
Synergistic Integration of Code Encryption and
Compression in Embedded Systems

Kamran Rahmani, Hadi Hajimiri, Kartik Shrivastava, Prabhat Mishra
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida, US
{kamran, hadi, kshrivas, prabhat}@cise.ufl.com

ABSTRACT
Code encryption is a promising approach that encrypts the
application binary to protect it from reverse engineering and
tampering, and decrypts the instructions during runtime. A
major challenge is to trade-off between the security level
and runtime decryption overhead. In this paper, we ex-
plore a synergistic combination of various code compression
algorithms with code encryption techniques to reduce this
overhead. Since decryption overhead (time) is linearly de-
pendent on code size, it is promising to employ compres-
sion to reduce code size, and thereby achieve the advantages
of both compression and encryption. Experimental results
demonstrate that our proposed scheme can employ efficient
encryption techniques while significantly improve the per-
formance up to 2.3X (1.5X on average) and reduce energy
consumption up to 57% (26% on average), compared to us-
ing encryption alone.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-
BASED SYSTEMS]: Real-time and embedded systems

General Terms
Design, Performance, Security

Keywords
Embedded systems, code compression, code encryption, en-
ergy optimization, performance optimization

1. INTRODUCTION
Embedded systems are used everywhere - starting from

everyday appliances to complex safety-critical systems. In
many scenarios, it is becoming exceedingly essential to keep
these devices authentic and confidential. Encryption is wide-
ly used as a reliable way of protecting critical data for stor-
age and transmission. For example, it is useful to encrypt

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’12, May 3–4, 2012, Salt Lake City, Utah, USA.
Copyright 2012 ACM 978-1-4503-1244-8/12/05 ...$10.00.

network messages while sending them out through commu-
nication media and to decrypt them at the receiving end.
Likewise, ciphering files while storing them on the hard disk
protects them from being read in case the hardware itself is
compromised. The process of encrypting binary code is dif-
ferent from that of other static data. Encrypting static data
is mainly concerned with the complexity of the ciphering
algorithm and the mode of operation. Binaries themselves
can be encrypted as static data in the secondary storage and
then decrypted while loading them in the main memory. For
security reasons, it may be required to keep encrypted bi-
nary code in the main memory. This is required specially
when the bus between main memory and secondary storage
is not secure. In this situation, repeated fetching and de-
cryption of blocks of code is going to produce an immense
overhead which would render the execution extremely slow
and infeasible in many scenarios.

Processor

Channel (insecure)

Memory Decryption

Encryption

Embedded System

Sender

Program
Application

Figure 1: An Overview of Encryption Framework

Figure 1 shows the framework in which encryption and
decryption are performed on application binaries in an em-
bedded system. There are two stages of processing. During
the offline stage, the binary code of the embedded system
is first encrypted. Next, when the program is loaded, the
code passes through the insecure channel between sender
and memory and it is decrypted inside the embedded sys-
tem. The encrypted code is stored in the primary memory
and accessed by the processor. The decryption is done online
(for each fetch). The time it takes to decrypt the code af-
fects the performance of the system. Reducing the code size
with code compression can reduce this decryption overhead
significantly.

Figure 2 shows how code compression and associated de-
compression are performed in embedded systems. There are
two stages similar to Figure 1. The first stage is offline, in
which the code is compressed. The code is decompressed
between the main memory and the processor to increase the
effective memory size as well as to improve the performance.

MemoryProcessor

Compression

Offline
Stage

Embedded System

Application
Program

Decompression

Figure 2: An Overview of Compression Framework

The decompression is done online (during runtime). Hence,
it is critical to have a fast decompression hardware. Our
scheme integrates code encryption with code compression,
attempting to make code execution secure and efficient at
the same time.

The rest of the paper is organized as follows. Section 2
provides an overview of existing compression and encryp-
tion techniques. Section 3 presents our approach of com-
bining encryption and compression. Section 4 presents our
experimental results. Finally Section 5 concludes the paper.

2. RELATED WORK
Code compression techniques were first developed for em-

bedded systems by Wolfe and Channin [1]. Nam et al. [17]
used dictionary based compression to compress VLIW in-
structions. Larin and Conte used Huffman based compres-
sion on embedded systems [16]. Tunstall coding was used
by Xie et al. [19] to perform variable to fixed length com-
pression. Usage of variable sized block was further exploited
by Lin et al. [4], when they proposed LZW-based code com-
pression of embedded processors. Seong et al. [18] proposed
a bitmask-based compression (BMC) that remembers mis-
matches using bitmasks. Hajimiri et al. [6, 7] used code
compression with cache reconfiguration. In this paper, we
explore Huffman coding, dictionary-based compression and
BMC with various encryption techniques.

