
11
10
10
x0
01
0x
10
00
01
00
xx
10
00

10
0x
01
11
00
00
x1
10
0x
00
10
10
00
xx
01
00

01
01
00
01
00
01
11
01
11
11
10
10
10
01
11
11

R
K

9
10
1x
00
01
11
01
x1
00
11
01
10
00
11
xx
00
10

10
0x
10
10
01
11
x1
01
1x
11
10
01
11
xx
10
10

00
0x
11
01
01
11
x0
11
1x
11
00
11
11
xx
11
10

01
00
11
00
01
10
01
10
01
00
10
01
01
00
00
01

R
K

10
10
1x
01
00
11
10
x1
11
01
01
10
11
11
xx
10
11

00
1x
11
10
10
01
x0
10
1x
10
00
10
00
xx
00
01

00
1x
00
11
11
10
x0
01
0x
01
00
01
11
xx
11
11

01
xx
11
11
10
00
x1
x1
0x
01
10
00
10
xx
11
10



J Hardw Syst Secur (2017) 1:68–84 79

Ta
bl
e
2

(c
on
tin

ue
d)

(D
)
St
ep

3:
A
pp

ly
R
ul
e
2
ag
ai
n
to

re
co
ve
r

R
K

1
xx
xx
xx
xx
xx
xx
xx
xx
x1
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
1x
xx
xx
xx
xx
xx
1x
xx
xx
xx
xx
xx
xx
xx
xx

01
xx
00
10
01
10
x0
x1
0x
10
00
11
01
xx
00
11

R
K

2
xx
xx
xx
xx
xx
xx
xx
xx
x0
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

10
0x
10
11
10
01
x0
00
1x
01
10
00
11
xx
10
01

11
xx
10
01
11
11
x0
x1
1x
11
10
11
10
xx
10
10

R
K

3
xx
xx
xx
xx
xx
xx
xx
xx
x0
xx
xx
xx
xx
xx
xx
xx

01
1x
10
01
01
10
x1
00
1x
00
11
11
11
xx
10
10

11
1x
00
10
11
11
x1
00
0x
01
01
11
00
xx
00
11

00
xx
10
11
00
00
x1
x1
1x
10
11
00
10
xx
10
01

R
K

4
11
1x
11
10
00
00
x1
10
11
01
10
10
01
xx
10
11

10
0x
01
11
01
10
x0
10
0x
01
01
01
10
xx
00
01

01
1x
01
01
10
01
x1
10
0x
00
00
10
10
xx
00
10

01
11
11
10
10
01
00
01
11
10
11
10
00
10
10
11

R
K

5
01
1x
11
11
00
10
x1
10
00
10
10
11
10
xx
10
00

11
1x
10
00
01
00
x1
00
0x
11
11
10
00
xx
10
01

10
00
11
01
11
01
10
10
01
11
11
00
10
11
10
11

11
11
00
11
01
00
10
11
10
01
00
10
10
01
00
00

R
K

6
11
1x
11
00
01
10
x0
01
01
00
10
11
10
xx
01
01

00
01
01
00
00
10
01
01
01
11
01
01
10
00
11
00

10
01
10
01
11
11
11
11
00
00
10
01
00
11
01
11

01
10
10
10
10
11
01
00
10
01
10
11
10
10
01
11

R
K

7
00
10
00
01
01
11
01
01
00
01
01
11
10
00
01
11

00
11
01
01
01
01
00
00
01
10
00
10
00
00
10
11

10
10
11
00
10
10
11
11
01
10
10
11
00
11
11
00

11
00
01
10
00
01
10
11
11
11
00
00
10
01
10
11

R
K

8
00
00
11
10
11
11
10
01
00
00
00
11
00
11
00
11

00
11
10
11
10
10
10
01
01
10
00
01
00
11
10
00

10
01
01
11
00
00
01
10
00
00
10
10
00
00
01
00

01
01
00
01
00
01
11
01
11
11
10
10
10
01
11
11

R
K

9
10
11
00
01
11
01
01
00
11
01
10
00
11
10
00
10

10
00
10
10
01
11
11
01
10
11
10
01
11
01
10
10

00
01
11
01
01
11
10
11
10
11
00
11
11
01
11
10

01
00
11
00
01
10
01
10
01
00
10
01
01
00
00
01

R
K

10
10
1x
01
00
11
10
x1
11
01
01
10
11
11
xx
10
11

00
1x
11
10
10
01
x0
10
1x
10
00
10
00
xx
00
01

00
1x
00
11
11
10
x0
01
0x
01
00
01
11
xx
11
11

01
xx
11
11
10
00
x1
x1
0x
01
10
00
10
xx
11
10

(E
)
St
ep

4:
A
pp
ly

E
q.

