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Trust establishment in semiconductor designs has become a major challenge for design

houses and government since several countries and companies are involved during different

stages of a design life cycle. Hardware Trojans are malfunctions which can be inserted

during any design stage such as defining specification, implementing designs at different

abstraction levels, layout extraction and manufacturing. A triggered hardware Trojan can

severely affect the integrity and security of the circuit by causing system failures such as

granting an unauthorized access to secret information. Hardware Trojans are designed

in a way that they are inactive most of the time and can be triggered with a very rare

input sequence. Therefore, conventional validation techniques are not effective to detect

them because of the Trojan’s stealthy nature. Formal methods are promising to prove

the security properties; however, the conventional formal methods suffer from scalability

concerns. In this dissertation, I propose scalable hardware trust validation techniques

using formal methods. I have developed an automated test generation and debugging

framework using Gröbner basis reduction for arithmetic circuits. For pre-silicon designs, I

have shown that symbolic algebra can be effectively used for localizing hardware Trojans.

I have also developed efficient post-silicon trust validation techniques by leveraging

pre-silicon verification effort. The experimental results demonstrate that the proposed

approaches are scalable in establishing that the implementation has “nothing more,

nothing less” compared to the golden specification.
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CHAPTER 1
INTRODUCTION

People have embraced a wide variety of mobile devices in their daily lives in addition

to their traditional desktop computers and laptops. Considering the fabric of Internet of

Things (IoT) [115], where the number of connected devices exceeds the human population,

we should all agree to the fact that computing devices pervade every aspect of our lives.

In IoT devices, integrated electronics, sensors, sophisticated software and firmware, and

learning algorithms are employed to make physical objects smart and adjustable to their

environment. These highly complex and smart IoT devices are embedded everywhere -

starting from household items (e.g., refrigerators, slow cookers, ceiling fans), wearable

devices (e.g., fitness trackers, smart glasses, air bugs), medical devices (e.g., insulin pump,

asthma monitoring, ventilator) to cars. These IoT devices are connected to each other

as well as cloud in order to provide a real-time aid on a daily basis. Given the diverse

and critical applications of these computing devices, it is crucial to verify the correctness,

security and reliability of these devices.

Modern computing devices are designed using System-on-Chip (SoC) technology. In

other words, SoC is the backbone for most of the IoT devices. Sheer complexity of the

System-on-Chip (SoC) designs used in these systems combined with diverse and evolving

use cases make product security assurance a major challenge. Effective and well-developed

security validation is an important and integral part of the security assurance process

today. However, existing security verification approaches both pre- and post-silicon are

often ad-hoc and manual (i.e. rely on human ingenuity and experience). There is a critical

need to identify all possible security vulnerabilities and fix them using an automatic

and reliable mechanism during security validation. Attacks on hardware can be more

effective and efficient than traditional software attacks since patching is extremely difficult

(almost impossible) on hardware designs. Therefore, a security attack can be successfully

repeated on every instance of a vulnerable IoT device. In other words, hardware level

12



vulnerabilities are extremely important to be fixed before deployment since it affects

the overall system security. Based on Common Vulnerability Exposure (CVE-MITRE)

estimates, if hardware-level vulnerabilities are removed, the overall system vulnerability

will reduce by 43% [67, 68].

Figure 1-1. An SoC design integrates a wide variety of IPs in a chip. It can include one or
more processor cores, on-chip memory, digital signal processor (DSP),
analog-to-digital (ADC), and digital-to-analog converters (DAC), controllers,
input/output peripherals, and communication fabric. Huge complexity, many
custom designs, distributed supply chain and integration of untrusted
third-party IPs make post-silicon validation challenging.

An SoC architecture typically consists of several pre-designed Intellectual Property

(IP) blocks, where each IP implements a specific functionality of the overall design.

Figure 1-1 shows a typical SoC with its associated IPs. These IPs communicate with each

other through Network-on-Chip (NoC) or standard communication fabrics. The IP-based

design approach is popular today since it enable a low-cost design while meeting stringent

time-to-market requirements. With the globalization of the IC industry, the outsourcing

and integration of third-party hardware IPs (Intellectual Property) has become a common

practice for System-on-Chip (SoC) design [17, 51]. However, it raises major security

concerns as the attacker can insert malicious modifications in third-party IPs and tamper

the system. Security vulnerabilities can be inserted in high-level specification (e.g., TLM

and RTL models) in synthesized gate-level netlist, layouts as well as in the fabricated
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chip by an attacker. It is extremely important to differentiate trustworthy designs from

untrustworthy ones by detecting any potential malicious functionality (widely known as

hardware Trojans), which is not in the design specification. Hardware Trojans consist of

two main parts: trigger and payload. The trigger is a condition which activates the Trojan

circuit and the payload is the part of the circuit (functionality) which can be affected

by an activated Trojan. A triggered Trojan may endanger the integrity of the design by

leaking critical information such as secret keys or causing denial of service.

A major challenge for Trojan identification is that Trojans are usually stealthy [17]. It

is difficult to construct a fault model to characterize Trojan’s behavior. Moreover, Trojans

are designed in a way that they can be activated under very rare conditions and they

are hard-to-detect. Therefore, it is difficult to activate a Trojan and even more difficult

to detect or locate it. As a result, conventional validation methods are impractical to

detect hardware Trojans. Conventional structural and functional testing methods are not

effective to activate trigger conditions since there are many possible Trojans and it is not

feasible to construct a fault model for each of them. As a result, existing EDA tools are

incapable of detecting hardware Trojans to differentiate between trustworthy third-party

IPs and untrusted ones.

There has been a lot of research on hardware Trojan detection using logic testing

and side channel analysis [2, 30, 76]. Logic testing focuses on generating efficient

tests to activate a Trojan and check the primary output values of specification and

circuit-under-test to detect Trojan. On the other hand, side channel analysis compares

signatures of specific physical characteristics (e.g., dynamic current) between the design

and the golden specification. However, none of these methods can effectively establish the

trust for a given design. Therefore, it is crucial to have methods that can detect, localize

and eliminate the Trojan, and produce Trojan-free circuits. Formal methods are suitable

for detecting and localizing Trojans during the design phase. In this dissertation, I focus

on different formal methods to verify the design and detect undesired functions (possibly
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Trojans). As shown in Figure 2-1, I proposed trust validation based on Formal methods

that includes efficient test generation using property (model) checking, satisfiability

problem, equivalence checking and reaching effective coverage closures in post-silicon.

Figure 1-2. Hardware trust verification can be categorized in three major directions: i)
high-level modeling using polynomials, ii) generation of tests, assertions and
properties for post-silicon security validation, and iii) effective utilization of
pre-silicon efforts for post-silicon debug.

The rest of this chapter is organized as follows. Section 1.1 describes the security

vulnerabilities in current hardware design flow as well as associated challenges to validate

them. Section 1.2 summarizes the contributions of this dissertation. Finally, Section 1.3

describes the organization of this dissertation.

1.1 Security Validation: Opportunities and Challenges

From specification to silicon, the design will go through different transformations.

System on chip design procedure starts with defining the specification. The specification

contains all information about the expected behavior of the chip. In the second step, the

specification is implemented using programming languages such as Verilog and VHDL.

Then, the modules should be synthesized to a gate-level netlist. The gate-level netlist

will go through several non-functional changes for different purposes such as clock-tree

insertion, power optimization. The layout of the gate-level netlist is extracted, and the

15



chip will be fabricated in the final design step. During each of these steps, there may be

several security concerns that threaten the integrity of the whole chip. In other words,

it is extremely important to make sure that the design is behaving like the specification

in each of the steps and each intermediate design forms should be exactly equal to the

specification, nothing more, nothing less.

A design can encounter security threats during different stages of its life cycle as

shown in Figure 1-3. Security threats can be inserted throughout the IC design as well

as manufacturing process. In the pre-silicon stage, vulnerability can be introduced due

to (1) designer mistakes, rogue employees, and untrusted third-party IPs during the

design integration phase; (2) untrusted EDA tools in the synthesize phase; (3) untrusted

EDA tools and untrusted vendors when design for test (DFT), design for debug (DFD),

and dynamic power management (DPM) functions are added. In the post-silicon stage,

vulnerabilities can come from (1) untrusted foundry during manufacturing and (2)

physical attacks or side channel attacks after the chip is shipped. It is of paramount

importance to verify the trustworthiness of hardware IPs. Therefore, security validation

is the critical part of the design process of digital circuits. In order to trust a design,

verification and debugging should be done at each of the stages. In this section, we

introduce some of the security validation challenges in both pre- and post-silicon phases.

1.1.1 Pre-Silicon Trust Validation

Any intentional or unintentional design mistakes (bugs or hardware Trojans) may

cause security vulnerability in the design. Therefore, a design should be validated

thoroughly. However, increasing complexity of integrated circuits increases the probability

of Trojans in designs. To make it worse, the reduction in time-to-market puts a lot of

pressure on verification and debug engineers to potentially faulty sign-off. The situation

gets further exacerbated for arithmetic circuits as the bit blasting is a serious limitation

for most of the existing validation approaches. Faster bug localization is one of the most

important steps in design validation.
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Figure 1-3. Potential threats during SoC design flow.

The urge of high speed and high precision computations increases use of arithmetic

circuits in real-time applications such as cryptography operations (to ensure secure

computation). Optimized and custom arithmetic architectures are required to meet the

high speed and precision constraints. There is a critical need for efficient arithmetic

circuit verification and debugging techniques due to error proneness of non-standard

arithmetic circuit implementations. Hence, the automated debugging of arithmetic circuits

is absolutely necessary for efficient security validation.

A major problem with design validation is that we do not know whether a Trojan

exists, and how to quickly detect and fix it. We can always keep on generating random

tests, in the hope of activating the bug; however, random test generation is neither

scalable nor efficient when designs are large and complex. Existing directed test generation

techniques [32, 33] are promising only when the list of faults (bugs) is available. However,

they are not applicable when bugs are not known a prior.
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Test generation is extremely important for functional validation of integrated circuits.

A good set of tests can facilitate the debugging and help the verification engineer to find

the source of problems. Test generation techniques can be classified into three different

categories: random, constrained-random [3] and directed [32]. Random test generators

are used to activate unknown errors; however, random test generation is inefficient when

designs are large and complex. Constrained-random test generation tries to guide random

test generator towards finding test vectors that may activate a set of important functional

scenarios. The probabilistic nature of these constraints may lead to situations which can

result in generating inefficient tests. Moreover, constraint generation is not possible when

we do not have knowledge about the potential bug. A directed test generator, on the other

hand, generates one test to target a specific functional scenario [32, 89]. Clearly, less effort

is needed to reach the same coverage goal using directed tests compared to random or

constrained-random tests. However, existing directed test generation methods require a

fault list or desired functional behaviors that need to be activated [89]. These approaches

cannot generate directed tests when the Trojan (faulty scenario) is unknown.

When effective tests are available, the source of Trojan has to be localized. Most

of the traditional debugging tools are based on techniques such as simulation, binary

decision diagrams (like BDDs,*BMD [25]) and SAT solvers [7, 97]. However, all of these

approaches suffer from state space explosion while dealing with large and complex circuits

especially arithmetic circuits. Furthermore, most of these approaches cannot provide

concrete suggestions to remove Trojans. It is important to introduce efficient, scalable and

fully automated test generation, Trojan localization and debugging framework.

1.1.2 Post-synthesized Non-functional Changes versus Security

After a design is implemented and validated in pre-silicon, the synthesized gate-level

netlist will go through several non-functional changes for different purposes such as

insertion of post-silicon design-for-test (DFT) and design-for-debug (DFD) facilities,

clock tree insertion as well as dynamic power management [16] to ensure the performance
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and physical characteristics of the final fabricated chip. Most of these changes are done

outside of the design house using untrusted vendors due to time-to-market as well as

cost considerations. However, using untrustworthy vendors raise security concerns about

the integrity of the design since hardware Trojans can be inserted during changes of the

design. In order to trust an IP block, we have to make sure that the IP is performing

exactly the expected functionality. Suppose that we have two versions of a design, one

is a verified IP (specification) that is designed in-house and the other is an untrusted

third-party IP (implementation) after performing non-functional transformations. Our

goal is to detect whether an adversary has inserted hard-to-detect hardware Trojan

during non-functional changes and has made undesired functional changes. For example,

a design house may send their RTL design for synthesis or adding low-power features

to a third-party vendor. Once the third-party IP comes back (after synthesis or other

functionality-preserving transformations), it is crucial to ensure the trustworthiness of

these IPs.

1.1.3 Control Flow Integrity Measurement

The security of an SoC can be compromised by exploiting the vulnerabilities of the

nite state machines (FSMs) in the SoC controller modules through fault injection

attacks. Fault injection poses a particularly serious threat. During fault attacks, an

attacker injects faults to produce erroneous results and then analyzes these results to

extract secret information from an SoC [10]. Over the past decade, fault injection attacks

have grown from a crypto-engineering curiosity to a systemic adversarial technique

[141]. However, most of the research on fault attacks are concentrated on analyzing the

fault effects and developing countermeasures for fault injection on datapaths. Finite

state machines in the control path are also susceptible to fault injection attacks, and

the security of the overall SoC can be compromised if the FSMs controlling the SoC

are successfully attacked. For example, it has been shown that the secret key of RSA

encryption algorithm can be detected when FSM implementation of the Montgomery
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ladder algorithm is attacked using fault injection [129]. Therefore, it is also extremely

important to identify and remove FSM vulnerabilities that facilitate fault attacks. These

vulnerabilities may be introduced intentionally or unintentionally by designer mistakes,

Trojan insertion, and traditional FSM design practices or by CAD tools during synthesis.

It has been shown that synthesis tools can introduce security risks in the implemented

FSM by inserting additional don’t-care states and transitions [44, 102]. Authors in [44]

proposed architectural changes in the FSM to address the vulnerabilities introduced by

don’t-care states and transitions.

1.1.4 Test Generation to Activate Trojans

Untrusted-third party IPs can come with malicious implants. Untrusted EDA tools,

in-house rogue employees or the SoC integrator can also insert hard-to-detect Trojans

in the original RTL design. We assume that to escape detection during different steps

of verification/validation procedure, Trojans are designed in such a way that only a very

rare set of input sequences can trigger them. In other words, Trojans are dormant during

the normal execution, and activated under unusual (rare) conditions. Therefore, a smart

adversary is likely to insert Trojans in RTL designs under rare branches which may reside

in the unspecified functionality of the design. Otherwise, traditional simulation techniques

using random or constrained-random tests can detect them, and the attacker’s attempt

would fail. Therefore, we need to have efficient test generation approaches to cover rare

branches/assignments in pre-silicon designs in order to activate hidden hardware Trojans.

Post-silicon validation of an integrated circuit (IC) entails running tests on a

fabricated, pre-production silicon to ensure that the design functions as expected under

actual operating conditions and identify Trojans that have been missed during pre-silicon

validation (e.g., RTL or software validation). Post-silicon validation is a highly complex

activity, requiring elaborate planning, architectural support, and test development [106].

It is also an expensive activity accounting for more than 50% of the validation cost.

Furthermore, post-silicon validation must succeed before mass production can begin.
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Thus, effectiveness of post-silicon validation affects product launch, company revenues,

profitability, and market positioning [140].

A fundamental problem in post-silicon validation is limited observability and

controllability — only a few hundred among the millions of internal signals of an IC

can be directly observed or controlled during silicon execution. This makes it difficult to

diagnose bugs from observed failures of post-silicon tests, or even identify whether a test

has passed, e.g., if the result of a test affects a signal which is not observable. In other

words, it is difficult to determine whether the test has executed as expected.

To address this problem, it is critical that post-silicon tests be observability-aware,

i.e., produce results whose values can be reconstructed from the available observability.

Unfortunately, this is difficult to achieve for several reasons. First, in an industrial IC

development environment, observability architecture and (post-silicon) directed tests are

developed independently and concurrently by different teams at different points of the

design life-cycle. It is often impossible for test generation teams to account for silicon

observability since the observability architecture may not have been fully developed at the

time of test generation. Furthermore, it is difficult to employ automated tools for creating

(additional) observability-friendly directed tests after the observability architecture has

been defined. Creating the observability architecture entails analysis of the RTL models

to identify traceable signals; these signals are then routed through appropriate hardware

instrumentation to an observation point such as an output pin or memory [11, 83, 111].

On the other hand, analysis of RTL models directly to identify test generation is typically

infeasible. RTL models tend to be large and complicated (typically millions of lines of

code) making such analysis beyond the capacity of test analysis tools. RTL models may

also contain functional errors or hardware Trojans. Moreover, there may be Trojans

inserted during fabrication via an untrusted manufacturer. Indeed, a key reason for

post-silicon directed testing is to identify such Trojans. Consequently, if one develops the

directed tests through analysis of the RTL, then the fidelity of the tests as well as any
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inference made on their effects on observability, may become questionable. Therefore, it

is essential to introduce efficient techniques for observability-aware post-silicon directed

generation without utilizing RTL models.

1.1.5 Functional Coverage Analysis of Security Properties

Due to exponential growth of System-on-Chip (SoC) complexity, time-to-market

reduction and huge gap between simulation speed and hardware emulation, there is a high

chance that many Trojans escape from pre-silicon analysis and it affects the functionality

of the manufactured circuit. To ensure the correct operation of the design, post-silicon

validation is necessary. However, post-silicon validation is a bottleneck due to limited

observability, controllability and technologies to cope with future systems [53, 101]. There

is a critical need to develop efficient post-silicon validation techniques.

Currently there is no effective way to collect coverage of certain properties and events

such as security properties directly and independently on silicon. Engineers need to

assume that they will cover at least the same set of post-silicon coverage events as they

cover with pre-silicon exercisers using accelerators/emulators [5]. However, we cannot be

sure about the accuracy of these coverage metrics since silicon behaves differently than the

simulated/emulated design mainly because of asynchronous interfaces. Moreover, because

of time constraints, validation engineers are not able to hit all of the desired coverage

events during pre-silicon validation or some coverage events are not activated enough.

Therefore, they are seeking for an accurate and efficient way to know the coverage of

desired events on silicon.

Assertions and associated checkers are widely used for design coverage analysis in

pre-silicon validation to reduce debugging time. They can also be used in the form of

coverage monitors to address controllability and observability issues as well as monitoring

security events in post-silicon. However, every coverage monitor introduces additional

area, power and energy overhead that may violate the design constraints. To address these

limitations, there is a need for a framework to reduce the number of coverage monitors in
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post-silicon while utilize the existing post-silicon infrastructure such as debug facilities to

enable functional coverage analysis. In the following section, we describe how these formal

methods can be utilized to address the challenges introduced in this section.

1.2 Research Contributions

My research proposes novel techniques to address security validation challenges

mentioned in Section 1.1. The goal of my research is to introduce efficient algorithms

and tools based on formal methods to improve validation efforts at different stages of the

design life cycle. Figure 1-4 also illustrates the comprehensive nature of my research that

made the following fundamental contributions.

Figure 1-4. Comprehensive nature of my research.

Anomaly Detection and Correction in Arithmetic Circuits:

Existing arithmetic circuits verification approaches have focused on checking the

equivalence between the specification of a circuit and its implementation. They use an

algebraic model of the implementation using a set of polynomials F . The specification of
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an arithmetic circuit can be modeled as a polynomial fspec using a decimal representation

of primary inputs and primary outputs. The verification problem is formulated as

mathematical manipulation of fspec over polynomials in F . If the gate-level netlist has

correctly implemented the specification, the result of equivalence checking is a zero

polynomial; otherwise, it produces a non-zero polynomial containing primary inputs

as variables (remainder). In this dissertation, I present a framework for directed test

generation and automated debugging of datapath intensive applications using the

remainder to detect and correct anomalies in the implementation.

Our method generates directed test vectors that are guaranteed to activate the

malfunction. I consider gate misplacement or signal inversion that change the functionality

of the design as our threat model. Next, I apply the generated tests, one by one, to find

the faulty outputs that are affected by the existing anomaly. Regions that contribute

in producing faulty outputs as well as their intersections are utilized for faster error

localization. I show that certain errors manifest specific patterns in the remainder.

This observation enables an automated debugging to detect and correct the source of

error. Existence of a non-zero remainder as a result of applying equivalence checking

between specification and implementation of an arithmetic circuit is a sign of a faulty

implementation. However, there is no information about the number of existing errors in

the implementation. There can be a single bug or multiple independent/dependent bugs

in the design. The main question is that how to know the number of remaining bugs in

the design and which algorithm should be used to fix them. In order to determine whether

there is more than one bug in the implementation, I try to partition the remainder R

into sub-remainders Ri first. I detect multiple dependent and independent bugs based on

sub-remainders Ri.

Incremental Anomaly detection Depending on the location of the bug, the

remainder generation can be challenging. The existence of a bug in the deeper stages

of the design may make it extremely difficult to generate the remainder due to an
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explosion in the number of remainder terms (term explosion effect). The reason is that

the faulty gate may introduce new terms during the intermediate steps of the specification

polynomial’s reduction. These extra terms are multiplied to polynomials of other gates

and grow continuously until the remainder contains only primary inputs, leading to an

explosion in the number of remainder terms.

I also present an incremental equivalence checking approach based on symbolic

algebra that is done during several iterations. In each iteration, specification and

implementation polynomials are updated based on the primary inputs’ constraints, and

Gröbner basis reduction is used to generate a remainder in order to define the result of

the verification. If the verification results in a non-zero remainder, the implementation is

Trojan-inserted. I use the generated remainder as well as inputs’ constraints to detect and

correct the source of the error. I also show that the order of constraints is important

to efficiently debug the faulty implementation. Using the incremental verification

approach coupled with different input ordering constraints enable us to efficiently generate

remainder for a faulty design.

Trojan Localization using Symbolic Algebra: I propose a design-time

formal method to localize and activate Trojans between two versions of a design.

Suppose that there is a golden model of a design (specification), and a modified version

(implementation) of it (after performing some non-functional changes such as doing

synthesis, adding clock trees, scan chain insertion etc.). We would like to make sure that

there is no hardware Trojan inserted to the design during the non-functional changes.

In other words, our goal is to make sure that two versions of a design are functionally

equivalent (nothing more, nothing less) and an adversary cannot hide hard-to-detect

malicious modifications during design transformations. It is important to note that

traditional equivalence checking techniques can lead to state-space explosion in the

presence of specification and implementation of large and complex designs. Our approach
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is scalable since it uses polynomial based manipulation instead of Binary Decision

Diagrams (BDD [110]).

I propose a formal method based on symbolic algebra to detect potentially malicious

modifications in the implementation. Our method is based on extraction of functional

polynomial [93] from gate-level IPs.

FSM Integrity Analysis in Controller Design: To detect vulnerabilities

introduced by Trojan insertion as well as CAD tools, I propose an efficient, formal

analysis framework based on symbolic algebra to find FSM vulnerabilities. The proposed

method tries to find inconsistencies between the specification and FSM implementation

through manipulation of respective polynomials. Security properties (such as a safe

transition to a protected state) are derived using specification polynomials and verified

against implementation polynomials. In case of a failure, the vulnerability is reported

and a counter-example is generated. While existing methods can verify legal transitions,

my approach tries to solve the important and non-trivial problem of detecting illegal

accesses to the design states (e.g., protected states). I demonstrate the merit of my

proposed method by detecting the vulnerabilities in various current FSM designs, while

state-of-the-approaches failed to identify the security flaws.