Private key cryptography has been in use since the early
20th century in which both parties operating on the data
had the same key to encrypt and decrypt. This type of
shared key cryptography is of two types: block and stream.
A block cipher operates on a block of data while a stream
cipher works by combining the data with a stream of pseudo-
random bits. Example of block ciphers include AES and
DES. RC4 is an example of stream cipher. However, the
problem of sharing the private key forced people to change
to public key cryptography. RSA is an example of public
key cryptography. In this paper, we explore AES, DES and
RC4 with various compression techniques.

There are few efforts to combine both encryption and com-
pression together. Johnson et al. [10] proposed a method to
compress encrypted data using Low Density Parity Check
codes (LDPC) and they have shown their performance on
OTP encrypted data. However, their method is not suitable
in embedded systems, since LDPC compression is NP hard.
Also, they have used their algorithm only on OTP encrypted
data, which is not considered a good encryption scheme.
Ruan et al. [15] improved the Shannon-Fano-Elias tech-
nique of encrypting compressed data by improving the code
length. However, the intensive decryption/decompression of
these codes are not applicable in embedded systems.

Shaw et al. [5], developed a method to combine com-
pression and encryption. The compression schemes used by
them, which comprises of codebooks is lossy in nature. This
may be suitable for data, but certainly not applicable for
code, since it will lead to incorrect functionality. Cypress,
developed by Lekatsas et al. [11] has integrated compres-
sion and encryption. They deal with both code and data
sequences for multimedia embedded systems.

3. CODE ENCRYPTION & COMPRESSION
Runtime decryption of encrypted code significantly in-

creases instruction fetch delay. The main challenge is how to
combine encryption with compression to keep performance
as high as possible while maintaining the security of the
system. As the decryption time is proportional to the size
of code, combining encryption with compression is promis-
ing to improve the overall performance. However, combin-
ing both encryption and compression may lead to a number
of problems. The main problem is that both decryption
and decompression are slow and hence may prevent the full
utilization of the processor performance. In order to get
the best possible processor utilization, the decompression
unit should be such that the rate at which instructions are
fetched is equal to the rate at which the instructions are
decompressed. This section describes the challenges asso-
ciated with integration of encryption and compression and
presents mechanisms to address these challenges.

3.1 Encryption followed by Compression
There are two ways of combining encryption with com-

pression. The first scenario is shown in Figure 3. In this
combination, the code encryption is followed by compres-
sion. The problem is that most compression algorithms take
advantage of the repeating patterns in the uncompressed
data set. Encrypted data generally has high entropy and
therefore, has less similarity in patterns. As a result, as our
experimental results show, it is difficult to compress those
data.

the code length. However, the intensive decryption/decompression

Application
Program

Processor Memory

CompressionEncryption

DecompressionDecryption

Channel (insecure)

Figure 3: Encryption followed by Compression

3.2 Compression followed by Encryption
This is the most useful way of combining encryption and

compression. In this combination the code compression is
followed by encryption. It is beneficial to compress the un-
encrypted code by exploiting the regular pattern. Moreover,
this compressed data can be easily encrypted and sent across
the insecure channel to the receiving end. The decryption
and the decompression units can do the rest of the work.
This scenario is shown in Figure 4.

3.3 Placement of Cache
This section describes the challenges and opportunities

associated with cache placement.

Application
Program

Processor Memory

Channel (insecure)

EncryptionCompression

DecryptionDecompression

Figure 4: Compression followed by Encryption

3.3.1 PCDD Architecture

Figure 5 shows a configuration where both the decryp-
tor and decompressor are put together between the cache
and the main memory. Here the job of the decryptor and
decompressor is to both decrypt and decompress a block of
code from the memory and provide the cache with a block of
regular code. We refer this architecture as Processor-Cache-
Decompressor-Decryptor (PCDD) architecture.