1
to

pu
sh

ba
ck

to
ge
tR

K
0
(w

hi
ch

is
th
e
pr
im

ar
y
ke
y)

R
K

0
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

R
K

1
01
10
00
10
01
10
00
11
01
10
00
11
01
10
00
11

01
10
00
10
01
10
00
11
01
10
00
11
01
10
00
11

01
10
00
10
01
10
00
11
01
10
00
11
01
10
00
11

01
10
00
10
01
10
00
11
01
10
00
11
01
10
00
11

R
K

2
10
01
10
11
10
01
10
00
10
01
10
00
11
00
10
01

11
11
10
01
11
11
10
11
11
11
10
11
10
10
10
10

10
01
10
11
10
01
10
00
10
01
10
00
11
00
10
01

11
11
10
01
11
11
10
11
11
11
10
11
10
10
10
10

R
K

3
10
01
00
00
10
01
01
11
00
11
01
00
01
01
00
00

01
10
10
01
01
10
11
00
11
00
11
11
11
11
10
10

11
11
00
10
11
11
01
00
01
01
01
11
00
11
00
11

00
00
10
11
00
00
11
11
10
10
11
00
10
01
10
01

R
K

4
11
10
11
10
00
00
01
10
11
01
10
10
01
11
10
11

10
00
01
11
01
10
10
10
00
01
01
01
10
00
00
01

01
11
01
01
10
01
11
10
01
00
00
10
10
11
00
10

01
11
11
10
10
01
00
01
11
10
11
10
00
10
10
11

R
K

5
01
11
11
11
00
10
11
10
00
10
10
11
10
00
10
00

11
11
10
00
01
00
01
00
00
11
11
10
00
00
10
01

10
00
11
01
11
01
10
10
01
11
11
00
10
11
10
11

11
11
00
11
01
00
10
11
10
01
00
10
10
01
00
00

R
K

6
11
10
11
00
01
10
00
01
01
00
10
11
10
00
01
01

00
01
01
00
00
10
01
01
01
11
01
01
10
00
11
00

10
01
10
01
11
11
11
11
00
00
10
01
00
11
01
11

01
10
10
10
10
11
01
00
10
01
10
11
10
10
01
11



80 J Hardw Syst Secur (2017) 1:68–84

Table 3 Iterative AES-128: number of bits in the key recovered and
memory/time requirements for signal restoration

64 128 256 512

8 Leaked key (bits) 6 6 6 6

Memory (MB) 116.4 161.4 252.0 432.0

Time (mm:ss) 0:27.75 0:56.07 1:50.35 3:43.26

16 Leaked key (bits) 18 25 28 28

Memory (MB) 116.4 161.4 252.0 432.0

Time (mm:ss) 0:27.82 0:55.94 1:51.00 3:44.10

32 Leaked key (bits) 98 128 128 128

Memory (MB) 116.4 161.4 252.0 432.0

Time (mm:ss) 0:28.01 0:55.98 1:52.81 3:51.38

depth is big enough (256 cycles or more). The 8 × 512,
16× 512 and 32× 512 trace buffer can respectively restore
6, 28 and 128 bits of the primary key. The fact that the
32 × 512 trace buffer can restore all 128-bit primary key is
not surprising. The success of recovering the full primary
key is due to the observability provided by the trace buffer.
The iterative AES-128 design2 has relatively short pathways
with only 530 flip-flops in total. The 32 signals selected out
of the 530 flip-flops is the set of signals which could offer
best observability to the debugger.

The attack with RTL implementation is more powerful
than without RTL in two ways. First, the attack with RTL
can identify all signals traced in the buffer, which means the
attack with RTL has more information to start with. Second,
the restoration in Algorithm 2 (with RTL knowledge) can
deterministically propagate values forward and backward in
the AES circuit, while the restoration in Algorithm 4 (with-
out RTL) would need a lot more brute-force effort to test
and verify all possible mappings if the sbox lookup table
cannot find a unique mapping.