Trojan Activation by Interleaving Concrete Simulation and Symbolic

Execution: I propose a scalable directed test generation method to activate potential

hardware Trojans in RTL models. The proposed approach is the

rst attempt in developing an automated and scalable technique to generate directed

tests to activate hardware Trojans in RTL models. A threat model involving rare branches

and rare assignments is considered in RTL designs. This threat model leads to the

automated generation of security assertions. Concolic testing is utilized to generate tests

to activate these security assertions. Interleaving concrete simulation with symbolic

execution avoids state space explosion by exploring one execution path at a time in

contrast to dealing with all possible execution paths at the same time (like conventional
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formal methods). Our experimental results demonstrate the effectiveness of our approach

in activating hard-to-detect Trojans in large and complex Trust-Hub benchmarks.

Observability-aware Post-Silicon Test Generation: In this dissertation, I

present a technique for observability-aware post-silicon directed test generation through

analysis of pre-silicon design collaterals. Our key approach to overcome the scalability

and relevant challenges mentioned above is to exploit more abstract transaction-level

model (TLM) of a design to perform our analysis. TLM definitions are much more

abstract, structured, and compact, compared to RTL, which permits effective application

of exploration to identify high-quality directed tests. A key challenge is to map design

functionality and observability between TLM and RTL so that the tests generated at TLM

can be translated to effective, observability-aware tests for RTL. I discuss how to develop

this mapping in practice. I provide case studies from a number of different design classes

to demonstrate the flexibility and generality of our approach.

Cost-effective Synthesis of Security Assertions: Today’s SoCs come with

several built-in debug mechanisms such as trace buffers and performance monitors in order

to enhance the design observability during post-silicon validation and reduce debugging

efforts. Trace buffers record the values of a limited number of selected signals (typically

less than 1% of all signals in the design) during silicon execution for specified number

of clock cycles. The trace buffer values can be analyzed off-chip to restore the values of

untraced signals. I present an approach to utilize the information that can be extracted

from on-chip trace buffer in order to determine easy-to-detect functional coverage events

using formal analysis. My trace-based coverage analysis enables the trade-off between

observability and hardware overhead. The experimental results show that my approach

can provide an order-of-magnitude reduction in design overhead without sacrificing

functional coverage of security properties compared to when all assertions are synthesized.
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1.3 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 discusses the existing

security validation approaches. Chapter 3 describes the algebraic preliminaries of formal

verification methods based on symbolic algebra and Gröbner basis theory. Gröbner

basis theory can be used in hardware Trojan detection as well as integrity analysis of

controller designsChapter 4 describes anomaly detection procedure in combinational

and arithmetic circuits. In Chapter 5, an incremental debugging approach is presented

to improve the required effort for anomaly detection in arithmetic circuits. Chapter 6

introduces a technique for Trojan localization after non-functional changes of the gate-level

netlist of the overall design. Chapter 7 describes a technique to identify and mitigate

threats in controller designs. Chapter 8 presents a scalable directed test generation

method to activate potential hardware Trojans in RTL models. Chapter 9 discusses the

observability-aware test generation technique to improve Trojan activation in post-silicon.

Chapter 10 presents an approach for getting coverage of post-silicon security properties

using post-silicon debug infrastructures. Chapter 11 concludes this dissertation.
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CHAPTER 2
RELATED WORK ON SECURITY VALIDATION

In this chapter, we review the existing security validation methods for SoCs in

different stages. There has been plenty of research on trust validation in the IP level,

pre-silicon, and post-silicon design. These methods focus on simulation based approaches,

side-channel analysis, structural methods as well as formal approaches as shown in

Figure 2-1. The remainder of this chapter surveys these approaches in detail.

Figure 2-1. Hardware trust verification can be categorized in three major directions: (1)
simulation based approaches, (2) side-channel analysis, and (3) formal
approaches.

2.1 Simulation-based Trust Validation Approaches

Simulation-based approaches aim on generating tests to activate malicious modifications

(hardware Trojans) and propagate the payload of the Trojan to primary outputs to check

with the golden circuit. The difficulty of logic testing is to generate efficient tests to

activate and propagate the effect of Trojans, which are stealthy enough to hide through

the traditional manufacturing testing.

A major problem with design validation is that we do not know whether a Trojan

exists, and how to quickly detect and fix it. We can always keep on generating random

29



tests, in the hope of activating the Trojan; however, random test generation is neither

scalable nor efficient when designs are large and complex.

Several approaches are focused on generation of guided test vectors and compare the

produced primary outputs with golden/expected outputs to detect and activate hardware

Trojans. Traditional test generation techniques may not be beneficial as Trojans are

designed in a way that they will be activated under very rare sequences of the inputs.

In this section, we review simulation-based validation approaches including rare-node

activation, redundant circuit detection, N-detect ATPG and code coverage techniques.

2.1.1 Functional Test Generation

In a recent case study [144], code coverage analysis and Automatic Test Pattern

Generation (ATPG) are employed to identify Trojan-inserted circuits from Trojan-free

circuits. The presented method utilizes test vectors to perform formal verification

and code coverage analysis in the first step. If this step cannot detect existence of the

hardware Trojan, some rules are checked to find unused and redundant circuits. In the

next step, the ATPG tool is used to find some patterns to activate the redundant/dormant

Trojans. Code coverage analysis is done over RTL (HDL) third party IPs to make sure

that there are no hard-to-activate events or corner-case scenarios in the design which may

serve as a backdoor of the design and leak the secret information [9, 144]. However,

Trojans may exist in design that have 100% code coverage. The MERO (multiple

excitation of rare occurrences) approach [30], proposed by Chakraborty et al., can generate

high-quality tests to achieve very high activation and coverage rate for Trojans. A later

work by Saha et al. [118] extended this approach by using genetic algorithm to further

improve the quality of tests. Generating such directed tests is extremely difficult given the

stealthiness of activation condition. Besides, this technique is only applicable to gate-level

designs and does not guarantee whether the generated tests can activate the Trojans.

Cruz et al. have proposed a test generation technique that combines the strength of model

checking and ATPG for fast test generation [41]. Their approach partitions the design
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based on the scan chain. Constraints are generated for non-scan elements using model

checking. These constraints as well as the scan elements are then given to ATPG for

test generation. This approach is suitable only for partial scan-chain inserted designs.

However, none of the existing techniques are scalable to activate and detect hidden

Trojans. Moreover, logic testing would be beneficial when it uses efficient test vectors

that can satisfy the Trojan triggering conditions as well as propagate the activation effect

to the observable points such as primary outputs. Therefore, the test can reveal the

existence of the malicious functionality. These kind of tests are hard to create since trigger

conditions are satisfied after long hours of operation and they are usually designed with

low probability. As a result, traditional use of existing test generation tools like ATPGs is

impractical to produce patterns to activate trigger conditions.

2.1.2 Statistical Methods

Statistical Trojan detection methods try to differentiate the Trojan-inserted circuit

from the Trojan-free version using properties of known Trojans. FANCI is one such

approach [135]. FANCI marks gates that weakly influence output signals as suspicious.

Their proposed algorithm uses approximate truth table for each signal to infer its effect

on the outputs. However, FANCI has a high false positive rate. A similar method named

VeriTrust marks redundant logic gates as suspicious [142]. Initially, all gates that are not

covered during verification phase are considered as suspicious nodes, and further analysis

is carried out to confirm redundancy. FANCI and VeriTrust can detect only Trojans with

always on or combinational type triggers (a trigger that depends only on current inputs).

They cannot detect sequential Trojans, which is exploited by DeTrust benchmarks [143].

Hicks et al. proposed an approach for defeating Trojan based on unused circuit detection

[65]. This method relies on the assumption that Trojan circuits will reside on unused

portion of the circuit. However, their algorithm failed to detect Trojans that do not rely

on unused circuits [125].
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A score based classification method for detecting Trojan is discussed in [105].

The classification features are based on properties found from Trojans in Trust-Hub

benchmarks [69]. Scores are given to nets for each of the matching features. Nets with

score above a threshold are marked as Trojan nodes. Unfortunately, these features are

too specific to Trust-Hub benchmarks and thus cannot be used as a generic detection

method. A recent approach proposed by Salmani et al. [119] uses SCOAP1 controllability

and observability values to detect and isolate Trojan nodes. Controllability is defined

as the number of primary inputs that must be manipulated to control a signal to a

particular logic value. Observability is the number of primary input manipulations which

is required to make a signal observable at the primary outputs. This method works using

the assumption that Trojan nodes will have higher controllability/observability values

to avoid detection. However, this approach will result in false positives in designs with

partial scan chains. Benign signals that are not part of the scan chain will also have

controllability/observability values similar to Trojans. Recently, a Trojan clustering

approach based on signal correlation is proposed in [29]. However, this method is suitable

for gate-level designs, and cannot be extended to RTL models for early detection.

2.1.3 Side-Channel Analysis

Existing techniques based on side channel analysis rely on the change of physical

characteristics caused by the Trojan circuit - mostly in the form of current, power or

delay [75, 90, 103]. If the side channel signature of a chip is different from the golden chip

over a certain threshold, a Trojan is detected. For example, when a Trojan is partially or

fully activated, it will have increased switching activity compared to Trojan free circuit.

Wang et al. used this property to isolate Trojan [137]. MERS utilized test generation

to improve the Trojan detection sensitivity [74]. Their approach selected the nodes with

low transition probability as suspicious nodes. Then test vectors are applied in such a

1 SCOAP: Sandia Controllability/Observability Analysis Program [60]
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way that switching activity of these suspicious nodes become much higher than other

nodes, increasing side-channel emission. The problem with side channel analysis is the

presence of process variation and measurement noise. Side-channel based approaches face

difficulty if the Trojan circuit is small. This is because difference in side channel signature

due to the Trojan can be negligible compared to process variations. These methods also

require Trojan free golden reference models. As side-channel analysis is carried out after

fabrication, the chip may require re-spins if Trojan is detected. Thus, methods that can

detect Trojan in an early design stage is highly desirable.

2.2 Security validation using Formal methods

Formal methods are promising in hardware validation as they evaluate the functionality

and structure of the mathematical model to verify that the design correctly implements

the functions described in the specification. Formal verification methods can be broadly

classified in four groups: i) Satisfiability (SAT) solvers, ii) property checking using model

checkers [19, 99], iii) theorem proving approaches [42], and iv) equivalence checking using

decision graphs [25, 35, 110] and symbolic algebra [49]. In this section, we briefly discuss

each of these methods and their applications for security validation. We focus on different

formal methods to verify the design and detect un-desired functions (possibly Trojans).

2.2.1 Trust Validation using SAT Solvers

Given a Boolean formula, the satisfiability problem relies on finding Boolean values to

the formula’s variables such that the formula is evaluated to true. If such an assignment

does not exist, the formula is called unsatisfiable. It means that any possible assignments

to formula’s variables force the formula to be false. The Boolean formula is constructed

from AND, OR and NOT operators between various variables which can be either assigned

to true or false. Many of the validation and debugging problems can be mapped to

satisfiability problems. One of the applications is to check the equivalence between the

specification of the circuit and its implementation using SAT-solvers. Figure 2-2 shows

the equivalence checking using SAT-solvers. If the specification and implementation have
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the same functionality, the output of the XOR gate should always be false. If the output

of XOR gate becomes true for any input pattern, it implies that the implementation

and the specification do not have the same functionality for the same input pattern. In

other words, if the circuit shown in Figure 2-2 is converted to conjunction normal form

(CNF), a SAT-solver can be used to check the equivalence between the specification and

implementation. If the SAT-solver reports unsatisfiable, we can conclude that specification

and implementation are equivalent. Otherwise, they are not equivalence and the root

of mismatch should be found. SAT solvers are excessively used for design validation

[13, 14, 85].

Figure 2-2. Equivalence checking using SAT solvers

Equivalence checking can be done using SAT-solvers to identify hardware Trojans

[62]. If hardware Trojans exist in the implementation, the SAT-solver finds assignments to

the internal variables to reveal the hidden Trojan. However, this method requires a golden

model and suffers from scalability issues. The SAT-solver may encounter state explosion

when the design is large, and the specification and the implementation significantly differ

from each other.

Several works explore the existence of Trojans in unspecified functionality [55, 57].

Therefore, the Trojan does not alter the specification of the design, and existing statistical

or simulation-based methods cannot identify the Trojan-inserted design [56]. Fern et al.

propose a SAT-based technique to detect Trojans which exploit the design signals in their
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unspecified functionality to cause malfunction. Figure 2-3 shows a hardware Trojan in

an unspecified functionality of a FIFO. The designer did not specify the functionality of

the FIFO when the “read enable” of the FIFO is not asserted. The attacker takes the

advantage of the incomplete specification and inserts a malicious circuit to leak the secret

information when the read enable signal is not asserted. This kind of Trojans can be

inserted in RTL code or at any high-level description of the design.

Figure 2-3. Trojan in unspecified functionality of a FIFO [56].

Fern et al. try to address unspecified Trojan detection where the Trojan targets

information leakage [56]. Suppose that the function “func” is unspecified when internal

signal “s” is under condition “C”. Suppose that signal s can have two possible values:

v0 and v1. Under condition C, Equation 2–1 should be unsatisfiable if the design is

Trojan-free. Therefore, any assignment which make the Equation 2–1 satisfiable, it

is a trace (counterexample) to detect the covert Trojan. For example, in the FIFO

shown in Figure 2-3, output signal should remain the same when the read enable = 0

(C = read enable = 0 and s = output).

C ∧ (func(s = v0)⊕ func(s = v1)) (2–1)

To detect Trojans in an unspecified functionality of the design, pairs C and s should

be identified. For any function in the design, several s and C pair can be found, and the

process of marking the potential pairs is not automatic yet. For every pair (s, C), one

35



CNF formula is constructed and an SAT-solver (for Boolean values) or a Satisfiability

Module Theory solvers (SMT-solvers) can be used to find the potential threats. The

Trojan can be detected when the CNF formula is satisfiable. The success of this approach

is dependent on the SAT-solvers and identifying (s, C) pairs. Moreover, the approach

requires manual intervention.

SAT solvers [7, 97] have been also used to automatically localize and detect hardware

Trojans (hard to detect bugs) in arithmetic circuits. Solving SAT problem results in

finding suspicious functionality. These approaches are based on either inserting logic

corrector components in the implementation [124], using abstraction and refinements

[82, 117] or using Quantified Boolean Formula [97]. They model the circuit using CNF

model, and a SAT solver is used to localize the sources of error. The success of these

approaches is dependent on the performance of SAT solvers, and they fail for large and

complex arithmetic circuits. There are some approaches based on Satisfiability modulo

theory (SMT) solvers to find a counterexample and localize the source of problem in the

faulty implementation [98, 126]. SMT solvers have been utilized to debug RTL designs

[116]. Word-level MUXes are added to suspicious candidate signals and the resultant

formula is solved by a word-level SAT solver. However, these methods are dependent on

existence of traces of malicious activities. Moreover, these approaches suffer from the

required manual interventions and cannot handle large designs. Furthermore, most of

these approaches cannot provide concrete suggestions to fix Trojans.

2.2.2 Security Validation using Property Checking

Model checking is a famous technique in design verification which checks a design

for a set of given properties. To solve the model checking problem, the design and the

given properties are converted to a mathematical model/language, and all of the design’s

states are checked to see whether the given properties are satisfied. A class of model

checkers is designed based on temporal logic formula [37]. The properties are described

using Linear Temporal Logic (LTL) formulas to describe expected behaviors of the design.
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The properties are checked using the model checkers. A model checker either proves the

correctness of a given property over all of the possible behaviors of the design or find a

counter-example when the property fails.

Figure 2-4. Verification using model checking.

A model checker tries all of the possible states of a design to prove a given property

using a Binary Decision Diagram (BDD). However, the number of design states can

be huge since every bit introduces two states in the design. For example, a 32-bit

register can add 232 states to the design state space. Although some techniques such

as slicing, abstracting, etc. have been proposed [36, 133], state space explosion still is

the largest limitation of using model checking in property verification. Bounded model

checking (BMC) is introduced to overcome the amount of memory that a model checker

requires for constructing and storing different states of a design [20]. BMC tries to

find a counter-example in the first K cycles during execution. If a counter-example is

found within K cycles, the property does not hold. Otherwise, K can be increased in

the hope of finding a counter-example in upper bounds. BMC is not able to prove a

property since it unrolls the circuit for a specified number of clock cycles. However, it

can provide a statistical metric for a given property when the model checker fails (e.g. no

counter-example can be found in K clock cycles). The BMC problem can be mapped to
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satisfiability problem, and SAT-solvers can be utilized to solve the problem. Therefore,

the BMC addresses some of the state space explosion problems associated with BDDs

in model checking. Figure 2-4 and Figure 2-5 shows the show the model checking and

bounded model checking approaches, respectively. Clearly, bounded model checking cannot

provide proof for property P . However, it can reveal when property P is violated within K

clock cycles.

Figure 2-5. Verification using bounded model checking.

Security properties describe the expected behaviors which a trustworthy design

is required to follow. Model checkers can be used to ensure safety properties. An SoC

designer and a third-party vendor can agree on certain security properties that the design

should satisfy. When the design is sent to the SoC integrator, the SoC integrator converts

the design to a formal description to check the security properties using a model checker.

If all of the security properties are verified, the expected security behaviors are met.

Rajendran et al. have proposed a Trojan detection technique which is based on using

bounded model checking [113]. They have considered the threat model as an attempt

to corrupt the critical data such as secret keys of a cryptographic design, and random

numbers which are required by most of the cryptography algorithms or stack pointer of

a processor. The assumption is that these critical data should be stored in some specific

registers and accesses to these registers should be protected. In other words, the registers
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which contain critical data should be accessed through valid ways, and any undefined

access to these registers is considered as a threat. The safe access conditions to these

registers are formulated as properties (assertions), and a bounded model checker is utilized

to find a counter-example when the security properties are violated.

Example 1: Suppose that the program counter (PC) register is considered as a

critical data. The only valid ways to change the PC register is either using a reset signal

(V1), by CALL instruction which increments the PC register V2 or using RET instruction

which decrements the value of the PC register V3. Otherwise, the PC register should keep

its value. The safety property of PC register can be formulated as:

Safe PC change : assert always PCaccess /∈ V = {V1, V2, V3} → PCt = PCt−1)

When this property is fed into a bounded model checker alongside with the processor

design, a counter-example is expected to be found whenever PC register or a part of it is

changed using an unauthorized access.

Using model checking to find unauthorized access to secret and critical data of design

is beneficial since the method does not require any golden model of the design. However,

the success of this method is dependent on the SAT-engine (it may fail for large and

complex designs) and precise definition of security properties which needs prior knowledge

of all safe ways to access a critical register. The performance of the presented method can

be further improved using an ATPG tool to ensure the trustworthiness of the assets for a

large number of clock cycles. The property is synthesized as a circuit monitor, and it is

appended to the original design. The ATPG tool is used to generate a test for a stuck-at-1

fault at the output of the monitor circuit. The counter-example can be found if the test

can be generated. The success of this approach is dependent on the ATPG tools and

complete definition of circuit monitors.

Researchers have proposed techniques based on formal methods to prove security-related

properties that would be violated in the presence of Trojans. These methods are
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particularly effective for detecting Trojans inside cryptographic designs. One such method

- GLIFT, looks for confidentiality and integrity property violation [73]. Confidentiality

property requires that secret information never leaks to an unsecured domain and integrity

property requires that untrusted data never enters the secured domain. Information flow is

traced by assigning a taint bit to it. In another approach [112], a base property is used to

detect information leakage which may imply the existence of a Trojan. The base property

checks whether any input sequence exists such that it triggers secret information leakage

to an observable point. The security properties check whether there is an input assignment

(or a sequence of input assignments) I which triggers the leakage of secret data S to

output ports or observable points (O) of the design.

∃i ∈ I → (S == O)

The property and formal description of the design are fed into a bounded model checker to

find the possible leakage. However, the above-mentioned property has several challenges.

If the secret information S contains n bits, the model checker needs to check 2n different

values. Checking all possible values may not be feasible when n is in the order of hundred

(which is normal for encryption algorithms). The authors have proposed some refinements

to limit the Trojan search to make information leakage detection feasible. However, the

assumptions and refinement rules restrict the applicability of the solution to find different

information leakage threats. Moreover, BMC may fail since the complexity of problem

increases for each cycle of unrolling. Therefore, BMC works only for a certain number of

clock cycles depending on the design size. When an adversary inserts a Trojan, which is

triggered after a large number of clock cycles, this method cannot detect the Trojan.

Security property checking can be done in two general ways: (i) checking forbidden

behaviors, and (ii) checking expected security properties. The malicious behavior of design

is formalized and checked using model checkers in [114]. The method can be applied

only for known Trojan types. Hasan et al. have proposed a hardware Trojan detection
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technique using LTL and computation tree logic (CTL) security properties to generate

hardware Trojan monitors in order to improve the resiliency of hardware designs aginst

malicious functionality [64]. The attacker is considered as an untrustworthy third party

designer that can insert Trojans in the IP, and the defender is SoC integrator. The SoC

integrator needs to formulate dangerous behaviors as security properties to perform

vulnerability verification using model checkers. The generated counter-example, as well

as the involved signals, are provided to the in-house designers to produce a guideline for

efficient run-time security monitors.

Potential threats introduced from Electronic Design Automation (EDA) tools of the

third party are considered in [109]. It is possible that an adversary modifies a design using

non-transparent EDA tools such as synthesis tools. A synthesis tool may optimize some

registers and unsafely modify the finite state machine (FSM). The authors have proposed

a hardware Trojan detection technique which is based on property coverage analysis to

ensure that a gate-level netlist is free from hardware Trojans inserted by synthesis tools.

The proposed Trojan detection method is based on both security property checking as well

as state coverage to mark suspicious unused circuit states. Figure 2-6 shows the different

ways to insert Trojans in an FSM.

Figure 2-6. Trojans in a FSM: (a) A Trojan-free FSM, (b) Trojan can be inserted to a
FSM using different ways: (i) changing the state output (e.g. state B), (ii)
modification to state transitions (e.g. extra transition from state A to C), and
(iii) adding extra states (e.g. state D) and transitions (such as state
transitions B → D and D → C ) to FSM.
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Example 2: Consider the FSM shown in Figure 2-6(a). Whenever the current state

is A, the next state should be either A or B. The property can be formulated using a LTL

formula as shown below:

assert always (cur state == A)→ X(next state = A|| next state = B)

Note that, X symbol shows the next cycle and → shows implication.

The success of using model checking-based approaches to detect hardware Trojans are

highly dependent on the size of the design, SAT-engine and the quality of the provided

properties. The model checker cannot guarantee inexistence of hardware Trojans.

However, it can provide a trust level metric.

2.2.3 Theorem Provers for Trojan Detection

The attempt of proving a conjecture (logical statement) from a set of axioms

and hypotheses is called theorem proving. Problems from different domains such as

mathematics, hardware and software verification can be mapped to theorem proving.

Automated theorem provers (ATP) are computer programs which try to prove given

problems. They need appropriate and precise formulation of conjectures, axioms, and

hypotheses in logical languages such as first-order logic or higher order logic. The language

provides a formal description of the problem’s statements; therefore, mathematical

manipulation of statements is possible using ATPs. In other words, ATPs can show how

the conjecture can be logically proved by following a set of related fact and statements.

Figure 2-7 shows an overview of a theorem proving flow.