Processor MemoryDecryptionCache Decompression

Figure 5: Processor-Cache-Decompressor-
Decryptor (PCDD)

In this scheme the granularity of decompression is an in-
struction block of the cache. Larger block size would not
necessarily mean a reduction in the total number of fetches
from the cache. That would depend on the actual binary
and the size of the basic blocks in the code. Now we would
like to analyze the effect of encryption and compression on
the overall system performance. Assuming a uniform com-
pression ratio throughout the program code, the following
equations present a basic mathematical model for execution
of encrypted and compressed code. In PCDD architecture
let,

C=Compression ratio1 of the code
Mb=Cycles taken to fetch a cache block from memory
Eb=Cycles taken to decrypt an encrypted cache block
Rb=Cycles taken to decompress a compressed cache block
Nb=Number of blocks the cache fetches at runtime
Tn1= Total cycles to fetch blocks from memory
Te1= Total cycles to fetch and decrypt the code
Tec1= Total cycles to fetch, decrypt and decompress the

code
Then,

Tn1 = Nb.Mb (1)

Te1 = Nb.(Mb + Eb) (2)

Tec1 = C.Nb.(Mb + Eb + Rb) (3)

Note that Tn1 equals to the total number of cycles that it

will take to fetch instructions from the memory if the code is
neither compressed nor encrypted. Similarly, Te1 equals to
the total number of cycles that it will take if the code is only
encrypted. Likewise, Tec1 gives the total number of cycles it
will take if the code is both encrypted and compressed.

Now we would like to investigate how decompression and
decryption affect the performance of the system. Equation

1Compression Ratio = Compressed Code Size / Original
Code Size

4 gives the ratio of cycles of encrypted and compressed code
over regular code (SN1) and Equation 5 gives the ratio for
encrypted and compressed code over encrypted only code
(SE1).

SN1 =
Tec1

Tn1
= C

(
1 +

Eb + Rb

Mb

)
(4)

SE1 =
Tec1

Te1
= C

(
1 +

Rb

Mb + Eb

)
(5)

The goal is to make SN1 and SE1 as low as possible. The

obvious way to do so is to have a lower compression ratio
C and a low decompression latency Rb. We need to make a
trade-off between these two factors. For example, Huffman
coding gives a great compression but its decompression is
slow. On the other hand, simple dictionary based compres-
sion gives low/moderate compression with faster decompres-
sion. Bitmask-based compression [18] provides a trade-off
between these two aspects by providing good compression
ratio with fast decompression.

3.3.2 PDCD Architecture

We can gain more benefit of code compression by storing
compressed code in the cache. This can be done by putting
the decompression unit between processor and cache. Figure
6 shows this architecture. In this scheme the encrypted code
is fetched as blocks from the memory by the decryption unit,
which are then decrypted and sent back to the cache. We re-
fer this architecture as Processor-Decompressor-Cache-
Decryptor (PDCD) architecture.

yromeMehcaCrossecorP DecryptionDecompression

Figure 6: Processor-Decompressor-Cache-
Decryptor (PDCD)

The advantage of PDCD over PCDD is that the com-
pressed code is kept in the cache. Hence, the effective cache
size and cache hits increase. However as the processor fetches
instructions directly from the decompression unit, there is
decompression latency for each instruction fetch. This ap-
proach requires fast decompression hardware that can de-
compress one instruction per cycle. The overhead of such
fast decompression units can be minimized by pipelining the
decompression in the system. We model this architecture as
follows (remaining parameters are same as before).

R=Cycles taken to decompress a word of compressed text
N= Number of instruction word fetches from the proces-

sor at run time
Tn2= Total cycles to fetch a block from memory to the

cache when executing regular code
Te2= Total cycles to fetch and decrypt the code
Tec2= Total cycles to fetch, decrypt and decompress the

code

Tn2 = Nb.Mb (6)

Te2 = Nb.(Mb + Eb) (7)

Tec2 = C.(Nb.(Mb + Eb) + N.R) (8)

SN2 =
Tec2

Tn2
= C

(
1 +

Nb.Eb + N.R

Nb.Mb

)
(9)

SE2 =
Tec2

Te2
= C

(
1 +

N.R

Nb(Mb + Eb)

)
(10)

Like PCDD, the aim is to minimize SN2 and SE2. Choos-
ing compression algorithm should be a trade-off between
compression ratio and decompression unit speed. On the
other hand, encryption algorithm should be chosen such that
SN2 is least. More secure algorithms need more cycles to de-
crypt. Hence, choice of an encryption algorithm leads to a
trade-off between needed security and expected speed that
depends on embedded system requirements. For example,
AES will have larger decryption latency than DES. Hence
SE2 would be larger for DES and SN2 would be larger for
AES, i.e., execution of the encrypted and compressed code
will be slower for AES compared to DES. Interestingly, the
effect of compression would be more significant for AES as
compression will hide more latency.