6.2 Case Study 2: Pipelined AES Ciphers

The main difference from the iterative version is that
the pipelined implementation unrolls all the encryption
rounds to be independent hardware units, which makes the
pipelined version about 10-15 times as large as the itera-
tive. For example, the pipelined AES-128 cipher has 6720
flip-flops and about 290,000 logic gates, which is roughly
10 times (10 encryption rounds) as large as the iterative
AES-128. This poses a greater challenge for the restoration
process, because many signal values are not inferable due to
the long pathways between the known signals. Only signals

2For iterative implementation, the restoration is clearly able to recover
the key and we expect the same trend to follow for AES-192 and AES-
256.

that are very close to the input can be propagated backward
and possibly restore the primary key bits.

We explore different trace buffer sizes with buffer widths
of 8, 16, 32 and 64, buffer depth of 512 in our experiments.
We set the buffer depth to be 512 cycles, which should
be suitable for the pipelined AES ciphers. Table 4 shows
the experimental results on the pipelined implementation
of AES-128, AES-192, and AES-256 ciphers by using the
attack method with RTL knowledge. For a buffer width of
64, we are able to respectively restore 20, 19 and 44 bits of
the primary key for AES-128, AES-192 and AES-256 in a
few hours.

Figure 8 shows our experimental results of pipelined
AES ciphers as we increase the trace buffer width. As
the trace buffer width increases, both observability and the
leaked number of key bits increase. The restoration algo-
rithm is not able to restore the full primary key for any
of the pipelined AES ciphers. Nevertheless, considerable
knowledge about the key is gained, which does not suf-
fice to recover the secret though, can aid other modes of
cryptanalysis.

7 Proposed Countermeasures

Trace buffer attack is possible because the attacker can
observe the internal values of the circuit by taking advantage
of the trace buffer used for DfT. One approach to obtain a
secure IC is to blow test circuitry [19] after production test.
This technique is broadly used in the smartcard community,
which guarantees that the chip secrecy will not be abused as
a test engineer could do. However, it is not acceptable from
the SoC point of view because this technique disables the
test mode activation after production test. This contradicts
the purpose of trace buffer for online monitoring and offline
debugging in post-silicon debug.

In scan chain based DfT, several solutions have been
proposed so that scan chains can provide visibility with-
out compromising security [26, 28, 33]. Most of these
approaches scrambles the structure of scan chain and make
the scanned outputs difficult or impossible for the attacker
to comprehend. Paul et al. [28] scramble the scan chain by
reordering the scan cells and only the authorized user can
get the correct order. Sengar et al. [33] insert inverters to
scan chains to make it difficult for attackers to understand
the internal scan structure. Another secure scan architecture
is proposed in [26], which reorganizes the scan chain in a
tree structure. However, these techniques cannot be directly
applied to trace buffer because we don’t have a chain-like
structure in the trace buffer. The ultimate goal of the coun-
termeasure is to protect the content of the trace buffer. In
fact, any approach that can encrypt a block of memory will
be applicable here. We explore a LFSR-based approach and
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Fig. 7 Iterative AES-128: security and observability trade-off using Buffer Widths (BW) of 8, 16 and 32, and Buffer Depths of 64, 128, 256 and
512. The 32×128, 32×256, and 32×512 trace buffers are able to recover the full primary key

a PUF-based approach and compare the pros and cons of
these two approaches.

The LFSR-based approach, as shown in Fig. 9, uses a
Left Feedback Shift Register (LFSR) to scramble the traced
signals before they are recorded in the trace buffer. LFSR
requires an initial value (i.e. the seed) to set the initial state
of the shift register, and a well-chosen feedback function
(XOR of some bits as in this example). LFSR can produce
a sequence of pseudo-random numbers based on the seed
and feedback function. The pseudo-random number will be
added to the traced signals at each clock cycle. The structure
of the LFSR is simple and the overhead for implement-
ing LFSR would be minimal. Considering a trace buffer of
32-bit width, we need a 32-bit LFSR. Suppose the feed-
back function is XOR of eight selected bits, we would need
32 flip-flops for the shift register, and 7 two-input XOR
gates for feedback function. We also need 32 XOR gates
for adding the pseudo-random number with the original
trace signals. Thus, the overhead is 32 flip-flops and 39