2.2.3.1 Secret Data Protection using Proof-Carrying Codes

Theorem provers are widely used in trust validation domain. Proof-carrying code

(PCC)[104] has been proposed to provide a trust metric for a code often gathered from

untrusted suppliers. The idea is that the code consumer should be able to confirm a set of

pre-defined properties when the code producer delivers it. Using the PCC, the supplier is

required to provide the formal proof of safety properties, and the consumer performs the
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Figure 2-7. Validation using theorem Prover

proof validation to ensure the integrity of the code. Proofs are generated using theorem

provers. Jin and Makris [77] have proposed an IP information tracking methodology which

is based on proof carrying concept. The method is proposed to establish the trust between

the untrusted IP vendor and the SoC Integrator. The IP vendor creates proof of security

properties that was agreed upon with the SoC integrator. The design is instrumented

with secrecy tags, and it is converted to a formal description. The design, secret tags as

well as their formal descriptions are passed to the consumer as a package. The consumer

formalizes the agreed security properties and regenerates the formal model of the HDL

code to enable a formal property checker to validate proofs delivered by the producer.

The assumption is that if an adversary inserts a hardware Trojan in the design to violate

security properties, the proof validation will fail. Figure 2-8 shows the overall approach.

The “Pass” result demonstrates the security preserving behavior of the delivered IP.

However, the “Fail” result reveals the existence of malicious code to potentially leak secret

information. Jin and Makris [77] have developed a set of rules to convert an HDL code to

Coq formal language to automate formal model generation procedure.

Example 3: Suppose that the IP vendor is asked to deliver the implementation

of DES algorithm [22] which is a data encryption algorithm. Our goal is to ensure that

none of the secret data can be leaked through primary outputs. This requirement can

be formalized as theorem “Safe DES”. In the implementation of DES algorithm, the
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secret input “KEY ”, plaintext “DesIn” and internal key rounds “KEY Rounds” are

considered as secret information, and they should be protected. Therefore, they will be

marked with security tags. Three axioms showing the secret character of KEY, Des In and

KEY Rounds in all clock cycles are added to the formal logic which is used by the theorem

prover. In the next step, three axioms, the DES implementation, as well as the safe DES

theorem, are converted to the Coq formal model. The theorem prover tries to prove the

theorem by considering the formal behavior of the DES algorithm and axioms. If the proof

can be generated, the DES algorithm is safe. Therefore, the design and the proofs can be

delivered to the consumer. The user validates the proof using a property checker.

Figure 2-8. Information flow tracking based on proof-carrying codes.

A dynamic information tracking approach has been proposed in [79]. Similar to the

statistical approach, the design, as well as security properties, are formalized and validated

to detect unauthorized leakage of sensitive data. Unlike statistical scheme, all variables are

assigned to a list of values showing their level of sensitivity during different clock cycles.

Some updating rules are designed to change the sensitivity values of different variables

over time. Two sensitivity lists are considered for data protection: (i) initial list, and (ii)
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the stable list, where values indicate stable sensitivity levels of circuit signals. The SoC

integrator checks the content of both lists first to ensure the safe distribution of the secret

data through the circuit. In the next step, proofs are validated.

A similar approach has been applied for trust validation of EDA tools [78]. The idea

is that the trustworthy RTL design cannot guarantee the security of the IP cores. The

gate-level netlist may be contaminated either by malicious implants or untrusted EDA

tools. Jin [62] has proposed a framework to check the trust level of the produced gate-level

netlists of synthesis tools. The framework consists of three major steps: (i) generates

proof-carrying code based on the security properties of the trusted RTL code, (ii) validates

proofs on the corresponding synthesized gate-level netlist, and (iii) measures the trust level

of the EDA tools based on the result of the second step. The aforementioned approaches

require flattening the design to check the integrity of the whole system. However, design

flattening increases the complexity of formalization steps and proof generation phase,

and limits the applicability of these approaches due to scalability problems. Similar to

property checking approaches discussed in Section 2.2.2, the Trojan detection is dependent

on the quality of security properties.

2.2.3.2 Integration of Theorem Provers and Model Checkers

The primary challenge in using proof-carrying code approach is to measure the

trust of RTL, or gate-level code is the scalability. SoC designs are usually large and

complex, and proofs cannot be easily constructed as the size of the design is increased.

Proof validation is also very time consuming for large designs. To address these issues,

an integrated approach has been proposed [63]. The main idea is to combine interactive

theorem provers with model checkers to check security properties. The hierarchical

structure of the SoC design is considered as a choice of design partitioning to reduce

the verification efforts and address the scalability issues. The security properties are

formalized as theorems and theorems are decomposed into several lemmas each related

to one partition of the design. The lemmas are converted to assertions, and a model
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checker is used to validates the assertions. Each assertion is called a sub-specification.

Sub-Specifications are selected in a way that they are dependent on each other. If all of

the partitions satisfies security lemmas, we need to use the theorem prover to validate the

security of whole design using checked lemmas. If the security theorem can be proven, the

whole system is considered safe.

This method distributes the proof construction to overcome the scalability problem.

However, the success of this approach is dependent on the model checking engine. In

some cases, it may not be possible to validate the lemmas because of the model checkers

limitations.

2.2.4 Trojan Detection using Symbolic Algebra

Equivalence checking is another way of formally proving a circuit is Trojan free. Such

approaches require a golden specification to verify if it is equivalent to the implementation.

Trojan inserted implementation will demonstrate functionality outside of the specification.

However, traditional equivalence checking techniques suffer from state explosion issue.

For example, equivalence checking has been done using SAT solvers and industrial

tools such as Formality [71] traditionally. However, these methods are promising when

the specification and implementation structures are similar such as between RTL

(pre-synthesis) and gate-level (post-synthesis) models. However, existing methods can

lead to state space explosion when complex SoCs are involved with significantly different

(lack of structural or FSM-level similarity) specification and implementation.

A promising direction to address the state space explosion problem of equivalence

checking of hardware design is to use methods based on symbolic computer algebra.

Symbolic algebraic computation refers to the application of mathematical expressions

and algorithmic manipulations methods to solve different problems. Symbolic algebra

has received attention because of its applicability in equivalence checking of hardware

designs. There are equivalence checking methods based on symbolic algebra that are

successful to detect deviations from the specification for combinational circuits specially
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arithmetic circuits [46, 50, 62, 121]. These method maps the equivalence checking problem

to ideal membership testing and solves the problem using Gröbner Basis theory. They

express both specification and implementation as polynomials, and reduce the specification

polynomials over a subset of implementation polynomials. If both are same, then the

reduction procedure should result in a zero remainder. Any non-zero remainder indicates

deviation from the specification. Such methods not only detect the Trojan existence, but

also can isolate the Trojan circuit and generate test vector for activation.

Every extra, incorrect or missing components can threaten the security of the design.

Ghandali et. al [58] proposed an automated debugging approach based on symbolic

computer algebra which scans the entire implementation to find and fix the bug in the

design. This approach suffers from scalability concerns. It has been shown that the

remainder can be beneficial in root causing the threat [52]. The threat model is considered

any deviation from the expected functionality. The remainder can be utilized to generate

tests to activate the Trojan. If there are more than one malicious functionality in the

implementation, the remainder will be affected by all of them. Therefore, each assignment

that makes the remainder non-zero activates at least one of the existing faulty scenarios.

The generated tests and the remainder’s patterns can be used to localize malicious

scenarios.

2.3 Summary

This chapter presented existing techniques for hardware security validation. It

outlined prior efforts in test generation, side-channel based techniques as well as formal

approaches for detecting hardware Trojans.
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CHAPTER 3
BACKGROUND: VERIFICATION USING SYMBOLIC ALGEBRA

A promising direction to address the state space explosion problem in trust validation

of hardware design is to use symbolic computer algebra. Symbolic algebraic computation

refers to application of mathematical expressions and algorithmic manipulations methods

to solve different problems. Symbolic algebra especially Gröbner basis theory can be used

for equivalence checking and hardware Trojan identification as it formally checks two levels

of a design and search for components that cause mismatch or change the functionality

(hardware Trojans). In this chapter, Gröbner basis theory [39] is briefly described. Next,

the application of Gröbner basis theory for security verification of integer arithmetic

circuits is presented. We will describe how Gröbner basis theory can be used in hardware

Trojan detection as well as integrity analysis of controller designs in Chapters 4, 5, 6, and

7.

3.1 Gröbner Basis Theory

Let M = x1
α1x2

α2 ...xn
αn be a monomial and f = C1M1 + C2M2 + ... + CtMt be

a polynomial with {c1, c2, ..., ct} as coefficients and M1 > M2 > ... > Mt. Monomial

lm(f) = M1 is called leading monomial and lt(f) = C1M1 is called leading term of

polynomial f. Let K be a computable field and K[x1, x2, ..., xn] be a polynomial ring in n

variables. Then < f1, f2, ..., fs >= {
n∑
i=1

hifi : h1, h2, ..., hs ∈ K[x1, x2, ..., xn]} is an ideal I.

The set {f1, f2, .., fs} is called generator or basis of ideal I. If V (I) shows the affine variety

(set of all solution of f1 = F2 = ... = fs = 0) of ideal I, I(V ) = {fi ∈ K[x1, x2, ..., xn] : ∀v ∈

V (I), fi(v) = 0}. Polynomial fi is a member of I(V ) if it vanishes on V (I). Gröbner basis

is one of the generators of every ideal I (when I is other than zero) that has a specific

characteristic to answer membership problem of an arbitrary polynomial f in ideal I. The

set G = {g1, g2, ..., gt} is called Gröbner basis of ideal I, if ∀fi ∈ I,∃gj ∈ G : lm(gj)|lm(fi).

The Gröbner basis solves the membership testing problem of an ideal using sequential

divisions or reduction. The reduction operation can be formulated as follows. Polynomial
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fi can be reducible by polynomial gj if lt(fi) = C1M1 (which is non-zero) is divisible by

lt(gi) and r is the remainder (r = fi − lt(fi)
lt(gj)

.gj). It can be denoted by fi
gj−→ r. Similarly, fi

can be reducible with respect to set G and it can be represented by fi
G−→+ r.

Algorithm 1: Buchberger’s algorithm [27]

1: Input: ideal I =< f1, f2, ..., fs >6= {0}, initial basis F = {f1, f2, ..., fs}
2: Output: Gröbner Basis G = {g1, g2, ..., gt} for ideal I
3: G = F
4: V = G×G
5: while V 6= 0 do
6: for each pair (f, g) ∈ V do do
7: V = V − (f, g)
8: Spoly(f, g)→G r
9: if r 6= 0 then

10: G = G ∪ r
11: V = V ∪ (G× r)
12: end if
13: end for
14: end while
15: Return: set G

The set G is Gröbner basis ideal I, if ∀f ∈ I, fi
G−→+ 0. Gröbner basis can be

computed using Buchburger’s algorithm [27]. Buchburger algorithm is shown in Algorithm

1. It makes use of a polynomial reduction technique named S-polynomial as defined below.

Definition 1. (S-polynomial): Assume f, g ∈ K1, x2, , xn] are nonzero polynomials. The

S-polynomial of f and g (a linear manipulation of f and g) is defined as: Spoly(f, g) =

LCM(LM(f),LM(g))
LT (f)∗f − LCM(LM(f),LM(g))

LT (g)∗g , where LCM(a, b) is a notation for the least common

multiple of a and b.

Example 1: Let f = 6 ∗ x14 ∗ x25 + 24 ∗ x12− x2 and g = 2 ∗ x12 ∗ x27 + 4 ∗ x23 + 2 ∗ x3 and

we have x1 > x2 > x3. The S-polynomial of f and g is defined below:

LM(f) = x1
4 ∗ x25

LM(g) = x1
2 ∗ x27

LCM(x1
4 ∗ x25, x12 ∗ x27) = x1

4 ∗ x27
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Spoly(f, g) = x14∗x27
6∗x14∗x25) ∗ f −

x14∗x27
2∗x12∗x27 ∗ g = 4x1

2 ∗ x22 − 1
6
∗ x23 − 2 ∗ x12 ∗ x23 − x12 ∗ x3

It is obvious that S-polynomial computation cancels leading terms of the polynomials.

As shown in Figure 1, Buchbergers algorithm first calculates all S-polynomials (lines 4-6 of

Fig. 2) and then adds non-zero S-polynomials to the basis G (line 8). This process repeats

until all of the computed S-polynomials become zero with respect to G. It is obvious that

Gröebner basis can be extremely large so its computation may take a long time and it

may need large storage memory as well. The time and space complexity of this algorithm

are exponential in terms of the sum of the total degree of polynomials in F, plus the sum

of the lengths of the polynomials in F [27]. When the size of F increases, the verification

process may be very slow or in the worst-case may be infeasible.

Buchberger algorithm is computationally intensive and it may affect the performance

drastically. It has been shown in [26] that if every pair (fi, fj) that belongs to set

F = {f1, f2, ..., fs} (generator of ideal I ) has a relatively prime leading monomials

(lm(fi).lm(fj) = LCM(lm(fi).lm(fj))) with respect to order >, the set F is also Gröbner

basis of ideal I.

Based on these observations, efficient equivalence checking between specification of an

arithmetic circuit and its implementation can be performed as shown in Figure 3-1. The

major computation steps in Figure 3-1 are outlined below:

• Assuming a computational field K and a polynomial ring K[x1, x2, ..., xn] (note that

variables {x1, x2, ..., xn} are subset of signals in the gate level implementation), a

polynomial fspec ∈ K[x1, x2, ..., xn] representing specification of the arithmetic circuit

can be derived.

• Map the implementation of arithmetic circuit to a set of polynomials that belongs to

K[x1, x2, ..., xn]. The set F generates an ideal I. Note that according to the field K,

some vanishing polynomials that constructs ideal I0 may be considered as well.

• Derive an order > in a way that leading monomials of every pair (fi, fj) are

relatively prime. Thus, the generator set F is also Gröbner basis G = F . As the
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Figure 3-1. Equivalence checking flow

combinational arithmetic circuits are acyclic, the topological order of the signals in

the gate level implementation can be used.

• The final step is reduction of fspec with respect to Gröbner basis G and order >. In

other words, the verification problem is formulated as fspec
G−→+ r. The gate level

circuit C has correctly implemented specification fspec, if the remainder r is equal to

0. The non-zero remainder implies a bug or Trojan in the implementation.

Galois field arithmetic computation can be seen in Barrett reduction [94], Mastrovito

multiplication and Montgomery reduction [84] which are critical part of cryptosystems. In

order to apply the method of Figure 3-1 for verification of Galios field arithmetic circuits,

Strong Nullstellensatz over Galois Fields is used. Galois field is not an algebraically closed

field, so its closure should be used. Strong Nullstellensatz helps to construct a radical ideal

in a way such that I(VF2k ) = I + I0. Ideal I0 is constructed by using vanishing polynomials

x2
k

i − xi by considering the fact that ∀x2ki ∈ F2k : x2
k

i − xi = 0. As a result, the Gröbner

basis theory can be applied on Galois field arithmetic circuits. The method in [91] has
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extracted circuit polynomials by converting each gate to a polynomial and SINGULAR

[61] has been used to do the fspec
G−→+ r computations. Using this method, the verification

of Galois field arithmetic circuits like Mastrovito multipliers with up to 163 bits can be

done in few hours. Some extensions of this method has been proposed in [92]. The cost

of fspec
G−→+ r computation has been improved by mapping the computation on a matrix

representing the verification problem, and the computation is performed using Gaussian

elimination.

The Gröbner basis theory has been used to verify arithmetic circuits over ring

Z[x1, x2, , xn]/2N in [50]. Instead of mapping each gate to a polynomial, the repetitive

components of the circuit are extracted and the whole component is represented using one

polynomial (since arithmetic circuit over ring Z[x1, x2, , xn]/2N contain carry chain, the

number of polynomials can be very large). Therefore, the number of circuit polynomials

are decreased. In order to expedite the fspec
G−→+ r computation, the polynomials are

represented by Horner Expansion Diagrams. The reduction computation is implemented

by sequential division. The verification of arithmetic circuit over ring Z[x1, x2, , xn]/2N up

to 128 bit can be efficiently performed using this method. An extension of this method

has been presented in [47] that is able to significantly reduce the number of polynomials

by finding fanout-free regions and representing the whole region by one single polynomial.

Similar to [92], the reduction of specification polynomial with respect to Gröbner basis

polynomials is performed by Gaussian elimination resulting in verification time of few

minutes. In all of these methods, when the remainder r is non-zero, it shows that the

specification is not exactly equivalent with the gate level implementation. Thus, the

non-zero remainder can be analyzed to identify the hidden malfunctions or Trojans in

the system. In this section, the use of one of these approaches for equivalence checking

of integer arithmetic circuits over Z2n is explained. Although the details are different for

Galios Field arithmetic circuits, the major steps are similar.

52



3.2 Verification of Arithmetic Circuits

Most of the traditional verification and debugging tools of arithmetic circuits are

based on techniques such as simulation, binary decision diagrams (like BDDs,*BMD [25])

and SAT solvers [7, 97]. However, all of these approaches suffer from state space explosion

while dealing with large and complex circuits especially arithmetic circuits. Furthermore,

most of these approaches cannot provide concrete suggestions to remove Trojans. It is

important to introduce efficient, scalable and fully automated verification framework.

Computer symbolic algebra is employed for equivalence checking of arithmetic

circuits to address the limitations of traditional approaches. The primary goal is to check

equivalence between the specification polynomial fspec and gate level implementation

C to find potential malicious functionality. The specification of arithmetic circuit and

implementation are formulated as polynomials. Arithmetic circuits constitute a significant

portion of datapath in signal processing, cryptography, multimedia applications, error

root causing codes, etc. In most of them, arithmetic circuits have a custom structure and

can be very large so the chances of potential malfunction is high. These bugs may cause

unwanted operations as well as security problems like leakage of secret key [21]. Thus,

verification of arithmetic circuits is very important.

A set of polynomials F = {F1, F2, ..., Fn} which are defined over a field generates an

ideal I where I =< F1, F2, ..., Fn >. Set F is called basis or generator of Ideal I. Generally,

Ideal I can have several bases. One of the basis is called Gröbner Basis G which can be

derived from Buchberger’s algorithm [26]. The main characteristic of Gröbner Basis is the

ability to solve the ideal membership problem [27]. In other words, if we want to check

whether polynomial f resides in ideal I, f can be reduced over setting G (reduction can

be done using polynomial sequential division regarding a specific order). If the result of

reduction is equal to zero polynomial, f belongs to ideal I. Otherwise f does not reside in

the ideal I [38].
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The arithmetic circuit equivalence checking problem formulation starts with

converting the design specification to a polynomial fspec which represents the word-level

abstraction of arithmetic circuits functionality using primary inputs and primary

outputs as variables. For example, the specification of a n-bit adder with primary inputs

A = {a0, a1, ..., an−1} and B = {b0, b1, ..., bn−1} and primary output Z = {z0, z1, ...zn} can

be formulated as Z = A + B or can be written as (2n.zn + ... + 2.z1 + z0) − ((2n−1.an−1 +

...+ 2.a1 + a0) + (2n−1.bn−1 + ...+ 2.b1 + b0)) = 0 where {ai, bi, zi} ⊂ {0, 1}.

The functionality of logic gates (such as AND, OR, XOR, NOT and buffer) can

be represented by polynomials such that the input and output signals of gates act as

variables of the corresponding polynomial. Each variable xi which appears in a circuit

polynomial, belongs to Z2 where (xi
2 = xi). Equation 3–1 shows the corresponding

polynomial of NOT, AND, OR, XOR gates. Note that, any complex gate can be modeled

as a combination of these gates and its polynomial can be computed by combining the

equations shown in Equation3–1.

z1 = NOT (a)→ z1 = 1− a,

z2 = AND(a, b)→ z2 = a.b,

z3 = OR(a, b)→ z3 = a + b− a.b,

z4 = XOR(a, b)→ z4 = a + b− 2.a.b

(3–1)

A gate-level netlist of a circuit can be modeled as a set of polynomials F by modeling

each gate as a polynomial. Suppose that we want to make sure an arithmetic circuit

implements correctly its specification. In other words, we want to verify that there are

no functional errors in the arithmetic circuit. The equivalence checking starts with

consecutively reducing the fspec over implementation polynomials (Fimp) until either zero

remainder or a remainder that contains only primary input variables are reached. If the

remainder is zero, it shows that the arithmetic circuit performs the exact specification.
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However, the non-zero remainder shows that the implementation is not trustworthy and

there are some malfunctions.

Example 2: Suppose that we want to verify the functional correctness of a full-adder

implementation shown in Figure 3-2. The specification can be formulated as: (2.Cout +

S − (A + B + Cin)) and each gate in the implementation can be modeled as a polynomial

based on Equation 3–1. The topological order of the circuit (since the circuit is acyclic)

is chosen for reduction as Cout > {S, n3} > {n2, n1} > {A,B,Cin}. The reduction starts

from the most significant primary output and ends at primary inputs. Variables in the

curvy brackets have the same order and they can be reduced in one iteration. Equation

3–2 shows the reduction process. It can be seen that the final result (remainder) is a

non-zero polynomial and implementation is not trustworthy. The reader can verify that

the remainder would be zero if the NAND gate is replaced with an AND gate.

step0 : 2.Cout + S −A−B − Cin

step1 : S − 2.n3.n2 + 2.n3 + 2.n2 −A−B − Cin

step2 : 2.n2.n1.Cin − 4.n1.Cin + n1 −A−B + 2

step3(remiander) : 8.A.B.Cin − 4.A.Cin − 4.B.Cin − 2.A.B + 2

(3–2)

Figure 3-2. Faulty gate-level netlist of a full-adder. The NAND gate should be replaced by
an AND gate to correct the bug.

3.3 Summary

In this chapter, we discussed Gröbner basis reduction theory that can be used for the

basis of remainder generation, test generation for trust verification, as well as automated

debugging described in subsequent chapters.
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CHAPTER 4
ANOMALY DETECTION AND CORRECTION IN ARITHMETIC CIRCUITS

Optimized and custom arithmetic circuits are widely used in embedded systems such

as multimedia applications, cryptography systems, signal processing and console games.

Debugging of arithmetic circuits is a challenge due to increasing complexity coupled

with non-standard implementations. Existing equivalence checking techniques produce a

remainder to indicate the presence of a potential bug. However, bug localization remains a

major bottleneck. Simulation-based validation using random or constrained-random tests

are not effective and can be infeasible for complex arithmetic circuits. In this chapter,

we present an automated test generation and bug localization technique for debugging

arithmetic circuits. This chapter makes two important contributions. Figure 4-1 shows an

overview of our proposed framework. We propose an automated approach for generating

directed tests by suitable assignments of input variables to make the reminder non-zero.

There can be several possible assignments that make remainder non-zero; each of these

assignments is essentially a test vector that is guaranteed to activate the bug. The

generated tests are guaranteed to activate the unknown bug. We apply the generated

tests, one by one, to find the faulty outputs that are affected by the existing bug. Regions

that contribute in producing faulty outputs as well as their intersections are utilized for

faster bug localization. We also propose a bug detection and correction technique by

utilizing the patterns of remainder terms as well as the intersection of regions activated

by the generated tests. We show that certain bugs manifest specific patterns in the

remainder. This observation enables an automated debugging to detect and correct the

source of error. Our experimental results demonstrate that the proposed approach can be

used for automated debugging of complex arithmetic circuits.

In this chapter, we also present algorithms to detect and correct multiple independent

bugs. The proposed approach partitions the remainder R in order to generate several

sub-remainder Ri such that each of them is responsible for a single bug bi. In the next
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step, we generate directed tests from each sub-remainder to localize the source of error.