4. EXPERIMENTS

4.1 Experimental Setup
In order to explore different combination of code encryp-

tion and compression tradeoffs, we examined cjpeg, djpeg,
epic, adpcm (rawcaudio and rawdaudio), g.721 (encode, de-
code) benchmarks from the Mediabench [3] and dijkstra, pa-
tricia, crc32 from Mibench [12] compiled for the Alpha tar-
get architecture. All applications were executed with the de-
fault input sets provided with the benchmarks suites. Since
the space is limited, we present the result for five of these
benchmarks. However, the result is consistent for the re-
maining benchmarks.

Code encryption and compression are performed offline.
In order to extract the code (instruction) part from exe-
cutable binaries we used ECOFF2 header files provided in
SimpleScalar toolset [9]. The text segment is extracted from
the binary and compression is performed on it, giving com-
pressed text segment as a result. Since the decompression
unit must be able to start execution from any of the jump
targets, branch targets should be aligned in the compressed
code. In addition, the mapping of old addresses (in the
original uncompressed code) to new addresses (in the com-
pressed code) is kept in a jump table. This compressed
text is then encrypted and a new binary file is created using
the compressed-encrypted text, the dictionary, the jump-
mapping table and the rest of the segments from the original
file.

Three different code compression techniques including
bitmask-based, dictionary-based and Huffman code com-
pression were used. To attain the best achievable compres-
sion ratios, in compression algorithms, for each application
we examined dictionaries of 1 KB, 2KB, 4KB, and 8 KB. In
addition, for bitmask-based compression similar to Seong et
al. [18] we tried three mask sets including one 2-bit sliding,
1-bit sliding and 2-bit fixed, and 1-bit sliding and 2-bit fixed
masks. We found that dictionary size of 2KB is the best
choice for this set of benchmarks. Also, we examined com-
pression word sizes of 8 bits, 16 bits, and 32 bits. We found

2Extended Common Object File Format

out that 16 bits word size is the best choice for dictionary-
based and Huffman compression algorithms. We used AES
(128 bits block), DES (64 bits block), and RC4 encryption
algorithms to examine the effect of compression on different
classes of encryption methods (from strong-slow algorithm
to weak-fast one).

To obtain cache hit and miss statistics, we modified the
SimpleScalar toolset to be able to decrypt, decompress, and
simulate encrypted-compressed applications based on PDCD
architecture. Decompression unit can decompress the next
instruction by one cycle (in pipelined mode) if it finds the
entire needed bits in its buffer. Otherwise, it takes one cycle
(or more cycles, if cache miss occurs) to fetch the needed
bits into its buffer and one more cycle to decompress the
next instruction. In decryptor, we used 18 [2], 11 [13], and
7 [14] cycles per byte latencies for AES, DES, and RC4 al-
gorithms, respectively. Correctness of the compression and
encryption algorithms was verified by comparing the outputs
of encrypted-compressed applications with regular versions.

We applied the same energy model used in [20], which cal-
culates both dynamic and static energy consumption, mem-
ory latency, CPU stall energy, and main memory fetch en-
ergy. The energy model includes decompression and decryp-
tion overhead energy. We used a single 1KB instruction di-
rect cache with a line size of 16 bytes for all simulations.
We refer it as base cache. We updated the dynamic energy
consumption for this cache configuration using CACTI 4.2
[8].

4.2 Performance Improvement
Figure 7 shows the performance of applications in differ-

ent combination of AES and compression algorithms nor-
malized to the AES encryption only method. It confirms
that code compression can improve performance in many
scenarios while used with AES encryption algorithm. As
we can see, performance improvement varies significantly
and depends on the application binary. For instance, in the
case of application g721 enc, applying compression would re-
sult in 1.1X, 1.2X, and 1.4X performance improvements for
dictionary-based, Huffman, and bitmask-based algorithms,
respectively. This improvement is up to 2.3X for bitmask-
based algorithm in cjpeg application. On the other hand, in
rawdaudio application we do not see any noticeable improve-
ment. The improvement is significant if application code size
and its behavior is such that it needs larger cache size than
base cache (like cjpeg), and is negligible if application fits
in the base cache effectively (like rawdaudio). The aver-
age performance improvements are 1.2X, 1.2X, and 1.5X for
dictionary-based, Huffman, and bitmask-based algorithms,
respectively. For ease of comparison, original numbers are
shown in Table 1.