Table 4 Pipelined AES-128, AES-192, and AES-256: number of
bits in the key recovered and memory/time requirements for signal
restoration

AES-128 AES-192 AES-256

8 Leaked key (bits) 4 1 8

Memory (GB) 4.66 5.37 6.56

Time (h:mm:ss) 3:51:45 4:29:05 6:38:06

16 Leaked key (bits) 6 4 16

Memory (GB) 4.66 5.37 6.56

Time (h:mm:ss) 3:44:14 4:12:22 6:22:59

32 Leaked key (bits) 11 8 32

Memory (GB) 4.66 5.37 6.56

Time (h:mm:ss) 3:19:12 4:10:25 6:31:08

64 Leaked key (bits) 20 19 44

Memory (GB) 4.66 5.37 6.56

Time (h:mm:ss) 3:42:02 4:08:43 6:03:15

gates, which is minimal. The drawback with LFSR-based
approach is that the pseudo-random sequence depends on
the secrecy of the seed. The seed needs to be properly
maintained as a secret by key management.

The PUF-based approach, as shown in Fig. 10, uses a
Physical Unclonable Function (PUF) to introduce built-in
randomness into the traced signals. The idea of this counter-
measure closely follows a similar countermeasure proposed
for scan-chain attacks [7]. The signals from consecutive
clock cycles are XOR-ed according to a PUF response.
Since the PUF response is only known to the valid user,
he/she can recover the trace signal values easily. For a mali-
cious user, recovering the original trace signal values is
hard. PUF provides a challenge-response mechanism, where
the mapping from a challenge to a response is controlled
by the manufacturing process as well as the nature of the
Integrated Circuit (IC). This complex control makes PUF
structures hard to clone and at the same time a unique
device identification can be obtained. Compared to the look-
up table-based storage of key, PUF provides a large set
of challenge-response keys with a storage requirement that
increases linearly with the number of challenge bits. Only
a valid user is aware of the challenge-response sets. The
drawback with PUF-based approach is that a reliable PUF
(“strong” PUF) has very high overhead. An arbiter-based
strong PUF [14] has been implemented in 0.02mm2 chip
area in 180 nm fabrication technology. Another SRAM-
based strong PUF [10] is implemented with 0.08mm2 chip
area in 65 nm technology.

As shown in Table 5, PUF-based approach provides
stronger protection than LFSR-based method but incurs
higher area overhead. An LFSR is a linear system, which
leads to easy cryptanalysis [37]. A recent work on fault
countermeasures [6] has shown that a bad choice of inter-
nal randomness source can lead to the complete failure of
the countermeasure itself. For the PUF-based countermea-
sure, the randomness comes from the manufacturing process
as well as the nature of the Integrated Circuit (IC). Com-
pared with block-cipher or stream-cipher (including LFSR)
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Fig. 8 Pipelined AES-128, AES-192, and AES-256 ciphers: security and observability trade-off

Fig. 9 LFSR-based Countermeasure

Fig. 10 PUF-based Countermeasure

Table 5 Comparison of LFSR-based and PUF-based countermeasures

Countermeasures Protection level Area overhead

LFSR-based approach Low Low

PUF-based approach High High

based countermeasures, the PUF-based countermeasure will
be the most robust. To protect from trace buffer attack,
the designer needs to trade-off between protection level
and area overhead of different countermeasures. PUF-based
countermeasure should always be chosen if area overhead is
acceptable.

8 Conclusion

In this paper, we introduce a novel attack, Trace Buffer
Attack, on the AES cipher. The attack is mounted with the
help of trace buffers, which provides observability for post-
silicon debug. We identify this as a source of information
leakage and experimentally demonstrate that AES, the cur-
rently dominant block cipher, is vulnerable. We show that
we can mount a strong attack with the knowledge of the RTL
implementation. We are also able to take advantage of the
patterns in Rijndael’s key expansion, and restore the primary
key even when RTL implementation is not available. With
a trace buffer size of 32 × 128, the full key of the iterative
AES-128 can be restored in a few minutes. For pipelined
AES, partial key can be restored in a few hours. This work
illustrates the need for security-aware trace signal selection,
and highlights the need for further research in understanding
the trade-off between security and debug observability.
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