We apply the single bug detection algorithm on each of sub-remainders in order to

correct multiple unknown independent bugs. If the remainder cannot be partitioned in

sub-remainders, and single bug detection approach cannot report any source of error

for a faulty design, we can conclude that there are multiple dependent bugs in the

implementation (the bugs that have effects on each other). In this chapter, we also

propose an algorithm to detect and correct two dependent unknown bugs. The complexity

of the algorithm grows linearly with the number of suspicious gates (suspicious gates can

be obtained as bug localization phase).

Figure 4-1. Overview of our automated debugging framework. It consists of three
important steps: test generation, bug localization, and automated debugging
of arithmetic circuits.

Figure 4-2 shows different scenarios for a buggy implementation. Figure 4-2 (a)

illustrates the case when only one bug exists in the implementation. Figure 4-2(b) shows

the presence of two bugs which do not share input cones (independent bugs). We describe

how to fix one or more independent bugs in Section 4.1 and Section 4.2.1, respectively.

We present algorithms to detect and correct multiple independent bugs. In many cases,

bugs may share input cones as shown in Figure 4-2 (c). In this chapter, we also propose

an algorithm to detect and correct multiple dependent unknown bugs in Section 4.2.2.

Generally, a buggy implementation can contain any combination of independent and

dependent bugs as shown in Figure 4-2 (d).

Figure 4-3 shows different steps of our proposed debugging approach to detect and

correct multiple bugs for various scenarios depicted in Figure 4-2. In Section 4.1, we

present a single bug detection and correction algorithm. In order to determine that

57



Figure 4-2. Relative bugs’ locations and their corresponding input cones of influence.

whether there is more than one bug in the implementation, we try to partition the

remainder R into sub-remainders Ri first. If remainder can be partitioned successfully

into n sub-remainders, we can conclude that there are at least n independent bugs in

the implementation as we discussed in Section 4.2.1. Algorithms in Section 4.1 are used

over each sub-remainder Ri to detect and correct each bug. However, if a single bug

cannot be found for remainder Ri, there are multiple dependent bugs which construct the

sub-remainder Ri. Therefore, we try to find a single bug corresponding to remainder Ri

first. If we can find such a bug, the bug will be fixed. Otherwise, we try the proposed the

algorithm of Section 4.2.2 to find dependent bugs responsible for sub-remainder Ri. The

procedure will be repeated for all of the sub-remainders. To the best of our knowledge,

our proposed method is the first attempt to automatically detect and correct multiple

dependent/independent bugs in arithmetic circuits.

The remainder of the chapter is organized as follows. Section 4.1 discusses our

framework for directed test generation and bug localization/detection approach.

Section 4.2 describes our debugging approach to detect and correct multiple bugs.

Section 4.3 presents our experimental results. Finally, Section 4.4 concludes the chapter.

4.1 Automated Debugging using Remainders

Our framework uses the remainder that is generated by equivalence checking. If the

remainder is a non-zero polynomial, it means that the implementation is buggy; however,

the source of the bug is unknown.
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Figure 4-3. Overview of different steps of our proposed debugging framework. Independent
bugs are detected and corrected using the first looop with dotted line as
described in Section 4.2.1. Debugging of dependent bugs are discussed in
Section 4.2.2.

Example 1: Consider a 2-bit multiplier with gate-level netlist shown in Fig. 4-4.

Suppose that, we deliberately insert a bug in the circuit shown in Fig. 4-4 by putting

the XOR gate with inputs (A0, B0) instead of an AND gate. The specification of a 2-bit

multiplier is shown by fspec. The verification process starts from fspec and replaces its

terms one by one using information derived from the implementation polynomials as

shown in Equation 4–1. For instance, term 4.Z2 from fspec is replaced with expression

(R + O − 2.R.O). The topological order {Z3, Z2} > {Z1, R} > {Z0,M,N,O} >

{A0, A1, B0, B1} is considered to perform term rewriting. The verification result is shown

in Equation 4–1. Clearly, the remainder is a non-zero polynomial and it reveals the fact
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that the implementation is buggy.

Figure 4-4. Faulty gate-level netlist of a 2-bit multiplier

fspec : 8.Z3 + 4.Z2 + 2.Z1 + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 −A0.B0

step1 : 4.R+ 4.O + 2.z1 + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 −A0.B0

step2 : 4.O + 2.M + 2.N + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 −A0.B0

step3(remiander) : 1.A0 + 1.B0 − 3.A0.B0

(4–1)

Our approach takes the remainder and the buggy implementation as inputs and tries

to find the source of error in the implementation and correct it. As shown in Fig. 4-1, our

debugging framework has three important steps. First, we use the remainder to generate

directed tests to activate faulty scenarios. Next, we try to localize source of the bug by

leveraging the generated tests. Finally, we use an automated correction technique to detect

and correct the existing bug which resides in the suspicious area. We describe each of

these steps in detail in the following sections.

4.1.1 Directed Test Generation

It has been shown that if the remainder is zero, the implementation is bug-free [138].

Thus, when we have a non-zero polynomial as a remainder, any assignment to its variables

that makes the decimal value of the remainder non-zero is a bug trace. Remainder is a

polynomial with Boolean/integer coefficients. It contains a subset of primary inputs as

its variables. Our approach takes the remainder and finds all of the assignments to its
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variables such that it makes the decimal value of the remainder non-zero. As shown in

Example 1, the remainder may not contain all of the primary inputs. As a result, our

approach may use a subset of primary inputs (that appear in the remainder) to generate

directed tests with don’t cares. Such assignments can be found using a SMT solver by

defining Boolean variables and considering signed/unsigned integer values as total value of

the remainder polynomial (i 6= 0 ∈ Z, check(R = i)). The problem of using SMT solver

is that for each i, it finds at most one assignment of the remainder variables to produce

value of i, if possible. We implemented an optimized parallel algorithm to find all possible

assignments which produce non-zero decimal values of the remainder. Algorithm 2 shows

the details of our test generation algorithm. The algorithms gets remainder R polynomial

and primary inputs (PI) in the remainder as inputs and feeds binary values to PIs (si)

and computes the total value of a term (Tj). If the summation (value) of all the terms is

non-zero, the corresponding primary input assignments are added to the set of Tests (lines

8-9).

Algorithm 2: Directed Test Generation Algorithm

1: Input: Remainder, R
2: Output: Directed Tests, Tests
3: for different assignments si of PIs in R do
4: for each term Tj ∈ R do
5: if (Tj(si) ) then
6: Sum+ = CTj
7: end if
8: end for
9: if ( Sum != 0 ) then

10: Tests = Tests ∪ si
11: end if
12: end for
13: Return: Tests

Example 2: Consider the faulty circuit shown in Fig. 4-4 and the remainder

polynomial R = 2.(A1 + B0 − 2.A1.B0). The only assignments that make R to have a

non-zero decimal value (R = 2) are (A1 = 1, B0 = 0) and (A1 = 0, B0 = 1). These are
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the only scenarios that make difference between functionality of an AND gate and an OR

gate. Otherwise, the fault will be masked. Compact directed test are shown in Table 7-1.

Table 4-1. Directed tests to activate fault shown in Fig. 4-4

A1 A0 B1 B0

1 X X 0
0 X X 1

The remainder generation is one time effort, multiple directed tests can be generated

by using it. Moreover, if there are more than one bug in the implementation, the

remainder will be affected by all of the bugs. So, each assignment that makes the

remainder non-zero activates at least one of the existing faulty scenarios. Thus, the

proposed test generation method can also be applied when there are more than one fault

in the design.

4.1.2 Bug Localization

So far, we know that the implementation is buggy and we have all the necessary tests

to activate the faulty scenarios. Our goal is to reduce the state space in order to localize

the error by using tests generated in the previous section. The bug location can be traced

by observing the fact that the outputs can possibly be affected by the existing bug. The

proposed methodology is based on simulation of test cases.

We simulate the tests and compare the outputs with the golden outputs and keep

track of faulty outputs in set E = {e1, e2, .., en}. Each ei denotes one of the erroneous

outputs. To localize the bug, we partition the gate-level netlist such that fanout free

cones (set of gates that are directly connected together) of the implementation are found.

Algorithm 3 shows the procedure of partitioning of gate-level netlist of a circuit.

Each gate that its output goes to more than one gate is selected as a fanout. For

generality, gates that produce primary outputs are also considered as fanouts. Algorithm 3

takes gate-level netlist (Imp) and fanout list (Lfo) of a circuit as inputs and returns fanout

free cones as its output. Algorithm 3 chooses one fanout gate from Lfo and goes backward
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Algorithm 3: Fanout-free cone finder algorithm

1: Input: Circuit C, Fanout list, Lfo
2: Output: Fanout-free regions, Cones
3: for Each fanout gate gi ∈ Lfo of Circuit C do
4: C.add(g)
5: for All inputs gj of gi do
6: if !(gj ∈ Lfo ∪ PI) then
7: C.add(gj)
8: Call recursive for all inputs of gj over Imp
9: Add found gates to C

10: end if
11: end for
12: Cones = Cones ∪ C
13: end for
14: Return: Cones

from that fanout until it reaches the gate gi, whose input comes from one of the fanouts

from Lfo or primary inputs; the algorithm marks all the visited gates as a cone.

Algorithm 4: Bug Localization Algorithm

1: Input: Partitioned Netlist, Faulty Outputs E
2: Output: Suspected Regions CS
3: for each faulty output ei ∈ E do
4: find cones that construct ei and put in Cei
5: end for
6: CS = Ce0
7: for ei ∈ E do
8: CS = CS ∩ Cei
9: end for

10: Return: CS

Algorithm 4 shows the bug localization procedure. Given a partitioned erroneous

circuit and a set of faulty outputs E, the goal of the automatic bug localization is to

identify all of the potentially responsible cones for the error. First, we find sets of cones

Cei = {c1, c2, ..., cj} that constructs the value of each ei from set E (line 4-5). These cones

contain suspicious gates. We intersect all of the suspicious cones Ceis to prune the search

space and improve the efficiency of bug localization algorithm. The intersection of these

cones are stored in CS (line 7-8).
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If simulating all of the tests show the effect of the faulty behavior in just one of the

outputs, we can conclude that the location of the bug is in the cone that generates this

output. Otherwise, the location of the bug is in the intersection of cones which constructs

the faulty outputs. We use this information to detect and correct the bug of the circuit.

We describe the details of debugging in Section 4.1.3.

Example 3: Consider the faulty 2-bit multiplier shown in Fig. 4-5. Suppose the

AND gate with inputs (M,N) has been replaced with an OR gate by mistake. So, the

remainder is R = 4.A1.B0 + 4.A0.B1 − 8.A0.A1.B0.B1. The assignments that activate the

fault are calculated based on method demonstrated in Section 8-3. Tests are simulated

and the faulty outputs are obtained as E = {Z2, Z3}. Then, the netlist is partitioned

to find fanout free cones. The cones involved in construction of faulty outputs are:

CZ2 = {2, 3, 4, 6, 7} and CZ3 = {2, 3, 6, 4, 8}. The intersection of the cones that produce

faulty outputs is CS = {2, 3, 4, 6}. As a result, gates {2, 3, 4, 6} are potentially responsible

as a source of the error.

Figure 4-5. Faulty gate-level netlist of a 2-bit multiplier with associated tests

4.1.3 Error Detection and Correction

After test generation and bug localization, the next step is error detection. The

remainder is helpful since it contains valuable information about the nature of the bug

and its location. For example, when the faulty gate is located in the first level (inputs

of faulty gates are primary inputs), it creates certain patterns in the remainder. These

specific patterns are due to the termination of the substitution process in equivalence

64



checking after this level, which prevents errors from propagating any further. In Example

1, the first level OR gate is placed by mistake instead of an AND gate. Let us consider

the effect of the bug from algebraic point of view: the equivalent algebraic value of M

is M = A1 + B0 − A1.B0 in the erroneous implementation; however, in the correct

implementation, M should be equal to M∗ = A1.B0. Thus, the difference between M and

M∗, (A1 + B0 − 2.A1.B0) with a coefficient will be observed in the remainder. Therefore,

whenever a+b−2.a.b pattern is seen in the remainder and there is an OR gate with inputs

(a, b) in the implementation, we can conclude that the OR gate is the source of error

and it should be replaced with an AND gate. Table 4-2 shows the patterns that will be

observed for mis-placement of different types of gates. Note that, 3-input (or more) gates

can be modeled as cascades of 2-input gates. So, the patterns are also valid for complex

gates.

Table 4-2. Remainder patterns caused by gate misplacement error

Suspicious Gate Appeared Remainder’s Pattern Solution

AND (a,b)
P1 : -a-b+2.a.b S1 : OR (a,b)
P2 : -a-b+3.a.b S2 : XOR (a,b)

OR (a,b)
P1 : a+b-2.a.b S1 : AND (a,b)

P2 : a.b S2 : XOR (a,b)

XOR (a,b)
P1 : a+b-3.a.b S1 : AND (a,b)

P2 :-a.b S2 : OR (a,b)

From Section 4.1.2, we have a set of cones CS such that their gates are potentially

responsible for the bug. First, the gates in CS are extracted and they are kept in a set

G. Next, the suspicious gates in first level from G are considered and the remainder is

scanned to check whether one of the patterns in Table 4-2 is recognized. If the pattern is

found, the faulty gate is replaced with the corresponding gate. Otherwise, the terms of

the remainder are rewritten such that it contains output variable of first level gates (at

this time, we are sure that the first level gates are not the cause of the problem). We also

remove the non-faulty gates from G. Then, we repeat the process over the remaining gates

in G until we find the source of the error.
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Example 4: Consider the faulty circuit shown in Example 3. The remainder is

R = 4.A1.B0 + 4.A0.B1 − 8.A0.A1.B0.B1 and the potentially faulty gates are numbered

2, 3, 4, 6. As we can see, remainder R does not contain any patterns shown in Table 4-2.

It means that the first level suspicious gates 2, 3 and 4 are not responsible for the fault.

Thus, we try to rewrite the remainder’s terms with the output of the correct gates. In

this step, we know that gates 2 , 3 and 4 are correct so their algebraic expressions are also

true. As 6 is the only remaining gate, it is the answer. However, we continue the process

to show the proof. By considering M = A1.B0 and N = A0.B1, R will be rewritten as

R∗ = 4.(M +N −2.M.N) (the GCD of coefficients of remainder terms is computed and the

remainder is divided over GCD or signal’s weight is computed as shown in [58]). Now, we

consider the gates in the second level. This time R∗ has one of the patterns shown in the

Table 4-2. Based on Table 4-2, an AND gate with (M,N) as its inputs has been replaced

with an OR gate. The only gate that has these characteristics is gate 6 which is also in G.

It means that the source of the error has to be the gate 6 and if replaced with an AND

gate, the bug will be corrected.

Finding and factorizing of remainder terms in order to rewrite them would be

complex for larger designs. To overcome the complexity and obviate the need for manual

intervention, we propose an automated approach shown in Algorithm 5. The algorithm

takes faulty gate-level netlist, remainder R and potentially faulty gates of set G sorted

based on their levels as inputs. It starts from first level gate gi; if gi is the buggy gate,

one of the patterns in Table 4-2 should have been manifested in the remainder based on

gi’s type. Therefore, the debugging algorithm computes two patterns (P1, P2) with gi’s

inputs (lines 7-12) and scan the remainder to check whether one of them matches. If one

of the patterns is found, the bug is identified and it can be corrected based on Table 4-2

(lines 13-16). Otherwise, gi is correct and it will be removed from set G and next gate

will be selected. Moreover, the current algebraic expression of gi is true and it can be used

in subsequent iterations (gate gj from upper levels gets output of gi as one of its inputs,

66



the expression of gi can be used instead of its output variables). As we want to compute

patterns such that they contain just primary inputs (weight of gates’ output is computed

based on [58]), we use a dictionary to keep the expression of the gate output based on the

primary inputs (line 19). The weight of each gates’ output is computed from considering

known weight of primary inputs and primary outputs and moving from backward and

forward considering the fact that for XOR and OR gates, the output’s weight is equal to

inputs weight. In multipliers, the output’s weight of the first level AND gates is computed

as multiplication of inputs’ weights (they are responsible for partial products). On the

other hand, the output’s weight of other AND gate in the design is computed as the

summation of inputs’ weights (since they are mostly used in half adders). In Adders, the

output’s weight of all AND gates is computed as summation input’s weights. The process

continues until the bug is detected or set G is empty. As, suspicious gates form a cone

format, when the algorithm starts from primary inputs, it will not reach a gate whose

inputs do not exist in the dictionary. Note that, our debugging approach does not need

all of the counterexamples to work. It works even if there is no counterexample (all of the

gates are considered as suspicious) or there is just one counterexample. However, having

more counterexamples improves debug performance.

Example 5: We want to apply Algorithm 5 on the case shown in Example 4. We start

from gate 2 and compute P1 = −A1 −B0 + 2.A1.B0 and P2 = −A1 −B0 + 3.A1.B0 for gate

2. As these patterns do not exist in the remainder, gate 2 is correct and the dictionary

will be updated as (M = A1.B0). The same will happen for gate 3 and 4 and dictionary

will be updated as (M = A1.B0, N = A0.B1) at the end of this iteration. Now, the gate

6 is considered and the Pis are as follows: P1 = A1.B0 + A0.B1 − 2.A1.B0.A0.B1 and

P2 = A1.B0.A0.B1. Considering that R = 4(A1.B0 + 4.A0.B1− 2.A0.A1.B0.B1), P2 of gate 6

can be observed in R. So the bug is the OR gate 6 and based on Table 4-2 it will be fixed

by replacing with an AND gate.
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Algorithm 5: Error Detection/Correction

1: Input: Suspected Gates G, Remainder R
2: Output: Faulty Gate and Solution
3: sort gi based on their levels (lowest level first)
4: for each level j do
5: for each gi ∈ G from level j do
6: (a, b) = inputs(gi)
7: if !( each of (a, b) are from PI) then
8: a = dic.get(a)
9: b = dic.get(b)

10: end if
11: P1 = ComputeP1(a, b)
12: P2 = ComputeP2(a, b)
13: if (P1 is found in R) then
14: Return: gate gi and solution S1 from Table 4-2
15: end if
16: if (P2 is found in R) then
17: Return: gate gi and solution S2 from Table 4-2
18: else
19: remove gi from G
20: dic.add(output(gi), Expression(gi(a, b)))
21: end if
22: end for
23: end for

4.2 Debugging Multiple Bugs

In this section, we want to extend the presented approach in Section 4.1 to be able

to debug a faulty implementation of an arithmetic circuit with multiple bugs (we consider

gate misplacement as our fault model). If the equivalence checking of an arithmetic circuit

results to a non-zero remainder, we know that the implementation is buggy. However, the

sources of the errors are unknown. Our plan is to use the non-zero remainder in order to

generate directed tests to activate the bugs, localize the source of errors and correct them.

First, we explain how we extend the approach presented in Section 4.1 to correct multiple

independent bugs. Then, we present an approach to solve the debugging problem of an

arithmetic circuit with two dependent misplaced gates. Figure 4-6 shows different steps of

our proposed debugging approach to detect and correct multiple bugs.
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Figure 4-6. Overview of different steps of our proposed debugging framework.

If there are more than one bug in the implementation, the remainder will be affected

by all of them since all of the faulty gates are contributing in the equivalence checking

procedure as well as the remainder generation. In other words, the remainder shows

the effect of all (unknown) bugs exist in the implementation. Example 6 shows how the

remainder is generated when there are two bugs in the implementation.

Example 6: In the circuit shown in Figure 4-7, the AND gate with inputs (A0, B0)

as well as the AND gate with inputs (A1, B1) are replaced with XOR and OR gates by

mistake respectively (there are two faults in the implementation of a 2-bit multiplier).

The result of equivalence checking (remainder polynomial) can be computed as shown in

Equation 4–2.
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fspec : 8.Z3 + 4.Z2 + 2.Z1 + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 −A0.B0

step1 : 4.R+ 4.O + 2.z1 + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 −A0.B0

step2 : 4.O + 2.M + 2.N + Z0 − 4.A1.B1 − 2.A1B0 − 2.A0.B1 −A0.B0

step3(remiander) : R = A0 +B0 − 3.A0.B0 + 4.A1 + 4.B1 − 8.A1.B1

(4–2)

Figure 4-7. Gate-level netlist of a 2-bit multiplier with two bugs (dark gates) as well as
associated tests to activate them.

Detailed observation in the remainder generation procedure shows that the overall

remainder can be considered as a summation of different individual bug’s effect in the

equivalence checking process. For instance, one part of the remainder shown in Example 3,

comes from the remainder shown in Example 1 (the same bug) as (A0 +B0 − 3.A0.B0) and

the other part (4.A1 + 4.B1 − 8.A1.B1) is responsible for the second bug and it is equal to

the remainder that can be the result of the equivalence checking with an implementation

which contains only the second bug. Therefore, each assignment that makes the remainder

non-zero activates at least one of the existing faulty scenarios. Some tests may activate all

of the bugs at the same time. Thus, Algorithm 2 can be used to generate directed tests

when there are more than one fault in the design.

Example 7: Directed test to activate the buggy implementation of Example 6 are

shown in Figure 7. The assignments make the first part of the remainder non-zero

(A0 + B0 − 3.A0.B0), activates the first fault. For example, assignment (A1 = 1, A0 =

0, B1 = 0, B0 = 0) manifests the effect of the first fault in Z0. On the other hand, the

assignments that make the second part of the remainder non-zero (4.A1 + 4.B1 − 8.A1.B1),
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are tests to activate the second bugs. Assignment (A1 = 1, A0 = 0, B1 = 0, B0 = 0)

activates the second fault in Z2. However, the assignment (A1 = 1, A0 = 0, B1 = 0, B0 = 1)

activates both of the faults at the same time (Z0 and Z2).

To localize the source of errors, the generated tests are simulated to find faulty

primary outputs. Faulty gates exist in the cones that construct the functionality of

faulty outputs. In order to prune the search space and localize source of errors, we

cannot directly apply Algorithm 4 as their intersection may be a zero set. However, some

information can be found from using Algorithm 4. In following sections, we explained the

bug localization, bug detection, and correction for multiple bugs correction in two different

scenarios: i) bugs with independent input cones, ii) bugs which share some input cones.

4.2.1 Error Correction for Multiple Independent Bugs

We call two bugs independent of each other if they have different input cones

(fan-ins). Figure 4-7 shows two independent in a 2-bit multiplier. If multiple bugs are

independent of each other, their effect can be observed easily in the remainder as a

summation of each individual bug’s remainder (summation of sub-remainders). Therefore,

if the remainder is partitioned into multiple sub-remainders based on the primary inputs

(each part representing the effect of one bug), each sub-remainder as well as the associate

faulty cones can be fed into Algorithm 5 in order to detect and correct the source of each

independent errors.

If the input cones (input fan-ins) of faulty gates are separate from each other, a

different set of primary inputs may appear in each sub-remainders. In order to find the

sub-remainders, each term of the overall remainder and its corresponding monomial is

examined to determine which sub-remainder it belongs. Algorithm 6 shows the remainder

partitioning procedure.

Algorithm 6 takes the overall remainder R as input and returns the containing

sub-remainders Ris. The algorithm sorts the terms of the R based on their monomial size

(the number of variables exists in each term) in descending order (line 5). In the next
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Algorithm 6: Remainder Partitioning

1: Input: Remainder R
2: Output: Sub-remainders R
3: Input: Remainder R
4: Output: Sub-remainders R
5: Sort terms of R based on their size
6: R0 = largestTerm(R)
7: R = {R0}
8: for each term t ∈ R do
9: for each sub-remainder Ri ⊂ R do

10: if (Ri contains some of the variable t) then
11: Ri = Ri + t
12: else
13: new Rj = t
14: R = R ∪Rj

15: end if
16: end for
17: end for
18: Return: R

step, it starts from the largest term of the remainder R and adds it to sub-remainder R0

(line 6). Then, it examines all terms of R from the second largest term t to find out which

partition they belong (lines 7-8). If some of the variables which exist in the t already

exist in terms of sub-remainder Ri, term t will be added to sub-remainder Ri (lines 9-10).