Figure 7: Performance of different compression al-
gorithms with AES encryption (normalized to AES
without compression)

Table 1: Instruction Per Cycle (IPC) for combina-
tion of AES and different compression algortihms

Benchmark AES +Dic +Huffman +BMC
cjpeg 0.063 0.100 0.101 0.146

epic encode 0.262 0.268 0.304 0.346
g721 enc 0.029 0.033 0.034 0.040
patricia 0.015 0.018 0.019 0.020

rawdaudio 1.352 1.387 1.300 1.342

Figure 8 illustrates the performance of applications for
different combinations of DES and compression algorithms
normalized to the DES encryption only method. As behav-
ior of applications remains same for different encryptions, we
see improvement pattern similar to AES case. For instance
in the case of application g721 enc, similar to AES, apply-
ing compression would result in 1.1X, 1.2X, and 1.4X per-
formance improvements for dictionary-based, Huffman, and
bitmask-based algorithms, respectively. This improvement
is up to 2.2X in cjpeg application. The average performance
improvements are 1.2X, 1.2X, and 1.4X for dictionary-based,
Huffman, and bitmask-based algorithms, respectively.

Figure 8: Performance of different compression al-
gorithms with DES encryption (normalized to DES
without compression)

Performance improvements for different combinations of
RC4 and compression algorithms is shown in Figure 9. As
we discussed earlier, performance improvement is less in the
case of faster decryption unit. We see this happens in RC4
that is faster and less secure than AES. For instance, in cjpeg
we have 2.1X improvement in performance for RC4 with
bitmask-based compression that is 2.3X for corresponding
AES case. As cache misses are same in both cases, the im-
provement is larger for longer decryption latency. The aver-
age performance improvements are 1.2X, 1.2X, and 1.4X for
dictionary-based, Huffman, and bitmask-based algorithms,
respectively.

Figure 9: Performance of different compression al-
gorithms with RC4 encryption (normalized to RC4
without compression)

On average we get most improvement in performance when
we use bitmask-based compression with encryption algo-

Table 2: Energy consumption (nanojoule) for combi-
nation of AES and different compression algortihms

Benchmark AES +Dic +Huffman +BMC
cjpeg 51468 32350 31908 22005

epic encode 34443 33797 29793 25987
g721 enc 3710426 3327708 3142287 2756331
patricia 717480 625254 571496 542503

rawdaudio 796 779 824 800

rithms. For this set of benchmarks, application code size is
reduced by 15%-25%, 30%-35%, and 30%-45% for dictionary-
based, Huffman, and bitmask-based compression, respec-
tively. Bitmask-based compression is the best choice in
terms of compression for this set of applications. The rea-
son is that because of large similarity in instructions (that
lets us use masks) we can use large 32 bits words and re-
duce the code size even more than Huffman algorithm (with
restricted dictionary size).

The decompression hardware for dictionary-based com-
pression is simple but average improvement is small. Bitmask-
based compression is the best choice to be combined with all
the three encryption algorithms in terms of performance im-
provement. This can result in up to 2.3X (1.5X on average)
improvement in performance. This improvement can sat-
isfy real-time requirements in many embedded applications
while keeping them safe by using encryption methods.

4.3 Energy Savings
Energy consumption in instruction cache subsystem for

different combinations of AES and compression algorithms
is shown in Figure 10. As compression reduces the miss ratio
in cache, it reduces the power consumption of the system.
For instance in the case of patricia application, we have re-
duction of energy by 13%, 20%, and 24% for AES combined
with dictionary-based, Huffman and bit-mask based com-
pression, respectively. Energy saving can be even more sig-
nificant when cache size is a bottleneck in the application.
For example, we can save up to 57% of the total energy
in the cjpeg application by combining bitmask-based com-
pression with AES encryption. The average energy savings
are 13%, 17%, and 26% for dictionary-based, Huffman, and
bitmask-based algorithms, respectively. For ease of compar-
ison, original numbers are shown in Table 2.

Figure 10: Energy consumption of different com-
pression algorithms with AES encryption (normal-
ized to AES without compression)

We have similar savings in other algorithms. Figure 11
illustrates energy consumption for different combinations of
DES and compression algorithms. The average energy sav-
ings are 11%, 16%, and 26% for dictionary-based, Huffman,
and bitmask-based algorithms, respectively.