Otherwise, the algorithm creates a new sub-remainder Rj and adds t to it (lines 12-13).

The process continues until all terms of the R are examined. If the algorithm results to

one sub-remainder, it shows that faulty gates do not have independent input cones. The

computed sub-remainders are fed into Algorithm 2 in order to generate directed tests

activating the corresponding bug of that sub-remainder. The generated test are used to

define the corresponding faulty outputs of each bug. Example 8 illustrates the remainder

partitioning procedure.

Example 8: Consider the faulty multiplier design shown in Figure 4-7 and corresponding

remainder shown in Equation 4–2. To be able to find different possible sub-remainders, the

remainder is sorted as: R = −3.A0.B0− 8.A1.B1 +A0 +B0 + 4.A1 + 4.B1. The partitioning
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starts from term −3.A0.B0 and as there are no sub-remainder so far, sub remainder R1 is

created and the term will be added to it as: R1 = −3.A0.B0. The second term −8.A1.B1

is examined and as R1 does not contains variables A1 and B1, new sub-remainder R2 is

created. Similarly, rest of the terms of R are examined and R1 and R2 are computed as:

R1 = −3.A0.B0 + A0 + B0 and R2 = −8.A1.B1 + 4.A1 + 4.B1. Corresponding tests of each

sub-remainder are shown in Figure 4-7.

Corresponding Tests of each sub-remainder are simulated and faulty outputs are

defined. The faulty outputs of each bug are fed into Algorithm 4 in order to find potential

faulty cones. Algorithm 5 is used with each sub-remainder as well as corresponding

potential faulty gates as its inputs and it tries to detect and correct of each bug. In other

words, the problem of debugging a faulty design with n independent bugs is mapped to

debugging of n faulty designs where each design contains a single bug. We illustrate how

to apply Algorithm 5 to correct multiple independent sources of error using Example 9.

Example 9: Having the directed tests shown in Figure 4-7, faulty outputs Z0 and Z2 as

well as two sub-remainders computed in Example 7, Algorithm 5 is used twice to find the

source of errors. In the first attempt, the faulty output is Z0 and the computed potential

faulty cone using Algorithm 4 contains gate 1. Therefore, gate 1 as well as R1, are fed into

the bug correction algorithm. Two patterns P1 = A0 + B0 − 3.A0.B0 (if the potential

faulty gate 1 should be an AND gate) and P2 = −1.A0.B0 (if the potential faulty gate

1 should be an OR gate) are computed. Therefore, Gate 1 should be replaced with an

AND gate to fix the first bug since the P1 is equal to the remainder. The same procedure

happens for the second bugs while the potential faulty gates are {2, 3, 4, 6, 7} since the

only faulty output is Z2. Trying different patterns results in a conclusion that gate 4

should be replaced with an AND gate.

4.2.2 Error Correction for Two Bugs with Common Input Cones

In this section, we describe how to detect and correct two bugs that they do

not have independent input cones. The key difference here from the cases that we
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solved in Section 4.2.1 is the fact that the remainder cannot easily be partitioned into

sub-remainders since some of the terms of the corresponding sub-remainder may be

canceled through other sub-remainders or they may be combined to each other. The

reason is that the bugs share some input cones (fan-ins) individual sub-remainders may

have common terms where contain a certain set of primary inputs as variables. When

sub-remainders are combined to each other to form the overall remainder, some term

combinations/cancellations happen. Moreover, some of the sub-remainders may be affected

by lower level faults and the presented method in Section 4.2.1 cannot solve these cases.

We illustrate the fact using the following example.

Example 10: Consider the faulty implementation of a 2-bit multiplier with two bugs

as shown in Figure 4-8. Gates 6 and 7 are misplaced with OR gates. it can be observed

from Figure 4-8 that two bugs share some set of input cones (gates {2, 3, 4} are common in

input cones of faulty gates 6 and 7). Applying equivalence checking on the circuit shown

in Figure 4-8 results in a non-zero remainder: R = 8.A1.B1 + 12.A1.B0 + 12.A0.B1 −

16.A0.A1.B0 − 16.A1.B0.B1. However, if only gate 6 is misplaced with an OR gate

in the implementation (single bug), the remainder will be equal to: R1 = 4.A0.B1 +

4.A1.B0 − 8.A0.A1.B0.B1. Similarly, when only gate 7 is misplaced with an OR gate

(single fault), the remainder will be computed as: R2 = 8.0.A1.B1 − 8.0.A0.A1.B0.B1.

As it can be observed, R 6= R1 + R2. The reason is that buggy gate 6 has an effect

on the generation of sub-remainder R2. As a result, R′2 should be computed as: R′2 =

8.0.A1.B1+8.0.A0.B1+8.A0.B1−16.A0.A1.B0−16.A1.B0.B1+8.0.A0.A1.B0.B1. Now, it can

be seen that the R = R1 +R′2. Note that there is not any monomial of A0.A1.B0.B1 in the

remainder R; however, this monomial exists in both R1 and R′2 with opposite coefficients

(term cancellation happens).

As it can be observed from Example 10, term cancellation as well as lower level

bugs’ effect are two main reasons that limit the applicability of the presented method in

Section 4.2.1 to detect and correct bugs with common input cones. In this section, we
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Figure 4-8. Gate-level netlist of a 2-bit multiplier with two bugs (dark gates) which shares
some input cones as well as associated tests to activate them.

present a general approach to correct and detect two gate misplacement bugs regardless of

the bugs’ positions.

The first step to fix unknown dependent bugs is to use of Algorithm 2 in order to

generate directed tests to activate unknown bugs. In the next step, tests are simulated

to define the faulty outputs (E) which the effect of faults can be propagated to them.

Algorithm 4 cannot be used to localized the potential faulty cones since the intersection

of faulty cones may eliminate some of faulty gates. Instead, union of all of the gates that

construct faulty outputs should be considered as potential faulty gate candidates to make

sure that all of the potential faulty gates are considered. The next step is to define faulty

gates and offer their solutions by using the remainder as well as potential faulty gates.

We are looking for two sub-remainders that their summation constructs the overall

remainder R. Note that sub-remainder of an individual bug may be affected by the other

existing bug in the implementation (for instance, sub-remainder R′2 which shows the

effect of faulty gate 7 in Example 10 contains the effect of faulty gate 6). Algorithm 7

is used to detect and correct two dependent bugs by finding two sub-remainders R1 and

R2 where their summation is equal to R (R = R1 + R2). Therefore, it tries to find two

equal polynomials: R − R1 and R2. The algorithm takes the remainder and potential

faulty gates as inputs and it returns two faulty gates and their solutions as output. The

algorithm contains two major steps: first, it constructs two patterns for each potentially

faulty gates based on Table 4-2 regarding the functionality of their input gates (lines
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7-10). For each pattern it computes the R − Pi and it stores the result in a dictionary

(lines 11-12). In the next step, each of the patterns Pj is checked whether it exists in the

dictionary (line 15). If such pair exist in the remainder, R1 = Pi and R2 = Pj are two

sub-remainders that we are looking for and their corresponding gates are faulty gates and

their solution can be found based on Table 4-2 (lines 16-18). Note that, by using hash map

R the complexity of the algorithm is proportional to number of faulty gates.

Algorithm 7: Debugging Two Dependent Bugs

1: Input: Suspicious gates G, remainder R
2: Output: Faulty gates and their solution
3: P = {} {keeps patterns for all gates as well as corresponding solution of each pattern}
4: R = {} {keeps remainder minus all patterns}
5: for each gate g ∈ G do
6: (a, b)=getInputPolynomials(g)
7: P1 = computeP1(a, b)
8: P2 = computeP2(a, b)
9: P = P ∪ {P1, P2}

10: R.put((R− P1), P1)
11: R.put((R− P2), P2)
12: end for
13: for each Pj ∈ P do
14: if Pj exists in R then
15: Pi = R.get(Pj)
16: gate gi = P.get(Pi) is faulty and get solution Si from Table 4-2
17: gate gj = P.get(Pj) is faulty and get solution Sj from Table 4-2
18: end if
19: end for

Example 11: Consider the faulty implementation of a 2-bit multiplier shown in

Figure 4-8 with remainder: R = 8.A1.B1+12.A1.B0+12.A0.B1−16.A0.A1.B0−16.A1.B0.B1.

Corresponding directed tests to activate existing bugs and faulty gates are shown in

Figure 4-8. Potential faulty gates are computed based on faulty outputs Z2 and Z3 as

gates {2, 3, 4, 6, 7, 8}. Patterns, their possible solution as well remainder minus patterns is

listed in Table 4-3. Note that, Table 4-3 is the combination of two list P and hash map R

which are mentioned in Algorithm 7. Each pattern listed in the second column is tested

whether exists in hash map R (part of hash map is shown in the fourth column). As it can
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Table 4-3. Patterns for potential faulty gates Example 11

Gate# Pattern solution Remainder minus pattern

2
2.A1 + 2.B0 − 4.A1.B0 OR −2.A1 − 2.B0 + 8.A1.B1 + 16.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1

2.A1 + 2.B0 − 6.A1.B0 XOR −2.A1 − 2.B0 + 8.A1.B1 + 18.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1

3
2.A0 + 2.B1 − 4.A0.B1 OR −2.A0 − 2.B1 + 8.A1.B1 + 12.A1.B0 + 16.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1

2.A0 + 2.B1 − 6.A0.B1 XOR −2.A0 − 2.B1 + 8.A1.B1 + 12.A1.B0 + 18.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1

4
4.A1 + 4.B1 − 8.A1.B1 OR −4.A1 − 4.B1 + 16.A1.B1 + 12.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1

4.A1 + 4.B1 − 12.A1.B1 XOR −4.A1 − 4.B1 + 20.A1.B1 + 12.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1

6
4.A0.B1 + 4.A1.B0 − 8.A0.A1.B0.B1 AND 8.A1.B1 + 8.A1.B0 + 8.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1 + 8.A0.A1.B0.B1

4.A0.A1.B0.B1 XOR 8.A1.B1 + 12.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1 + 4.A0.A1.B0.B1

7
4.A0.B1 + 4.A1.B0 + 4.A1.B1 − 8.A0.A1.B0 − 8.A1.B0.B1 + 4.A0.A1.B0.B1 AND 4.A1.B1 + 8.A1.B0 + 8.A0.B1 − 8.A0.A1.B0 − 8.A1.B0.B1 + 8.A0.A1.B0.B1

4.A0.A1.B0 + 4.A1.B0.B1 − 4.A0.A1.B0.B1 OR 8.A1.B1 + 12.A1.B0 + 12.A0.B1 − 20.A0.A1.B0 − 20.A1.B0.B1 + 4.A0.A1.B0.B1

8
8.0.A1.B1 + 8.0.A0.B1 + 8.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1 + 8.0.A0.A1.B0.B1 AND 8.A1.B1 + 12.A1.B0 + 12.A0.B1 − 16.A0.A1.B0 − 16.A1.B0.B1

8.A0.A1.B0 + 8.A1.B0.B1 − 8.A0.A1.B0.B1 XOR 8.A1.B1 + 12.A1.B0 + 12.A0.B1 − 24.A0.A1.B0 − 24.A1.B0.B1 + 8.A0.A1.B0.B1

be seen in the table, the fourth column contains the highlighted polynomial of the second

column. As it can be seen, the highlighted polynomials are equal. It means that gate 6

and 7 are faulty and they should be substituted with AND gates.

If the algorithm could not find two bugs responsible for the errors, the algorithm

should be continued for a larger number of bugs (for example, finding three sub-remainders

that their summation construct the remainder). Note that, Algorithm 7 requires to

construct the exact sub-remainder responsible for the potential bugs (it is not useful to

find the pattern as some part of the remainder). In arithmetic circuit implementations,

most of the gates are connected to half-adders or they are in the last level of the design.

Therefore, if we consider them as potentially faulty gates, their constructed patterns are

equal to the exact remainder. However, if they are not in the last level of the design and

they are not connected to a half-adder, the exact sub-remainder is also dependent on the

structure of the next level. To illustrate the point, suppose that we assume that gate g1

with functionality fg1 may be misplaced by polynomial fg1′ . Then the constructed pattern

is computed as: ∆ = fg1′ − fg1 . If gate g1 is connected to a half-adder with inputs g1 and

g2, the exact sub-remainder is computed as: ∆ − 2.∆.fg2 + 2.∆.fg2 = ∆. However, if it is

only connected to a XOR gate g2, the exact sub-remainder would be equal to: ∆− 2.∆.fg2 .

Note that, if we have two cascaded bugs, this effect only may happen for the higher level

bug since the effect of the lower level bug is considered while constructing the pattern of

the higher level bug.
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4.3 Experiments

4.3.1 Experimental Setup

The directed test generation, bug localization, and bug detection algorithms were

implemented in a Java program and experiments were conducted on a Windows PC with

Intel Xeon Processor and 16 GB memory. We have tested our approach on both pre- [93]

and post-synthesized gate-level arithmetic circuits that implement adders and multipliers.

Post-synthesized designs were obtained by synthesizing the high-level description of

arithmetic circuits using Xilinx synthesis tool. We consider gate misplacement or signal

inversion which change the functionality of the design as our fault model. Several gates

from different levels were replaced with an erroneous gate in order to generate faulty

implementations. The remainders were generated based on the method presented in [93].

Multiple counterexamples (directed tests) are generated based on one remainder. As each

counterexample can be generated independent of others, so we used a parallelized version

of the algorithm for faster test generation. We compared our test generation method with

existing directed test generation method [33] as well as random test generation. To start

our debugging procedure, we use the generated counterexamples in test generation phase

and find faulty primary outputs. Then, we run the bug localization algorithm that takes

faulty outputs as input. In the next step, we apply our debugging algorithm on suspicious

areas that bug localizer has identified. Note that, our debugging procedure does not need

the suspicious gates to work and in the worst case, it considers all of the gates suspicious.

However, using bug localization algorithm improves our method drastically. As remainder

may explode when bugs are closer to the primary outputs, these bugs are harder to detect

especially when the size of the circuit is very large. On the other hand, the bugs that

are closer to the primary inputs are easier to detect. We have inserted several bugs in

the middle levels of the circuits to conduct our experimental results. We compared our

debugging results with most recent work in this context and we use the benchmarks

obtained from the authors [58]. However, we have implemented their algorithm to be able
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Table 4-4. Results for Debugging One Error in Arithmetic Circuits. TO = timeout after
3600 sec; MO = memory out of 8 GB

Benchmark Test Generation (TG) Bug Localization (BL) Debugging/Correction (DC)
Type Size # Gates [33] (s) Random(s) Our TG(s) Bug Loc.(s) [58] Our (TG+BL+DC) Improvement

post-syn. Multipliers

4 72 1.88 0.02 0.01 0.001 0.2 0.02 10x
16 1632 42.69 1.48 0.32 0.03 4.32 0.78 5.5x
32 6848 205.66 3.03 0.82 0.16 18.50 2.40 10.94x
64 28K MO 16.97 1.65 0.83 151.05 13.63 11.08x
128 132K MO 66.52 3.83 5.1 1796.50 52.91 33.95x
256 640K MO TO 15.65 22.39 TO 205.01 -

pre-syn. Multipliers

4 94 1.27 0.04 0.01 0.001 0.17 0.03 5.6x
16 1860 43.11 1.93 0.4 0.03 4.45 0.83 5.36x
32 7812 189.50 5.69 0.87 0.2 23.1 2.67 8.65x
64 32K MO 29.07 1.77 0.8 180.3 14.91 12.09x
128 129K MO 83.60 4.1 3.8 1743.07 47.74 36.51x
256 521K MO TO 12.44 15.83 TO 170.48 -

post-syn. Adder
64 573 154.97 1.51 0.5 0.01 3.12 0.71 4.39x
128 1251 MO 3.48 1.07 0.05 6.60 1.69 3.90x
256 2301 MO 10.64 3.09 0.05 17.32 4.27 3.35x

pre-syn. Adder
64 444 128.12 1.15 0.35 0.01 2.95 0.51 5.78x
128 880 MO 4.40 0.84 0.03 6.46 1.12 5.76x
256 1698 MO 9.10 2.23 0.1 16.18 3.54 2.05x

to compare our method with their method. To enable fair comparison, similar to [58], we

randomly inserted bugs (gate changes) in the middle stages of the circuits. We improved

the run-time complexity of presented method in [52] by using efficient data structures such

as hash maps and sorted sets.

4.3.2 Debugging a Single Error

Table 4-4 presents results for test generation, bug localization and debugging methods

using multipliers and adders. The first column indicates the types of benchmarks. The

second and third columns show the size of operands and number of gates in each design,

respectively. Since the sizes of adder designs are smaller than multiplier designs, we show

results only for higher operand sizes (bit-widths). The fourth column indicates results for

directed test generation method presented in [33] by using SMV model checker [28] (We

give the model checker the advantage of knowing the bug). The fifth column represents

results of random test generation method (time to generate the first counterexample

using the random technique). The sixth column represents the time of our test generation

method that generates multiple tests. As it can be observed from Table 4-4, our method

has improved directed test generation time by several orders of magnitude. The seventh

column shows the CPU time for bug localization algorithm. The eighth column shows
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the debugging time of [58] using our implementation in Java. The next column provides

CPU time of our proposed approach which is the summation of test generation (TG),

bug localization (BL) and debugging/correction (DC) time. The last column shows

the improvement provided by our debugging framework. Clearly, our approach is an

order-of-magnitude faster than the most closely related approach [58], especially for

larger designs as bug localization has an important effect. The reported numbers are the

average of generated results for several different scenarios. For instance, if we zoom in test

generation of the first row (post-synthesized multiplier with 4-bit operands) of Table 4-4,

the reported results are the average of the nine possible scenarios shown in Table 4-5.

Table 4-5. Test Generation for 4-bit multiplier with 8-bit outputs
Faults [33] Ran. tests(ms) #tests Faulty outputs # Ran. Our TG(s)

XOR→ AND 1.48 47.70 18 Z7, Z6, Z5, Z4 2632 0.01
XOR→ OR 2.12 25.95 4 Z2 2945 0.01
XOR→ AND 1.95 19.21 128 Z4 2292 0.01
XOR→ OR 2.27 26.43 12 Z6, Z5, Z4, Z3 2945 0.05
XOR→ AND 1.03 16.31 14 Z6, Z5, Z4, Z3, Z2 2369 0.02
AND → XOR 2.44 0.47 3 Z6, Z5, Z4, Z3, Z2 1881 0.01
AND → OR 2.20 1.90 2 Z7, Z6, Z5 2258 0.01
AND → XOR 0.89 44.17 148 Z7, Z6, Z5, Z4 2164 0.03
OR→ AND 2.52 11.51 148 Z6 2920 0.01

Average 1.88 21.52 53 - 2489.55 0.01

Table 4-5 presents the debugging results of 4-bit post-synthesized multiplier. The

first column shows a possible set of gate misplacement faults. Time to generate the

first counterexample using [33] and random techniques are reported in second and third

columns, respectively. The fourth column shows the number of directed tests generated by

our approach to activate the bug (each of them activates the bug). The fifth column lists

the outputs that are affected by the fault (activated by the respective tests reported in the

fourth column). The sixth column shows the number of random tests required to cover all

of our directed tests. It demonstrates that even for such small circuits, using random tests

to activate the error is impractical. The last column shows our test generation time. As

mentioned earlier, the average of these scenarios is reported in the first row of Table 4-5.

80



The experimental results demonstrated three important aspects of our approach.

First, our test generation method generates multiple directed tests when the bug is

unknown in a cost-effective way. Second, our debugging approach detects and corrects

single fault caused by gate misplacement in a reasonable time. Finally, our debugging

method is not dependent on any specific architecture of arithmetic circuits and it can be

applied on both pre-synthesized and post-synthesized gate-level circuits.

4.3.3 Debugging Multiple Errors

Table 4-6 presents results for remainder-partitioning, test generation, bug localization

and debugging methods using multipliers and adders with multiple independent bugs.

The first column indicates the types of benchmarks. The second and third columns show

the size of operands and number of bugs in each design, respectively. The fourth column

represents the required time for remainder partitioning, and the fifth column represents

the time of our test generation method. The sixth column shows the CPU time for bug

localization algorithm. The seventh column shows the debugging time to detect and

correct all bugs. The next column provides CPU time of our proposed approach which

is the summation of remainder partitioning (RP), test generation (TG), bug localization

(BL) and bug detection algorithm (DC) times. The ninth column shows the required

time of method presented in [58] using our implementation in Java. The last column

shows the improvement provided by our debugging framework. Clearly, our approach

is an order-of-magnitude faster than the most closely related approach, especially for

larger multipliers as bug localization has an important effect. However, our performance

is comparable with [58] for debugging adders since the number of gates is small and

the number of inputs is large and test generation time may surpass the speed up of our

debugging method.

If remainder cannot be partitioned and Algorithm 5 cannot find a single source

of error, we know that there are dependent bugs in the implementation. Therefore,

Algorithm 7 is used to find dependent bugs. In this step, suspicious cones, as well as
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Table 4-6. Debugging time of multipliers for multiple independent bugs. TO = timeout
after 7200 sec.

Type Size #Bugs RP(s) TG(s) Bug Loc.(s) DC(s) total (RP+TG+BL+DC)(s) [58] Improvement

post syn. Multipliers

8x8
4 0.001 0.04 0.03 0.57 0.64 1.7 2.65x
8 0.001 0.07 0.03 0.86 0.97 2.5 2.57x

16x16
4 0.003 0.77 0.01 1.82 2.60 6.03 2.31x
8 0.003 1.2 0.02 2.62 3.84 10.07 2.70x

32x32
4 0.003 1.86 0.64 5.02 7.52 26.37 3.49 x
8 0.003 2.08 1.18 9.4 12.67 43.98 3.47x

64x64
4 0.006 5.65 3.9 38.48 48.03 178.89 3.72x
8 0.006 7.06 4.7 65.31 78.07 250.07 3.206x

128x128
4 0.008 11.59 10.1 124.52 146.22 1946.1 13.30x
8 0.008 25.67 20.87 235.88 282.43 2337.56 8.28x

256x256
4 0.012 39.58 70.65 508.42 618.66 TO -
8 0.012 65.21 122.01 906.22 1093.45 TO -

pre syn. Multipliers

8x8
4 0.001 0.44 0.03 0.35 0.82 1.73 2.11x
8 0.001 0.5 0.03 0.66 1.19 2.67 2.24x

16x16
4 0.002 1.3 0.05 2 3.35 7.4 2.21x
8 0.002 1.90 0.05 2.87 4.79 10.05 2.1x

32x32
4 0.003 2.08 0.73 5.8 8.61 30.34 3.52x
8 0.003 3.23 1.31 11.98 16.52 43.18 2.61

64x64
4 0.001 5.94 4.5 38.22 48.66 194 3.99x
8 0.005 7.91 8.9 84.7 101.52 225.85 2.22x

128x128
4 0.006 13.5 15.09 170.46 199.05 2036.37 10.36x
8 0.006 22.48 26.72 207.88 257.09 2260.6 8.79x

256x256
4 0.01 26.75 39.16 653 718.92 TO -
8 0.01 59.13 77.34 866.18 1002.66 TO -

post syn. Adders

64x64
4 0.004 1.09 0.07 0.37 1.53 3.43 2.24x
8 0.003 2.63 0.12 0.47 3.23 3.85 1.19x

128x128
4 0.005 3.34 0.2 0.71 4.25 7.59 1.78x
8 0.01 5.41 0.37 1.25 7.24 8.72 1.2x

256x256
4 0.01 8 0.3 5.62 13.93 19.87 1.42x
8 0.01 13.44 0.8 9.94 24.19 25.93 1.07x

pre syn. Adders

64x64
4 0.002 1.08 0.08 0.3 1.56 3.36 2.15x
8 0.006 2.12 0.08 0.42 2.63 3.56 1.35x

128x128
4 0.008 3.39 0.2 0.79 4.39 7.26 1.65x
8 0.009 5.57 0.42 1.7 7.69 8.31 1.04x

256x256
4 0.01 6.24 0.28 5.38 11.91 19.13 1.61x
8 0.01 11.52 0.81 8.27 20.61 23.35 1.13x

patterns, are generated for single bug detection phase will be reused. We consider all of

the gates in the suspicious cones as potential faulty gates (instead of intersecting faulty

cones) to make sure that all sources of errors can be found. Algorithm 7 uses hash maps

that map the string versions of polynomials to the possible solutions to able to perform a

faster lookup and achieve a linear computation complexity proportional with the number

of suspicious gates.

Table 4-7 presents results for remainder-partitioning, test generation, bug localization

and debugging methods using multipliers and adders with two dependent bugs. The first

column indicates the types of benchmarks. The second column shows the size of operands.

The third column represents the required time for remainder partitioning, and the fourth

column represents the time of our test generation method. The fifth and sixth columns
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show the CPU time for bug localization and debugging time, respectively. Bug localization

time is relatively small in comparison with other scenarios since the intersection of

faulty cones are not computed. The next column provides CPU time of our proposed

approach which is the summation of remainder partitioning (RP), test generation (TG),

bug localization (BL) and bug detection algorithm (DC) times. As the result shows, our

approach can detect and correct multiple dependent bugs in reasonable time. We did not

compare with any approaches since there are no existing approaches for detecting/fixing

multiple dependent bugs.

Table 4-7. Debugging time of multipliers for two dependent bugs.
Type Size RP(s) TG(s) BL(s) DC(s) total (s)

post syn. Mul.

8 0.001 0.1 0.01 0.98 1.09
16 0.002 0.35 0.02 2.23 2.61
32 0.002 0.96 0.08 13.92 14.94
64 0.004 3.77 0.2 77.12 81.1
128 0.008 8.06 0.6 241.05 249.71
256 0.012 31.8 36.02 1099.96 1167.79

pre syn. Mul.

8 0.001 0.1 0.01 0.91 1.02
16 0.001 0.77 0.01 5 5.78
32 0.002 1.03 0.08 13.54 14.65
64 0.003 4.65 0.1 96.3 101.05
128 0.005 7.88 0.6 220.22 228.70
256 0.01 19.41 22.05 982.9 1024.37

post syn. Mul.
64 0.001 01.18 0.01 0.55 1.74
128 0.011 5.4 0.02 3.47 8.90
256 0.011 16.09 0.1 9.42 25.62

pre syn. Add.
64 0.003 1.13 0.01 0.53 1.67
128 0.008 6.3 0.01 2.36 8.68
256 0.01 10.97 0.08 15.04 24.10

4.4 Summary

In this chapter, we presented an automated methodology for debugging arithmetic

circuits. Our methodology consists of efficient directed test generation, bug localization,

and bug correction algorithms. We used the remainder produced by equivalence checking

methods to generate directed tests that are guaranteed to activate the source of the bug

when the bug is unknown. We used the generated tests to localize the source of the bug

and find suspicious areas in the design. We also developed an efficient debugging algorithm

that uses the remainder as well as suspicious areas to detect and correct the bug without

any manual intervention. We extended the proposed approach to automatically detect

and correct multiple bugs. Our experimental results demonstrated the effectiveness of
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our approach to solve debugging problem for large and complex arithmetic circuits by

improving debug performance by an order-of-magnitude compared to the state-of-the-art

approaches.
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CHAPTER 5
INCREMENTAL ANOMALY DETECTION

Symbolic algebra is a promising approach to verify large and complex arithmetic

circuits. Existing algebraic-based verification methods generate a remainder to indicate

buggy implementation. The remainder is beneficial for debugging of the faulty implementation

since it can be used for automated test generation, bug localization, and bug correction.

However, the effectiveness of existing equivalence checking approaches [52, 58] in

fixing of the unknown Trojans is dependent on the result (generated remainder) of the

equivalence checking techniques. None of the existing techniques [34, 121, 128] are capable

of generating a remainder when the bug is deep inside the design. These methods are

not scalable and leads to explosion in size of the remainder when the design is faulty.

To make the matters worse, the location of the bug can also lead to the explosion in

the number of remainder terms. In this chapter, we propose an incremental equivalence

checking method to address the scalability challenges by solving the verification problem

in the increasing order of design’s input complexity. Our proposed approach makes two

important contributions. It is able to generate smaller and compact remainders for large

designs. Our proposed incremental debugging is capable of localizing and correcting

multiple hard-to-detect bugs irrespective of their location in the design. Experimental

results demonstrate that our approach can efficiently debug most difficult bugs in large

arithmetic circuits when the state-of-the-art methods fail.

In this chapter, we address the above challenges by proposing an incremental

debugging framework. The proposed approach partitions the primary inputs’ space of

the design in order to solve the verification and debug problems in the increasing order

of the design complexity. The verification is performed in several iterations where the

equivalence of the specification and implementation is checked with considering primary

inputs’ constraints. The basic intuition behind our work is to observe the fact that it is

efficient to debug an error in a smaller region (e.g., the portion of the design that multiples
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Figure 5-1. Comparison of the number of terms in different iterations in verification of a
4x4 multiplier when: i) the implementation is correct, ii) the implementation is
buggy and the bug is close to the primary inputs, and iii) the implementation
is buggy implementation and the bug is in the deeper stages of the design
(e.g., close to the primary outputs).

the first two bits) instead of searching in the whole 4x4 multiplier. If no bugs found in

the region representing 1 × 1 multiplication, in the next iteration a larger region (e.g.,

representing 2 × 2 multiplication) will be searched. On the surface, it may seem that our

approach will take longer than solving directly on the original design, but as proposed

work (Section 5.1) and results (Section 5.2) demonstrate that our well-crafted incremental

approach drastically reduces the debugging complexity.

The rest of the chapter is organized as follows. Section 5.1 describes our proposed

incremental equivalence checking and debugging framework. Section 5.2 presents our

experimental results. Section 5.3 concludes the chapter.

5.1 Efficient Debugging of Arithmetic Circuits

In this chapter, we present an approach to incrementally perform equivalence checking

between an arithmetic circuit specification and its implementation. We consider gate

misplacement that changes the functionality of the design as our fault model. Figure 5-2

shows an overview of our proposed approach. Figure 5-2 highlights three key parts of our

approach: i) finding an efficient order of primary inputs and partition the inputs’ space

into different constraints based on the given order; ii) incremental equivalence checking;
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Figure 5-2. Overview of our proposed approach.

and iii) incremental debugging approach. The rest of this section describes these steps in

detail.

5.1.1 Incremental Equivalence Checking

In this section, we present an approach to solve the equivalence checking problem in

complex arithmetic circuits incrementally. The proposed approach is based on partitioning

the input space of the design by applying certain constraints on primary inputs to solve

the equivalence checking problem for each input constraint. If set M = {0, 1}n shows

all input combinations of a design with input bits {x0, x1, ..., xn−1} and if specification

(S) and implementation (I) are equivalent for all combinations of (S M≡ I), they should

also be equivalent for any input combinations that belongs to M (∀M ⊂ M, S M≡ I). If

the implementation is buggy, at least one of the intermediate reductions will result in a

non-zero remainder.
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Clearly, it is not feasible to repeat the equivalence checking procedure for all 2n input

combinations if the design contains n bits of primary inputs. In the existing methods,

the inputs are represented by abstract symbols that can get any values. However, we

propose an input space partitioning method that is based on keeping some of the primary

inputs in symbolic form and assigning Boolean values (either zero or one) to the rest

of the primary inputs. This approach expedites the remainder generation time, and it

also reduces the number of terms in the remainder and makes it possible to generate a

remainder irrespective of the location of the bug. In other words, this approach prevents

the remainder’s term explosion effect.

Algorithm 8 shows our input partitioning approach. Given the set of primary inputs

K with a particular order (order selection will be discussed in Section 5.1.2), the algorithm

returns n different constraints on primary inputs where n is the number of primary inputs.

Initially, the algorithm sets all of the inputs to zero except the first input in set K which

is kept in the symbolic form, and the algorithm adds them to the set of results M (lines

5-8). In the next step, it keeps the first input in the symbolic form and sets the second

input of the ordered set as ’1’, and sets other inputs to ’0’, and adds the constraints to the

result. This process continues until all of the inputs are kept in their symbolic form except

the last one which is set to true. The variable index presents the index of primary inputs

that should be assigned to true (line 11). The variables before the index variable are kept

in their symbolic form, and variables that come after the index are assigned to false (lines

12-15). In each iteration, the index variable is updated (line 16). The algorithm returns

the set of constraints as output. This algorithm guarantees (see the proof of Theorem 1)

that the entire inputs’ space is covered since all of the combinations of primary inputs

are considered (each input bit is assigned to either one, zero or kept in the symbolic form

which can take both values).

Example 1: Assume that we want to partition the input space of the 2-bit multiplier

shown in Figure 5-3 using Algorithm 8. Suppose that primary inputs are given in the
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Algorithm 8: Algorithm for Generating of Input Constraints

1: Input: Primary inputs K
2: Output: Set of Constraints Map M
3: new map M = {}; n = sizeOf(K)
4: M.add(0, K[0])
5: for i = 1; i < n; j + + do
6: M.add(i, false)
7: end for
8: M.add(M), index = 1
9: for i = 0; i ≤ n; i+ + do

10: M = {}
11: M.put(index, true)
12: for j = 0; j < index; j + + do
13: M.add(j,K[j])
14: end for
15: for j = index+ 1; i ≤ n; j + + do
16: M.put(j, false)
17: end for
18: index+ +
19: M.add(M)
20: end for
21: Return: M

following order: {A0, A1, B0, B1}. Table 5-1 shows the four different constraints on primary

inputs. It can be easily verified that these four constraints cover the entire primary inputs’

space. The first and second rows cover two combinations each, the third row covers four

combinations, and the last row covers eight combinations. Therefore, it covers all sixteen

combinations in Table 8.

Figure 5-3. Faulty netlist with one bug (gate 8 should have been an AND)
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Table 5-1. Different constraints on primary inputs of a 2-bit multiplier.

A0 A1 B0 B1

A0 0 0 0
A0 1 0 0
A0 A1 1 0
A0 A1 B0 1

Theorem 1. A constraint table with n variables (n rows) effectively captures 2n input

sequences.

Proof. The first row of the constraint table covers two of the input sequences since

the first variable is kept as its symbolic form (which it can be either 0 or 1) and other

variables are assigned to 0s. Similarly, the second row also covers two combinations as

the first variable is in its symbolic form and the second variable is fixed to 1 and the rest

of the variables are assigned to zero. Likewise, in the row i where i 6= 1, i variables are

in their symbolic forms and one variable is assigned to 1 and rest of the variables are

assigned to 0. Therefore, row i 6= 1 captures 2i−1 input sequences. Therefore, for n (n > 1)

rows we have:

2 +
n∑
i=2

2i−1 = 2 + (2n − 2) = 2n

We propose an incremental equivalence checking method using the constraints

computed based on Algorithm 8. The original equivalence checking problem is mapped

to n equivalence checking sub-problems where the specification and implementation

polynomials are updated by applying the corresponding constraints. In each sub-problem,

a new set of implementation polynomials is computed based on propagating the

integer values of the corresponding constraint and considering them while constructing

polynomials of each gate and each fanout-free region. Specification polynomial is also

updated by applying the conditions of primary inputs in the original specification

polynomial. In each sub-problem, the corresponding specification polynomial is reduced

over the related implementation polynomials. If the remainder is non-zero, the given

constraint manifests some bugs in the design. The implementation and specification of an
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arithmetic circuit are equivalent if remainders of each of the n sub-problems is computed

as a zero remainder.

Algorithm 9: Incremental Equivalence Checking Algorithm

1: Input: Input constraint Mi, specification polynomial fspec, Gate-level netlist C
2: Output: Remainder r if the implementation is faulty
3: fspeci =findSpecificationPolynomial(fspec, Mi)
4: Fi =findImplementationPolynomials(C, Mi)
5: ri = reduction of fspeci over fjs ∈ Fi
6: if (ri! = 0) then
7: Implementation is buggy
8: return ri
9: end if

10: Return: 0 {correct implementation for constraint Mi}

Algorithm 14 shows the procedure of incremental equivalence checking for one

iteration. It takes input constraints Mi, original specification polynomial fspec as well

as partitioned gate-level netlist C as inputs. It evaluates whether specification fspec and

implementation C are equivalent considering the constraint Mi. The algorithm returns

a counterexample in case of mismatch. The algorithm consists of n iterations each

responsible for one inputs’ constraints. Specification polynomial fspec is updated based on

the input constraints (line 4). Implementation polynomials corresponding to fanout-free

region’s of C are also reconstructed by applying the constraints. Note that, the polynomial

of a fanout-free region is reconstructed if at least condition of one of the region’s inputs

is different. Otherwise, the polynomial computed in previous iteration is reused. The

equivalence checking uses Gröbner basis reduction to reduce fspeci over implementation

polynomials Fi to find a non-zero remainder if a bug exists in the implementation.

Example 2: Consider the 2-bit multiplier shown in Figure 5-3. We want to apply

the incremental equivalence checking approach of Algorithm 14 using all of the input

constraints shown in Table 5-1 to verify the correctness of the implementation. Four

iterations of the equivalence checking process are needed as shown in Equation 5–1

to manifest the effect of the bug. Specification and implementation polynomials are
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updated using each constraint. For instance, polynomial of gate 3 is computed as: N =

A0 + B1 − A0.B1 = A0 as B1 is considered zero in the first iteration (first row of the

Table 5-1). Since the last iteration generates a non-zero remainder, the implementation is

faulty.

F1 = {Z0 = 0,M = 0, N = 0, O = 0, R = 0, Z1 = 0, Z2 = 0, Z3 = 0}

fspec1 : 8.Z3 + 4.Z2 + 2.Z1 + Z0

step11(remainder) : 0

F2 = {Z0 = A0,M = 0, N = 0, O = 0, R = 0, Z1 = 0, Z2 = 0, Z3 = 0}

fspec2 : 8.Z3 + 4.Z2 + 2.Z1 + Z0

step12(remainder) : 0

F3 = {Z0 = A0,M = A1, N = 0, O = 0, R = 0, Z1 =M,Z2 = 0, Z3 = 0}

fspec3 : 8.Z3 + 4.Z2 + 2.Z1 + Z0 − 2.A1 −A0

step13 : 2.Z1 + Z0 − 2.A1 −A0

step23(remainder) : 0

F4 = {Z0 = A0.B0,M = A1.B0, N = A0, O = A1, R =M.N,

Z1 = A1, Z2 =M +N − 2.M.N,Z3 = R+O −R.O}

fspec4 : 8.Z3 + 4.Z2 + 2.Z1 + Z0 − 4.A1 − 2.A1.B0 − 2.A0 −A0.B0

step14 : 8.R+ 8.O − 16.R.O + 2.Z1 + Z0 − 4.A1 − 2.A1.B0 − 2.A0 −A0.B0

step24 : 8.M.N + 8.O − 16.M.N.O + 2.M + 2.N + Z0 − 4.A1 − 2.A1.B0

− 2.A0 −A0.B0

step34(remainder) : 8.A1 − 8.A1.A0.B0

(5–1)

As shown in Equation 5–1, the remainder is generated using the last constraint of

Table 5-1 (worst case). However, the complexity of equivalence checking using the given

constraint is lower than existing approaches. The generated remainder also has lower

complexity compared to with the original remainder that can be achieved with existing

methods (r = 8.A1.B1 − 8.A1.A0.B0.B1).

The merit of this approach can be observed for verifying complex and buggy

implementation since the size of the remainder’s terms are reduced by assigning the design

variables to either zero or one. Therefore, the possibility of term explosion is drastically

reduced. On the other hand, if the implementation is correct, all of the n iterations should
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be performed. However, the time complexity does not grow n times since the time and

memory complexities of most of the iterations are negligible.

5.1.2 Ordering of Primary Inputs

Ordering of primary inputs to produce inputs’ constraints impacts the performance of

the proposed verification approach of Section 5.1.1 when the implementation is buggy. The

size of the remainder depends on the location of the bugs. In this section, we explore a set

of ordering of primary inputs to facilitate remainder generation for hard-to-detect bugs

and prevent term explosion effect.

The remainder grows through the procedure of reduction of fspec over implementation

polynomials. The very first time that the functionality of the buggy gate is involved in

the intermediate steps of reduction of fspec, the core of the remainder is formed by terms

showing the difference of the faulty functionality from the expected functionality (δ).

Terms of the remainder grow gradually during the reduction by substituting terms of

the δ with the functionality of gates in the input cone of the faulty cone. Therefore, this

approach is extremely helpful while verifying integer arithmetic circuits which contain

long carry chain and the functionality of primary outputs is dependent on earlier stages of

the design. We propose to start the incremental verification using the constraints which

keep the most significant inputs’ bits in symbolic forms and assign other bits to zero. This

approach manifests the existing bugs with a smaller and more efficient remainder and

makes the debugging possible. We propose to interleave bits of different primary inputs

and sort inputs’ bit in the set K in descending order (most significant bits get higher

order) while constructing inputs’ constraints using Algorithm 8.

Table 5-2. Input constraints to efficiently verify and debug faulty circuit shown in
Figure 5-3. The Most significant bits have priority.

A1 B1 A0 B0

A1 0 0 0
A1 1 0 0
A1 B1 1 0
A1 B1 A0 1
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Example 3: To efficiently verify the implementation of a 2-bit multiplier shown in

Figure 5-3, we use Algorithm 8 with the following order of primary inputs: {A1, B1, A0, B0}.

Algorithm 8 generates input’s constraints as shown in Table 5-2. Equation 5–2 shows the

steps of the verification. As it can be observed from Equation 5–2, the complexity of

the remainder has reduced significantly in comparison with the remainder of Example

2 (8.A1 − 8.A1.A0.B0) as well as original remainder of existing approaches (r =

8.A1.B1 − 8.A1.A0.B0.B1). Different ordering improves the complexity of the incremental

verification approach and enables generation of a more efficient remainder for the same

bug.

F1 = {Z0 = 0,M = 0, N = 0, O = 0, R = 0, Z1 = 0, Z2 = 0, Z3 = 0}

fspec1 : 8.Z3 + 4.Z2 + 2.Z1 + Z0

step11(remainder) : 0

F2 = {Z0 = 0,M = 0, N = 0, O = A1, R = 0, Z1 = 0, Z2 = A1, Z3 = A1}

fspec2 : 8.Z3 + 4.Z2 + 2.Z1 + Z0 − 4.A1

step12 : 2.Z1 + Z0 + 8.A1

step22(remainder) : 8.A1

(5–2)

5.1.3 Incremental Debugging

The generated remainder and the corresponding constraints can be used to debug

the faulty design more effectively based on the approach presented in [52]. Our approach

is orthogonal to [52] and can be used on top of it. To generate directed tests to activate

the existing fault, assignment to the remainder’ variables can be performed such that the

integer value of the remainder becomes non-zero. Smaller remainder needs less effort to

generate directed tests. The generated test and associated constraints are used to find

faulty outputs and localize the source of the bug. The remainder contains terms which

show the difference in the functionality of the faulty gate with the expected correct gate

based on the functionality of the gate’s inputs. Therefore, for each suspicious gate, two

patterns are constructed based on Table 5-3 to detect and correct the source of the bug.
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Using the incremental debugging, it is possible that some inputs of gates are equal to

zero. Therefore, some suspicious AND gates may have two equal patterns during pattern

construction. It can be observed from Table 5-3, while generating patterns for a suspicious

AND gate, if either input a or b is equal to zero, then P1 and P2 will be equal. Only in

this case, the equivalence checking should be repeated in order to find the solution of the

faulty AND gate (whether the correct gate should be an OR gate or a XOR gate).

Table 5-3. Templates can be caused by gate misplacement error

Faulty Gate Appeared Remainder’s Pattern Correct Gate

AND (a,b)
P1 : -a-b+2.a.b OR (a,b)
P2 : -a-b+3.a.b XOR (a,b)

OR (a,b)
P1 : a+b-2.a.b AND (a,b)

P2 : a.b XOR (a,b)

XOR (a,b)
P1 : a+b-3.a.b AND (a,b)

P2 :-a.b OR (a,b)

Algorithm 10 shows an overview of our proposed incremental approach. The

algorithm includes four key parts: i) finding an efficient order of the primary inputs

(line 3); ii) partitioning the inputs’ space into different constraints based on the given

order (line 4 is Algorithm 1); iii) incremental equivalence checking (line 6 is Algorithm 2);

and iv) incremental debugging (lines 9-12) which can be performed using [52].

Example 4: Considering the faulty implementation shown in Figure 5-3 and

remainder r = 4.A1, the only assignment that makes r non-zero is A1 = 1. Considering

the other constraints that generates the remainder, A1, B1, A0, B0 = “11XX” is a directed

test to activate the fault. The test activates the effect of the bug in primary output Z3.

Therefore, gates 2, 3, 4, 6, 8 are suspicious. Patterns are constructed for each of the gate as

2(P1 = P2 = 2.A1), 3(P1 = P2 = 1), 4(P1 = P2 = 4.A1), 6(P1 = P2 = 0), 8(P1 = 8.A1, P2 =

0). Therefore, gate 8 is faulty and it should be replaced with an AND gate. Note that the

weight of each gates’ output is computed by considering known weight of primary inputs

and outputs, and traversing in both backward and forward directions while propagating

the weights based on the approach outlined in [58].
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Algorithm 10: Incremental Debugging Algorithm

1: Input: Specification polynomial fspec, Gate-level netlist C, Primary inputs PI
2: Output: Potential faulty gate and its solution
3: K = OrderPrimaryInputs(PI)
4: M=GenerateInputConstraints(K)
5: for each input constraints Mi ∈ M do
6: ri=IncrementalEquivalenceChecking(Mi, fspec, C)
7: if (ri! = 0) then
8: T=GenerateDirectedTests(ri)
9: G=BugLocalization(T, C)

10: (G, s)= BugDetectionAndCorrection(G)
11: gate G is buggy and s is the solution
12: end if
13: end for
14: Return: Implementation is correct {if none of the constraints finds a non-zero

remainder}

Our proposed approach can also be beneficial to debug multiple errors since our

incremental debugging method has the ability to differentiate the effect of each bug in one

specific remainder. For example, suppose that two bugs, shown in Figures 4-4 and 5-3,

are inserted in the same circuit. Therefore, the process shown in Equation 5–2 can show

the effect of the last stage bug. Using the procedure shown in Example 4, the bug can be

fixed. After fixing the first bug, if we continue the incremental debugging procedure, the

effect of the second bug will be manifested in remainder r2 = +1 − 2.A0. Using the same

method shown in Example 1, the second bug also can be detected and fixed. Therefore,

both bugs in the design can be fixed.