Figure 11: Energy consumption of different com-
pression algorithms with DES encryption (normal-
ized to DES without compression)

Energy consumption for different combinations of RC4
and compression algorithms is shown in Figure 12. Like per-
formance improvement, because of less latency in RC4 com-
pared to AES, we have less energy saving in RC4 compared
to AES. For instance in epic encode we have 20% energy
saving for RC4 with bitmask-based compression whereas, it
was 25% for corresponding AES case. On average, energy
savings are 12%, 16%, and 25% for dictionary-based, Huff-
man, and bitmask-based algorithms, respectively.

Figure 12: Energy consumption of different com-
pression algorithms with RC4 encryption (normal-
ized to RC4 without compression)

In summary, like performance improvement, integration
of compression with encryption would be useful in terms of
energy consumption when the application needs larger in-
struction cache. As simulation results show, bitmask-based
compression is the best choice in terms of both performance
improvement and energy saving. On average, by using this
algorithm with AES encryption we can save 26% of total
energy and improve the performance by 47%.

5. CONCLUSIONS
Encryption and compression are important for embedded

systems. While the former provides code security and pre-
vent tampering by third party, the latter is used to minimize
the code size and thus reduce power and memory require-
ments as well as improve the overall performance. In this
paper, we have demonstrated that it is useful to first com-
press the code and then encrypt it, employing a Processor-
Decompressor-Cache-Decryptor architecture. Since code size
is reduced due to compression, the decryptor has to oper-
ate on less amount of code, which makes it faster. Our
experimental results demonstrated up to 2.3X (1.5X on av-
erage) improvement in performance and up to 57% (26%
on average) energy saving by combining compression and
encryption compared to employing encryption alone. This
improvement can enable use of encryption in embedded sys-
tems.

6. ACKNOWLEDGMENTS
This work was partially supported by NSF grant CNS-

0915376. We would like to thank Kanad Basu and Yogesh
Sharma for their comments and suggestions.

7. REFERENCES
[1] A. Wolfe et al. Executing compressed programs on an

embedded RISC architecture. In Proc. of MICRO,
1992.

[2] B. Schneier et al. Performance comparison of the aes
submissions. In Proc. of AES Candidate Conference,
1999.

[3] C. Lee et al. Mediabench: A tool for evaluating and
synthesizing multimedia and communication systems.
In Proc. of MICRO, 1997.

[4] C. Lin et al. LZW-based code compression for VLIW
embedded systems. In Proc. of DATE, 2004.

[5] C. Shaw et al. A pipeline architecture for
encompression (encryption + compression) technology.
In Proc. of VLSI Design, 2003.

[6] H. Hajimiri et al. Synergistic integration of dynamic
cache reconfiguration and code compression in
embedded systems. In Proc. of IGCC, 2011.

[7] H. Hajimiri et al. Compression-aware dynamic cache
reconfiguration for embedded systems. SUSCOM,
2012.

[8] http://www.hpl.hp.com. CACTI. HP Labs, CACTI
4.2.

[9] http://www.simplescalar.com. Simplescalar.

[10] M. Johnson. On compressing encrypted data. IEEE
Transactions on Signal Processing, 2004.

[11] H. Lekatsas et al. Cypress: compression and
encryption of data and code for embedded multimedia
systems. IEEE Design & Test of Computers, 2004.

[12] M.R. Guthaus et al. Brown. Mibench: A free,
commercially representative embedded benchmark
suite. In Proc. of WWC, 2001.

[13] A. Nadeem and M. Javed. A performance comparison
of data encryption algorithms. In Proc. of ICICT,
2005.

[14] P. Prasithsangaree and P. Krishnamurthy. Analysis of
energy consumption of rc4 and aes algorithms in
wireless lans. In IEEE GLOBECOM , 2003.

[15] X. Ruan. Using improved shannon-fano-elias codes for
data encryption. IEEE International Symposium on
Information Theory, 2006.

[16] S. Larin and T. Conte. Compiler-driven cached code
compression schemes for embedded ilp processors. In
Proc. of MICRO, 1999.

[17] S. Nam et al. Improving dictionary-based code
compression in VLIW architectures. IEICE Trans. on
Fundamentals, 1999.

[18] S. Seong and P. Mishra. Bitmask-based code
compression for embedded systems. IEEE TCAD,
2008.

[19] Y. Xie et al. Code compression for VLIW processors
using variable-to-fixed coding. In Proc. of ISSS, 2002.

[20] C. Zhang et al. A highly configurable cache
architecture for embedded systems. In Proc. of
Computer Architecture, 2003.