5.2 Experiments

5.2.1 Experimental Setup

Incremental equivalence checking and debugging algorithms were implemented using

a Java program and experiments were performed on an Intel Xeon Processor with 16 GB

memory. We have tested our approach on post-synthesized gate-level integer arithmetic

circuits that implement adders and multipliers. The post-synthesized integer arithmetic

circuits are more difficult to verify and debug due to their optimized architectures and
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their carry chains. The designs were synthesized using Xilinx synthesis tool. We consider

gate misplacement that changes the functionality of the design as our fault model. To

illustrate that our debugging approach is not dependent on the location of the bug, we

partitioned the implementation in four levels and several gates from these levels were

randomly replaced with a faulty gate to create erroneous implementations. Inputs’

constraints are generated automatically using a program. The order of constraints is

determined based on the approach presented in Section 5.1.2. In order to generate the

remainder, we have created three different threads: i) using no input constraints (which

is similar to [34]), ii) using input constraints starting from the least significant input bits

(as described in Section 5.1.1), and iii) using input constraints starting from the most

significant bits (as explained in Section 5.1.2). We have considered the fastest time for

remainder generation among these three threads for the reported time in equivalence

checking. In other words, when any one of these threads generates a remainder, the other

two threads are terminated. We compared our equivalence checking and debugging results

with state-of-the-art approaches [34, 52].

5.2.2 Results

Table 5-4 presents the results of our incremental equivalence checking and debugging

approaches. The first column presents the type of the benchmarks which are either

two-input ripple carry adders or two-input array multipliers. The second and third

columns indicate the input size (firstOperand× secondOperand) and design size (number

of gates), respectively. The fourth column shows the location of the bug. We partition

the implementation into four levels, e.g. “0 − 1/4” refers to the gates closest to the

primary inputs and “3/4 − 4/4” refers to the gates which are placed in the deeper stages

of the design (closest to the primary outputs). The fifth column shows the equivalence

checking result using Z3 SMT solver [43]. To use a SMT solver, we have converted

polynomials ( specification and implementation polynomials) into SMT solver format.

The sixth column presents the equivalence checking (run-time in seconds) results of [34]
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Table 5-4. The results of the proposed incremental equivalence and debugging approaches
for integer arithmetic circuits. TO = timeout after 5 hours; MO = memory out
of 16 GB.

Type Size #Gates Bug. Loc.
Equivalence checking (s)

Debugging (s)
[52] Our Approach

Imp.
Z3 [34] Ours Imp. TG BL DC Total TG BL DC Total

Post-
Syn
Mult.

8x8 368

0− 1/4 23.35 0.05 0.05 1x 0.08 0 0.05 0.13 0.01 0 0.02 0.03 4.3x
1/4− 2/4 22.83 45.31 0.05 456.6x 5.17 0.01 3.64 8.82 0.01 0 0.02 0.03 294x
2/4− 3/4 22.59 TO 0.04 564.7x 0.01 0 0.06 0.07 ∗
3/4− 4/4 23.13 TO 0.03 771x 0.01 0 0.07 0.08 ∗

16x16 1.6K

0− 1/4 107.1 0.51 0.51 1x 0.34 0.01 0.69 1.04 0.02 0 0.03 0.05 20.8x
1/4− 2/4 104.5 TO 0.12 870x 0.03 0.01 0.2 0.24 ∗
2/4− 3/4 105.4 MO 0.14 752.8x 0.01 0.01 0.3 0.32 ∗
3/4− 4/4 109.6 MO 0.15 730.6x 0.02 0.02 0.45 0.49 ∗

32x32 7K

0− 1/4 MO 1.57 1.57 1x 0.75 0.1 5.27 6.12 0.1 0.02 0.1 0.22 27.8x
1/4− 2/4 MO MO 1.09 ∗ 0.1 0.03 0.31 0.44 ∗
2/4− 3/4 MO MO 0.5 ∗ 0.1 0.04 4.0 4.14 ∗
3/4− 4/4 MO MO 0.2 ∗ 0.03 0.1 5.64 5.77 ∗

64x64 28K

0− 1/4 MO 16.43 16.43 1x 2.7 5 19.21 26.91 0.1 0.1 0.9 1.1 24.5x
1/4− 2/4 MO MO 24.16 ∗ 0.3 0.1 2.6 3.0 ∗
2/4− 3/4 MO MO 1.35 ∗ 0.3 0.2 14.7 15.2 ∗
3/4− 4/4 MO MO 0.72 ∗ 0.1 1.6 8.2 9.9 ∗

128x128 132K

0− 1/4 MO 62.23 62.23 1x 4.7 28 278.4 311.1 1.1 0.3 3.5 4.9 63.5x
1/4− 2/4 MO MO 256.24 ∗ 1.3 0.7 21.0 23.0 ∗
2/4− 3/4 MO MO 37.67 ∗ 0.9 2.2 50.8 53.9 ∗
3/4− 4/4 MO MO 20.41 ∗ 0.4 3.9 38.1 42.4 ∗

Avg. > 64.8 > 21.01 21.2 > 377x > 2.2 > 5.5 > 51.2 > 59x 0.25 0.45 7.6 8.3 > 72.5

Post-
Syn

Adder
64x64 573

0− 1/4 51.36 0.02 0.02 1x 0.69 0 0.31 0.82 0.01 0 0.01 0.02 68.3x
1/4− 2/4 38.39 TO 1.04 36.91 0.01 0 0.02 0.03 ∗
2/4− 3/4 32.61 TO 0.71 45.9x 0.01 0 0.07 0.08 ∗
3/4− 4/4 30.51 TO 0.12 254.2x 0.01 0 0.07 0.08 ∗

128x128 1.2K

0− 1/4 101.1 0.17 0.17 1x 1.99 0.01 0.5 2.5 0.01 0 0.01 0.02 138.8x
1/4− 2/4 115.8 TO 4.2 27.6x 0.01 0 0.05 0.06 ∗
2/4− 3/4 116.9 MO 2.8 41.7x 0.01 0 0.06 0.07 ∗
3/4− 4/4 115.9 MO 1.04 111.4x 0.01 0.01 0.07 0.09 ∗

256x256 2.3K

0− 1/4 158 3.84 3.84 1x 3.35 0.1 1.51 4.96 0.01 0.01 0.03 0.05 107.8x
1/4− 2/4 252.5 TO 21.6 11.7x 0.01 0.01 0.2 0.22 ∗
2/4− 3/4 281.5 MO 31.3 8.9x 0.01 0.01 0.14 0.16 ∗
3/4− 4/4 301.7 MO 4.4 68.5x 0.01 0.01 0.3 0.32 ∗

Avg. 133.0 > 1.3 6 48.3x > 2 > 0.1 > 0.7 > 2.7 0.01 0.01 0.1 0.1 > 105x

“*” indicates our approach works but existing method fails. “ ” shows the cases when test generation, bug
localization/correction cannot be done due to lack of the remainder.

for a faulty design. The seventh column indicates the time of our proposed incremental

equivalence checking method which includes the time of the inputs’ space partitioning as

well as Algorithm 14. The eight column presents the improvement (Imp.) provided by

our approach in comparison with the best result (indicated using underscore) of existing

approach shown in fifth and sixth columns. In the table, “∗” indicates that our approach

performs well, whereas the existing approach [34] fails. The SMT solver tries to find a

counterexample when implementation and specification are not equal. As it is shown, the

SMT solver cannot find a counterexample for large designs. Moreover, there is no efficient

and fully automatic debugging approach for fixing the bug using SMT solvers. It can be

observed that when a bug exists on deeper stages of the design, this approach fails even

for very small benchmarks. When the bug is close to the primary inputs, the incremental

approach can take more time to finish since it goes through several iterations if they result
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in a zero remainders. However, when the bug is not near primary inputs, our approach not

only makes the checking possible but also is faster by several orders-of-magnitude.

The next four columns show the time (in seconds) required for test generation (TG),

bug localization (BL), debug (DC) and total (TG+BL+DC), respectively, using [52]. The

subsequent four columns shows the same features using our proposed approach. The test

generation time is dependent on the number of terms in the reminder. Since our approach

generates more compact remainder, test generation time has improved by several orders

of magnitude. If a non-zero remainder can be obtained using a smaller number of inputs’

constraints, the remainder will be more compact. Since we use the constraints’ order

where most significant bits comes first, if the bug exists close to the primary outputs,

the chance of obtaining a more compact remainder is more and test generation time is

reduced. The results show that our approach requires less time to perform bug localization

since the size of the generated remainder is small, and as a result, the number of directed

tests are less. Moreover, the results show the effectiveness of incremental debugging

approach based on required time for bug detection and correction compared to [52]. If

a bug is located close to primary outputs, the number of suspicious gates is increased,

therefore, the time for bug correction and detection increases. In the table, “ ” indicates

that test generation, bug localization, and bug correction are not possible due to lack of

the remainder. Finally, the last column presents the improvement (Imp.) provided by our

incremental debugging approach. Clearly, our proposed approach can drastically (> 70

times one average) reduce the overall debugging effort. Most importantly, it is able to

debug hard-to-detect errors when existing state-of-the-art methods fail.

Table 5-5 presents the equivalence checking time for correct implementations of

different designs. We have compared our proposed framework with Z3 SMT solver and

[34]. As it can be observed, our method outperforms the Z3 and its performance is

comparable with [34]. Table IV and V demonstrate that our approach performs well

irrespective of whether the implementation is buggy or not.
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Table 5-5. The equivalence checking time for correct designs.

Benchmark Size
Z3

SMT Solver
[5] Our Approach Imp. on Z3

Post-
Syn.

Multiplier

8x8 47.81 0.04 0.05 957.04x
16x16 TO 0.11 0.16 *
32x32 MO 0.42 0.43 *
64x64 MO 2.50 2.68 *

128x128 MO 19.25 19.77 *
Post-
Syn.
Adder

64x64 31.84 0.08 0.1 318.4x
128x128 190.61 0.4 0.44 433.27x
256x256 513.98 0.84 0.88 584.07

Our experimental results highlight three important aspects of our debugging

approach. First, using the inputs’ constraints as well as the incremental debugging address

the scalability issues of the existing arithmetic circuits’ equivalence checking methods.

Second, our incremental equivalence checking method enables more compact remainder

generation that can improve the required time for test generation, bug localization and

bug detection. Finally, the debugging approach automatically and efficiently detects and

corrects unknown bugs regardless of its complexity and location in the design.

5.3 Summary

In this chapter, we presented an incremental equivalence checking and debugging

framework for arithmetic circuits. The proposed approach made three important

contributions. It partitions the primary inputs’ space of the design in order to solve

the verification and debug problems in the increasing order of the design complexity.

Moreover, it developed an incremental equivalence checking algorithm to enable generation

of compact remainders. Finally, the proposed input ordering and incremental debugging

enabled efficient bug detection and correction. Our experimental results demonstrated that

our incremental verification framework is several orders-of-magnitude faster than existing

state-of-the-art approaches.
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CHAPTER 6
TROJAN LOCALIZATION USING SYMBOLIC ALGEBRA

Growing reliance on reusable hardware Intellectual Property (IP) blocks, severely

affects the security and trustworthiness of System-on-Chips (SoCs) since untrusted

third-party vendors may deliberately insert malicious components to incorporate undesired

functionality. Malicious implants may also work as hidden backdoor and leak protected

information. In this chapter, we propose an automated approach to identify untrustworthy

IPs and localize malicious functional modifications (if any). The technique is based on

extracting polynomials from gate-level implementation of the untrustworthy IP and

comparing them with specification polynomials. The proposed approach is applicable

when the specification is available. Our approach is also useful when a golden design

has gone through non-functional transformations such as synthesis, and we would like

to ensure that the modified design is trustworthy. Our approach is scalable due to

manipulation of polynomials instead of BDD-based analysis used in traditional equivalence

checking techniques. Experimental results using Trust-HUB benchmarks demonstrate that

our approach improves both localization and test generation efficiency by several orders of

magnitude compared to the state-of-the-art Trojan detection techniques.

Figure 6-1 presents the overview of our proposed methodology. We extract a set of

polynomials from the specification (S). We also derive a set of polynomials (I) from the

implementation. Finally, we check the equivalency between two sets S and I based on

Gröbner Basis Reduction. Each of the polynomials from the specification fspeci is reduced

over a set of corresponding polynomials I and a set of remainders R is generated. From

symbolic computer algebra, it is known that when ri = 0, gates in Rg ((set of gates

that contribute in reduction of polynomial fspeci is called region Rg)) have successfully

implemented fspeci and it guarantees that all gates in Rg are safe [62]. Any (ri 6= 0) ∈ R

shows a suspicious functionality in the corresponding region Rg and all of the gates in Rg

are suspicious candidates. The malicious nodes can be pruned by removing the safe gates
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Figure 6-1. The proposed hardware Trojan localization flow

from the suspicious candidates. When all of ri’s are equal to zero, the implementation

is Trojan free. The proposed method can recognize the Trojan-free implementation from

the Trojan-inserted one. Our method reports a few gates to indicate the presence of a

malicious activity (change of functionality) in the implementation. Since the number of

malicious gates is very small, our approach is amenable for an exhaustive test generation

to activate the Trojan. Our method is applied on Trust-HUB benchmarks [69] and the

experimental results show the effectiveness of our approach compared to existing methods.

The remainder of this chapter is organized as follows. Section 6.1 discusses our

framework for hardware Trojan localization and detection. Section 6.2 presents our

experimental results. Finally, Section 6.3 concludes this chapter.

6.1 Trojan Detection and Localization

In order to trust an IP block, we have to make sure that the IP is performing exactly

the expected functionality. The approach presented in Section 3 can be extended to

find whether a hardware Trojan, which changes the functionality, has been inserted in a
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combinational arithmetic circuit. However, applying the same approach on general IPs

is limited due to several reasons. First, it is possible that the specification of a general

circuit cannot be described as one simple polynomial. Second, the circuit may not be

acyclic and loops may exist due to their sequential nature. Third, unrolling may increase

the complexity of the problem so the reduction of fspec over implementation polynomials

will face polynomial terms explosion. Finally, the Trojan activation may require extremely

large number of unrolling steps which may be practically infeasible and also there is no

specific information on after how many cycles Trojan will be activated. In order to address

these challenges, we present a method to generate polynomials in an efficient way and

use them in our proposed algorithm to localize and detect Trojans in third-party IPs. To

the best of our knowledge, our proposed approach is the first attempt in utilizing scalable

equivalence checking using polynomial manipulation for localization of hardware Trojans.

The reminder of this section describes the three important tasks in our framework:

polynomial generation, Trojan localization, and test generation for Trojan detection.

6.1.1 Polynomial Generation

Suppose that we have two versions of a design, one is a verified IP (specification) and

the other is an untrusted third-party IP (implementation) after performing non-functional

transformations. Our goal is to detect whether an adversary has inserted hard-to-detect

hardware Trojan during non-functional changes and has made undesired functional

changes. For example, a design house may send their RTL design for synthesis or adding

low-power features to a third party vendor. Once the third-party IP comes back (after

synthesis or other functionality-preserving transformations), it is crucial to ensure the

trustworthiness of these IPs.

In the method presented in Section 3, specification is modeled as one polynomial;

however, here we generate a set of polynomials S representing the functionality of the

golden IP to be able to apply Gröbner basis theory for hardware Trojan localization

problem. The specification is partitioned into several regions and each region is converted
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to a polynomial. The output of each region is either inputs of a flip-flop (clock, enable,

reset and etc.) or one of the primary outputs. The inputs of a region are either from

primary inputs or inputs/outputs of flip-flops. In other words, we generate polynomials for

regions which are limited to flip-flops’ boundaries. Then, corresponding equations (based

on Equation 3-1 in Section3.2) of gates inside a region are combined together to construct

one polynomial representing the functionality of the region.

Algorithm 11: Polynomial generation algorithm

1: Input: Circuit Graph Gr, Lout and Lin
2: Output: Polynomials S
3: Region = {}
4: for each gate gi ∈ Gr where its output ∈ Lout do
5: Region.add(gi)
6: for all inputs gj of gi do
7: if !(gj ∈ Lin) then
8: Region.add(gj)
9: Call recursively for inputs of gj over Gr

10: end if
11: end for
12: fi = convertToPolynomial(Region)
13: S = S ∪ fi
14: Region = {}
15: end for
16: Return: S

Algorithm 11 shows how we extract set S. The specification is converted to a graph

where each vertex is a gate (gi). The algorithm takes the circuit graph Gr, list (Lout) of

allowed output variables (flip-flops’ inputs and primary outputs) and list (Lin) of allowed

input variables of a region as inputs and returns a set of polynomials S as its output. The

algorithm chooses a gate for which output belongs to Lout and goes backward recursively

until it reaches the gate gj, whose input comes from one of the variables from Lin (line

5-10). The algorithm marks all the visited gates as a “Region”. The selected region

may contain all of the basic gates except flip-flops. Then, the Region is converted to a

polynomial fi by combining corresponding polynomials of the gates residing in Region, fi

is added to set S (line 11-12).
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Example 1: Suppose that the circuit shown in Figure 6-2 is a part of a verified IP

block and we want to use it as our specification. Algorithm 11 is applied on it and the

polynomials are shown as: S = {fspec1 : n1 − (−2.A.n2 + n2 + A), fspec2 : Z − (1 − n1.B)}.

Since the circuit shown in Figure 6-2 contains one primary output and one flip-flop, the

Algorithm 11 extracts two specification polynomials for this circuit.

Figure 6-2. A part of a sequential circuit

Similarly, the implementation polynomials I are driven by modeling every gate

except flip-flops from the untrusted design as a polynomial based on Equation 3-1 from

Section 3.2 and Algorithm 11. In order to reduce the number of generated implementation

polynomials, we partition implementation to fanout-free cones (set of gates that are

directly connected together) and convert each fanout-free region as one polynomial.

In other words, I contains a set of polynomials where each polynomial represents a

fanout-free cone.

Example 2: The circuit shown in Figure 6-3 is the Trojan-inserted implantation

of the specification shown in Figure 6-2 (gate 6 is the Trojan trigger and gate 7 is the

payload). Gates in same pattern belong to a common fanout-free cone. As a result, set I is

computed by Algorithm 11. Each polynomials is corresponding to one fanout-free cone.

I = {n1 − (n2.w4.A− n2.w4 + w4 − n2.A + n2),

w4 − (A− n2.A),

Z − (n1.w4.C.B − n1.w4.C − n1.B + 1)}

(6–1)
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Figure 6-3. A Trojan-inserted implementation of circuit in Figure 6-2

6.1.2 Trojan Localization

We generate the set S and I as described in Section 6.1.1. We assume that the name

of flip-flops, primary inputs and primary outputs are the same between implementation

and specification or the name mapping can be done. We also assume that no re-timing has

been performed. These are valid assumptions in many scenarios involving third-party IPs.

The equivalence of two sets S and I is checked to find any suspicious functionality which

may serve as a Trojan.

To detect a Trojan, we need to reduce each polynomial fspeci from set S over a

subset of polynomials from set I to check membership of every polynomial fspeci in Ideal

I constructed from polynomials from set I (I =< I >). To perform that, all of the

polynomials from I are hashed based on their leading terms (which contains a single

variable and this variable represents the output of the corresponding gate). Every variable

from fspeci ∈ S is replaced with the corresponding functionality of that variable from I

polynomials. The process continues until fspeci is reduced either to zero polynomial or a

remainder polynomial which contains primary inputs as well as flip-flop’s inputs/outputs.

The non-zero remainder indicates that implementation does not correctly implement

the functionality of fspeci and that part of the implementation is suspicious. Note that,

based on Gröbner basis theory, when the remainder is zero for a specific region, we can

be certain that the region is safe. In other words, it is not possible for a smart attacker to

insert malicious gates in a way that the remainder becomes zero.
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Example 3: Consider we want to measure the trust in the circuit shown in Figure 6-3,

which is the untrustworthy implementation of design shown in Figure 6-2. Specification

Polynomials shown in Example 1 are reduced over implementation polynomials as shown

in Equation 6–1. The result of the reduction is stored in set R. Each fspeci produces one

remainder ri that can be either zero or a non-zero polynomial.

Gates {1, 2, 3, 4, 5} implement functionality of an XOR gate (these gates are equivalent

to XOR gate shown in Figure 6-2). Thus, the remainder r1 is zero and it means that the

region containing gates {1, 2, 3, 4, 5} implements the fspec1 correctly. However, the non-zero

remainder r2 presents the fact that there are malicious components in implementation of

fspec2 and the region containing gates {2, 4, 6, 7, 8} is suspicious.

fspec1 : n1 + 2.A.n2 − n2 −A

step11 : n2.w4.A− n2.w4 + w4 + n2.A−A

step12(r1) : 0

fspec2 : Z + n1.B − 1

step21 : n1.w4.C.B − n1.w4.C

step22(r2) : −1.n1.A.C + n1.n2.A.C + A.B.C.n1 −A.B.C.n1.n2

(6–2)

By using the proposed approach, a set of malicious regions are identified. Suppose

the adversary inserts some extra flip-flops as part of Trojans. These buggy flip-flops

does not have any correspondence in the specification. In other words, there is no fspeci

which describes their inputs’ functionality. Therefore, the corresponding region in the

implementation is also considered as a suspicious region. However, scan-chain flip-flops can

easily be detected and removed from suspicious candidates because of their structures.

The proposed method formally identifies the regions (between flip-flops boundaries) of

the implementation that are safe and the regions that have suspicious functionality. The

adversary usually insert the Trojan in deep levels of the circuit. Therefore, the regions

that actually contain the Trojan can be very large and may include many gates (order of

hundreds or thousands of gates). In order to improve our approach further, we propose an

algorithm to identify the gates that most likely are responsible for the malicious activity.
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Since we know which regions are Trojan-free (based on remainder as zero), we remove

the gates which are contributing in construction of these regions from suspicious regions.

In other words, we have formally proved that some of the regions are trustworthy so the

gates that construct these regions are essential for the correct functionality. The safe

gates may be inputs of Trigger or payload gates. However, they do not belong to the

set of malicious gates. Using this approach, we are able to prune the suspicious regions

to contain very small number of gates. This approach guarantees that all of the Trojan

trigger and payload’s gates are inside the suspicious region. Algorithm 12 shows the

proposed procedure.

Algorithm 12: Hardware Trojan localization algorithm

1: Input: Circuit implementation Gr, I and S
2: Output: Suspicious gates Gt

3: for each fspeci ∈ S do
4: ri = reduction of fspeci over fjs ∈ I
5: Ri = Ri ∪ all gjs where fj = func(gj)
6: mark all gis as used
7: if (ri! = 0) then
8: RTrjIn = RTrjIn ∪Ri

9: else
10: RTrjFree = RTrjFree ∪Ri

11: end if
12: end for
13: for each gate g ∈ RTrjfree do
14: remove g from RTrjIn

15: end for
16: Return: Gt = remaining in RTrjIn ∪ unused gates

The algorithm takes the gate-level implementation graph Gr as well as specification

and implementation polynomials as inputs, and in case the implementation contains

malicious components, it returns a set of suspicious gates as output. The algorithm

takes each of specification polynomials and reduces them one by one over corresponding

polynomials from set I. Each fspeci may be reduced using several gates gj and the result

of the reduction is stored in ri (line 4-5). The used gates are marked to keep track of the

gates that are utilized to implement the circuit (line 6). If ri is equal to zero, it means

108



that all of the gis are safe and they are stored as safe gates (RTrjFree), otherwise, all gis

are stored as suspicious candidates (line 7-11). Every ri = 0 shows that all of the gates

used in construction of functionality of the corresponding fspeci are safe. Therefore, to

narrow down the potential suspicious gates, the gates of Gr which appeared in RTrjFree

are removed from RTrjIn (line 12-13). Note that, gates in both of RTrjFree and RTrjIn

belong to the implementation Gr. All of unused gates should also be considered as

malicious candidates, so the union of the remaining gates in the RTrjIn and unused gates

are returned as likely malicious gates (Gt). If all of the ris are zero, the implementation is

safe and there is no Trojan inside the implementation.

Algorithm 12 identifies the trust level of a third-party IP and in case of existence of

hardware Trojan, it returns a very small number of gates as suspicious candidates. This

algorithm guarantees that all of the actual Trojan trigger and payload gates are inside the

set Gt.

Example 4: Applying Algorithm 12 on the circuit shown in Figure 6-3 will result in

non-zero remainder for region containing gates {2, 4, 6, 7, 8}. However, the zero remainder

of fspec1 shows that gates {1, 2, 3, 4, 5} are safe and they are vital to construct the

functionality of signal n1. Therefore, we remove gates {2, 4} from potential candidates

and gates {6, 7, 8} remain as suspicious.

6.1.3 Trojan Activation

As shown in Example 4, the small suspicious region still contains some safe gates

which are dedicated to the correct functionality in the absence of the Trojan (in Example

4, gate 8 is benign but it is reported as suspicious node). In other words, these safe gates

are only used to construct the functionality of one specific primary output or Flip-Flop’s

input. Thus, they won’t be removed in the process of pruning safe gates from suspicious

regions since they are not contributing in functionality of other primary outputs or

flip-flop’s inputs. To be able to detect the exact gates which are responsible for trigger

and payload parts of Trojan, we generate tests to activate the Trojan. Since the number
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of suspicious gates are small enough, we try to activate each node in the suspicious gates

and check whether the generated test activates the Trojan. We use an ATPG to generate

the directed tests. If none of the tests detects the Trojan, we generate test to activate two

of the nodes at the same time. We continue the process until one of the tests activates

the Trojan. The proposed method is shown in Algorithm 13. This approach is feasible

due to the fact that the number of suspicious nodes that are reported using our proposed

approach is very small.

Algorithm 13: Test generation algorithm

1: Input: Suspicious gates Gt, Implementation C, Specification S
2: Output: Test vectors T
3: T={}
4: for each possible trigger scenario n over Gt do
5: generate test ti to activate n of nodes
6: for each possible payload scenario do
7: propagate effect of ti to the observable points
8: if trigger scenario is satisfied then
9: T = T ∪ ti

10: end if
11: end for
12: end for
13: Return: T

Example 5: We are trying to activate the Trojan shown in Figure 6-3. From

Example 4, we know that gates {6, 7, 8} are suspicious. As shown in Figure 6-3, Trojan

will be triggered when output of gate 6 (w5) becomes true and B is zero at the same time.

In other words, gate 8 of the implementation receives one as its second input (w6) while in

the specification, the second input of the NAND gate receives zero. These conditions cause

difference between specification and implementation. To propagate the effect of Trojan’s

condition activation, n1 should be one since n1 = 0 makes output Z = 1 independent

of second input’s value and it will mask the Trojan effect. The test vectors that activate

Trojan are as follows (we assume the initial value of n2 is equal to 0): A = 1, B = 0, C = 1.
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Figure 6-4. (a) Number of suspicious nodes, (b) Number of tests needed to activate
Trojans

6.2 Experiments

6.2.1 Experimental Setup

The Trojan localization algorithm was implemented in a Java program and

experiments were conducted on PC with Intel Processor E5-1620 v3 and 16 GB memory.

We have tested our approach using widely used trust-HUB benchmarks [69] consisting of

combinational and sequential Trojan triggers and payloads that change the functionality

of the design. The Trojan-Free designs are considered as specification. To show that

our methodology is orthogonal to design structures and library format, we synthesized

Trojan-inserted benchmarks with Xilinx synthesis tool and used them as implementation

(we just map flip-flops’ inputs/output names). Specification is partitioned into several

regions and each region is represented using one polynomial. These polynomials can

be reduced over implementation polynomials independently. Therefore, we used a

parallel version of Algorithm 12 to implement our method. We also used logic reduction

based rewriting schemes presented in [121] to improve the equivalence checking time.

We compared our results with most relevant Trojan localization work [134]. Since our

approach essentially performs equivalence checking, we also compared with an equivalence

checking tool “Formality” [71] which has been designed to check the equivalence between

two versions of a design to demonstrate the efficiency of our work. Formality is an

commercial tool that tries to detect potential functional changes between two versions of a

design when the designers making non-functional changes.
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Table 6-1. Trojan Localization using Trust-HUB benchmarks.
Benchmark FANCI [134] Formality [71] Our Approach False Positive% Improvement

Type #Gates #TrojanGates #SuspGates #SuspGates #SuspGates #Spolys #Ipolys CPU time(s) our [134] [71] [134] [71]
RS232-T1000 311 13 37 214 13 62 186 0.67 0 24 201 * *
RS232-T1100 310 12 36 213 14 61 189 0.86 2 24 201 12x 100.5x
S15850-T100 2456 27 76 710 27 592 1888 1.13 0 49 683 * *
S38417-T200 5823 15 73 2653 26 1667 5004 3.12 11 58 2638 5.27x 239.8x
S35932-T200 5445 16 70 138 22 1778 4441 3.18 6 54 122 9x 20.33x
S38584-T200 7580 9 85 47 11 840 3905 4.74 2 76 38 38x 19x
Vga-lcd-T100 70162 5 706 ** 22 2426 7572 38.97 17 701 ** 41.23x **

“*” indicates our approach does not produce any false positive gates (infinite
improvement).

“**” shows the cases that Formality could not detect the Trojans.

Formality compares the points between two designs and tries to match them using

different algorithms including name-based matching and non-name based matching

algorithms. Based on formality’s user guide [72], it first compares the points based on

their exact names. Then, it tries to perform case-insensitive name mapping or filtering

out some characters. Name matching can also be done through mapping driven/driving

nets (name of nets) of points. In the second phase, it attempts to match the remaining

unmatched points using topological analysis of the unmatched cones. In other words,

it matches two points with different names if they have equivalent structures. The

final step is signature analysis which is based on generating functional and topological

signatures. Functional signatures use random patterns simulation to generate primary

outputs’ data or register’s output data to match different points. However, if an adversary

inserts a hard-to-detect hardware Trojan, signature analysis may incorrectly match

points since their simulation result are same. As a result, Formality may not be able to

detect inserted Trojans (as indicated in Table 6-1). Our proposed method is based on

polynomial manipulation of different regions of the circuit and it is not dependent on the

simulation or pattern generation. Thus, our method outperforms Formality when there are

hard-to-activate Trojan in the implementation.

6.2.2 Trojan Localization

Table 6-1 presents results for hardware Trojan localization. The first three columns

show the type of benchmarks, number of gates in the circuit, and number of malicious
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gates (consisting of Trojan trigger and payload), respectively. The fourth column

shows the number of suspicious gates reported by “FANCI” [134] approach. FANCI

reports 1% to 8% of circuit nodes as false positive nodes on average (we have reported

suspicious nodes as false positive nodes plus actual Trojan gates). The fifth columns

shows the number of suspected gates that can be found using Formality. It reports some

faulty flip-flops or primary outputs which may have different values because of change

in the functionality. However, there are so many gates in the cone corresponding to

the faulty primary outputs or flip-flops and all of these gates are suspicious. In case

Vga-lcd-T100, the Trojan effects are masked due to observability issues and nature of

the above-mentioned signature analysis, and Formality returns no suspicious nodes. The

sixth column shows the number of suspicious gates that our method finds. Our method

detects all of the Trojan circuit gates (no false negative gates) plus very small number of

false positive nodes (benign gates). The seventh column shows the number of specification

polynomials which is equal to number of flip-flops in the design plus number of primary

outputs. The eighth column presents the number of implementation polynomials which

is equal to number of fanout-free cones existing in the implementation. The CPU time

(in seconds) to localize the Trojan is reported for each benchmark in ninth column. The

time complexity of our method is linear with respect to the number of gates. The tenth,

eleventh and twelve columns show the number of false positive gates that our approach,

FACNI [134] and Formality [71] report, respectively. Clearly, our approach returns only

few false positive gates. We are aware of the fact that comparison with FANCI is not fair

since it does not requires golden model. However, FANCI returns a lot of suspicious gates

that it may not include all of the Trojan gates. For example, FANCI has reported top

twenty suspicious gates for S35932-T200, none of them are from Trojan gates. Moreover,

FANCI returns a set of suspicious gates even when the circuit is Trojan free. The next

columns show our improvement in comparison with FANCI and Formality based on

number of false positive gates. Our approach has a significant improvement compared to
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Table 6-2. The required tests to activate the Trojan
Benchmark

N=1 N=2 N=4
W/O Localization With Localization Improvement W/O Localization With Localization Improvement W/O Localization With Localization Improvement

RS232-T1000 311 13 23.9x 48205 78 618.0x 4E+8 715 5E+5x
RS232-T1100 310 14 22.1x 47895 91 526.3x 4E+8 1001 4E+5x
S15850-T100 2456 27 91.0x 3E+6 351 8.6E+3x 2E+12 17550 9E+7x
S38417-T200 5823 26 224.0x 2E+7 325 5.2E+4x 5E+13 14950 3E+9x
S35932-T200 5445 22 247.5x 1E+7 231 6.4E+4x 4E+13 7315 5E+9x
S38584-T100 7580 11 689.1x 3E+7 55 5.2E+5x 1E+14 330 4E+11x
Vga-lcd-T100 70162 22 3189.2x 2E+9 231 1.1E+7x 1E+18 7315 1E+14x

Average 13155.28 19.85 640.97x 2.9E+08 194.57 1.6E+6x 1.4E+17 7025.14 1.4E+13x

existing approaches - our approach reports orders-of-magnitude less false positive gates

compared to [134] and [71].

6.2.3 Test Generation

For test generation, we used Tetramax [70], the ATPG tool from Synopsys to

generate tests exhaustively to activate the reported suspicious nodes. Since our suspicious

candidates are few, we can exhaustively check several combinations to activate the Trojan.

However, without using our localization method or using heuristic methods such as [134],

exhaustive method will not work due to large number of suspicious gates. Table 6-2 shows

the number of tests needed for activation and detection of Trojans with/without using our

localization method. First column shows the type of benchmark (same as Table I). The

next two columns present the number of required tests to activate trigger conditions one

at a time without and with using our localization method, respectively. The next column

shows our improvement compared to without using localization. Our proposed approach

improves number of required test vectors significantly. The next columns show the number

of required tests to activate trigger conditions of two and four nodes at a time without and

with using our localization method and the associated improvements, respectively. As it

can be seen from Table 6-2, it is impractical to generate tests to activate four-node triggers

even for these small benchmarks without our localization approach. If our localization is

utilized, the number of required tests are reasonable and would be less by several orders of

magnitude.

We also compared with MERO [30] for benchmarks S15850-T100 and S95932-T200.

We did not compare using the remaining benchmarks because [30] did not report data for
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those benchmarks. Figure 6-4(a) shows the number of suspicious gates reported by our

approach compared to MERO. Clearly, our approach provides up to 44 times (40 times

on average) reduction in suspicious gates compared to MERO. Figure 6-4(b) compares

the number of tests required to activate the Trojan. As shown in the figure, our approach

requires up to two orders of magnitude (60 times on average) less test vectors compare to

MERO.

The experimental results demonstrate four important aspects of our approach. First,

the number of false positive gates are very small and in some cases there are no false

positives. In these cases, our method is able to detect the whole Trojan circuit. Next, all

of the Trojan payload and trigger gates are inside the list of suspicious gates. In other

words, our approach does not produce any false negative result. Our approach detects

both sequential and combinational Trojan circuits. Finally, our approach generates very

few suspicious nodes (less than 0.2% of original design, less than 0.03% in most cases) that

enables us to exhaustively generate tests to activate various trigger conditions to detect

the Trojan circuit.

6.3 Summary

In this chapter, we presented an automated approach to localize functional Trojans

in third-party IPs. First, we identified whether a third-party IP contains malicious

functionality or it is trustworthy. Next, we presented an algorithm to localize the

suspicious area of the Trojan-inserted IP to a region which contains very few (less than

0.03% of the original design in most cases) gates. Our approach does not require any

unrolling or simulation of the design and it formally identifies the parts of the circuit

that is Trojan free as well as the remaining suspicious gates. In order to further aid in

Trojan detection, we proposed a greedy test generation method to activate the Trojan.

Our experimental results demonstrated the effectiveness of the proposed methodology

on trust-HUB benchmarks. Our localization approach reduces the overall Trojan
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detection effort (number of tests) by several orders of magnitude compared to the existing

state-of-the art techniques.
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CHAPTER 7
FSM INTEGRITY ANALYSIS IN CONTROLLER DESIGNS

Finite state machines (FSMs) control the functionality of the overall design. Any

deviation from the specified FSM behavior can endanger the trustworthiness of the

design. This is a critical concern when an FSM is responsible for controlling the usage

or propagation of protected information (e.g. secret keys) in a secure component.

FSM vulnerabilities can be created by a rogue designer or an attacker by inserting

hardware Trojans in the FSM implementation. The vulnerability can also be introduced

unintentionally by a CAD tool (e.g., when a synthesis tool is trying to optimize a

gate-level netlist). In this chapter, we present an efficient formal analysis framework

based on symbolic algebra to find FSM vulnerabilities. The proposed method tries to find

inconsistencies between the specification and FSM implementation through manipulation

of respective polynomials. Security properties (such as a safe transition to a protected

state) are derived using specification polynomials and verified against implementation

polynomials. In a case of a failure, the vulnerability is reported. While existing methods

can verify legal transitions, our approach tries to solve the important and non-trivial

problem of detecting illegal accesses to the design states (e.g., protected states).

There are limited efforts to identify and address the security vulnerabilities of a

control circuit. Sunar et al. used Triple Module Redundancy (TMR) and parity checking

methods to protect FSM of encryption algorithms against fault injection attacks [129].

However, the proposed technique introduces large area overhead ( 200%) and cannot

detect other adversarial models such as hardware Trojans and vulnerabilities introduces

by synthesis tools. In [136], a multilinear code selection algorithm is used to make

cryptographic algorithm robust against fault injection attacks. However, this technique

is not resilient against fault injection vulnerabilities caused by synthesis tools [44]. It has

been shown that synthesis tools may insert additional don’t care states in implementation

of FSMs by using RTL don’t care conditions and create assignments to optimize the
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gate-level netlist. At the same time, an adversary can use don’t care states as a backdoor

to access protected states and weaken the security of the overall design. In [44], authors

use reachability as a trust metric to identify gate-level paths to protected states which

do not exist in the RTL design. However, authors do not evaluate actual vulnerabilities

caused by don’t care states. They proposed an architectural change to state flip-flops in

order to remove the access to the protected states from unprotected ones. Their proposed

solution limits the functionality of the design. In [54], authors used mutation testing to

detect existing hardware Trojans in unspecified functionality. However, mutation testing

is very slow, and it may require significant manual intervention. Nahiyan et al. have

proposed a state reachability analysis using ATPG tools [102]. They generate test patterns

using the principle of n-detect-test [96] to extract the state transition graph (STG) of a

given circuit. However, this option does provide any guarantees, e.g., in case one of their

benchmarks they could not extract the whole STG. Sun et al. have proposed an FSM

traversal technique using symbolic algebra [127]. However, their technique can only check

the reachable states from a given state (e.g., initial state) and their technique cannot

detect don’t care states that may be introduced by synthesis tools. Similarly, they cannot

detect hardware Trojans inserted in FSMs outputs.

In this chapter, we present a scalable formal approach that enables efficient FSM

anomaly detection in state transition functions as well as FSM outputs. Our proposed

method models the specification of a given FSM as a set of polynomials (Fspec) such that

each polynomial is responsible for describing all of the valid states that can be reached.

Each output of the FSM also can be represented using one specification polynomial. The

specification polynomials can be derived from RTL codes as well as design documents.

We also partition the gate-level implementation of an FSM based on the boundary of

flip-flops, primary inputs, primary outputs and fanout-free regions. We model each region

by a polynomial and add it to the set of implementation polynomials (Fimp). In the next

step, we use Gröbner basis theory [40] to check the equivalence between two sets Fspec
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Figure 7-1. Overview of FSM anomaly detection approach

and Fimp. We reduce each specification polynomial Fspeci using a set of implementation

polynomials. If the reduction leads to a non-zero remainder, there are some vulnerabilities

in implementation of Fspeci. Every assignment that makes the remainder non-zero reveal

the conditions that can activate the hidden malfunction.

Our approach is fully automated and it is guaranteed to find hard-to-detect FSM

vulnerabilities in the implementation of an FSM when existing equivalence checking

approaches fail. Experimental results demonstrate the effectiveness of our approach.

Figure 8-2 shows the overall flow of our approach which the anomaly detection can be

formally performed using our proposed equivalence checking method. We demonstrated

the merit of our proposed method by detecting the vulnerabilities in various FSM designs,

while state-of-the-approaches failed to identify the security flaws.

The rest of the chapter is organized as follows. Section 7.1 discusses the threat

model. Section 7.2 illustrates our approach to detect FSM vulnerabilities. We show the

effectiveness of our approach using the experimental results in Section 7.3 . Finally,

conclusion is provided in Section 7.4.
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7.1 Threat Model

In this section, we describe different categories of FSM vulnerabilities and show how

an adversary can take advantage of these vulnerabilities to threaten the integrity of the

overall design.

A state machine can be defined with six characteristics: an initial state Sinit, set

of possible states S where Sinit ∈ S, set of possible input events I, a state transition

function (FT ) that maps combination of states and inputs to states (FT : S × I → S),

a set of output events (O) and an output function (FO) that maps states and inputs to

outputs (FO : S × I → O). Based on the function FT which defines transitions, each

state Si can be accessed through a set of immediate, authorized states as well as a set

of specific input events. Set ASi
= {(Sj, Ij)|Sj ∈ S & Ij ∈ I} shows legal conditions

to access state Si and set AS shows all of the legal ways to access states S. If state Si

can be accessed through the condition (Sm, Im) where (Sm, Im) /∈ ASi
, it is a threat

to the integrity of the design. In other words, state Si should not be accessed through

some illegal conditions/states which do not exist in the specification. From the security

perspective, it is important that a design exactly performs as intended in the specification,

nothing more nothing less. The extra access path to state Si, (Sm, Im) may endanger the

integrity of the design as it may create a backdoor to access the critical secrets/assets. In

this chapter, we consider illegal access paths as threat model, and our goal is

to identify them using symbolic algebra.

The illegal access ways may be introduced by synthesis tools [44]. Behavioral

specification (e.g. RTL) of an FSM may contain don’t care conditions where the

assignment to the next state or the next expected output is not defined (we call such

FSMs incomplete FSMs). A synthesis tool takes an incomplete FSM and tries to assign

deterministic values to the don’t care conditions and transitions to generate an optimized

circuit. As a result, a synthesis tool may introduce extra states and transitions to the

gate-level implementation of the FSM which do not exist in the behavioral specification.
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Formally, a synthesis tool may modify the set AS and convert it to A‘
S. The extra set of

access paths to the states of S can be computed as: AM = A‘
S − AS.

Set AM (malicious access ways) can also be created/modified by a rogue designer

or an attacker by inserting hardware Trojan in the FSM behavioral description as well

as in the gate-level implementation of the FSM. The primary goal of the attacker is to

create a backdoor to particular FSM states which may be triggered via an extremely rare

input condition. The created backdoor may lead to a bypass of security protection of the

design or create a denial of service. Moreover, malicious access ways can be set up by

unintentional mistake of the designer. Example 1 illustrates potential threats in an FSM.

Example 1: The state transition diagram of a simple FSM is shown in Figure 7-2.

The FSM has three states: G, C and protected state O representing with binary encoding

01, 10, and 00 respectively as shown in Figure 7-2. The FSM is responsible for checking a

password before starting a specific operation. Operation state (O) should be accessed only

from check password state (C) when a password is entered, and it is valid (a = 1&b = 1).

An adversary may use the unspecified conditions to insert illegal transitions to gain access

to the operation state (protected state) from the state G without even entering the correct

password to bypass the security protection (a = 1&b = 0). On the other hand, the

synthesis tool or the designer mistake can also introduce some unintentional illegal access

ways (don’t care states D) to the protected state and compromise the security of the

design. With respect to the specification, AO should be equal to: {(C, “a = 1&b = 1”).

However, there are illegal access ways to state O in FSM implementation which is equal

to: AMO
= {(D, “a”), (G, “a = 1&b = 0”)}. An adversary can compromise the security

of the design by exploiting the existing vulnerabilities and attack the FSM. One of the

possible attacks is fault injection attack [102]. The strategy is that the attacker tampers

operating characteristics such as clock signal frequency, operating voltage or working

temperature hoping to change different path delays and force the FSM to capture next

state incorrectly. One example would be to force the FSM to go to the don’t care states
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which have access to protected states or attack target states. For instance, an attacker can

inject a fault during transition 01 → 10 (G → C) to end up in don’t care state 11 which

has an immediate access to the protected state O and bypass password checking process

in Example 1. The other possible attack is that the adversary inserts hardware Trojan by

manipulating state transition graph in order to access certain states when a specific input

event is triggered. In this case, the adversary is considered as an in-house rogue designer

or an untrusted vendor/foundry. For instance, Example 1 shows that an adversary has

inserted a Trojan that provides an illegal access way to state O from state G. The Trojan

is typically hard-to-activate (from the unspecified design space) with negligible effect on

the design constraints such as area and power to avoid detection from existing verification

and debug flow.

Figure 7-2. The state diagram for checking a password in order to perform a specific
operation. Potential vulnerabilities are shown with dotted lines.

Based on above observations, any deviation of FSM implementation from the

specification (including extra access ways) can endanger the overall design integrity.

In the rest of this chapter, we propose a promising approach to analyze FSMs to find

potential malicious functionality.

7.2 Finite State Machine anomaly detection

Although the presented approach of Chapter 4 is promising for verification of

arithmetic circuit, applying it on a general sequential circuit is challenging due to several
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reasons. First, formulating the specification of a general circuit cannot be modeled as

one simple and comprehensive polynomial. The specification may be modeled as a set

of polynomials. However, finding the corresponding parts which are only responsible

for implementing a special specification polynomial is not straightforward. Second, the

implementation of a sequential circuit is not acyclic and it contains several loops which

make the reduction operation infinite. Finally, time unrolling of the implementation is

not efficient since it increases the design complexity and makes the equivalence checking

inefficient. Moreover, existing Trojan may be activated after a large number of cycles

(since the trigger condition is rare), therefore, there is no specific information about the

required number of unrolling. In this chapter, we try to address the above-mentioned

challenges to apply symbolic algebra to verify the trustworthiness of any general FSM. We

not only check the given FSM for the correct expected behavior, but we also analyze

the FSM to find any potential malicious extra access ways that may endanger the

security of the FSM (nothing more). Finding extra access path especially from don’t

care states cannot be found using any formal methods such as model checkers since

they are not accessed through the normal operation path. To the best of our knowledge,

this is the first attempt in utilizing symbolic algebra in finding vulnerabilities in FSMs.

The remainder of this section describes the different parts of our approach: deriving

specification polynomials, generating implementation polynomials and performing

equivalence checking in order to ensure the correctness of implementation and finding

potential extra vulnerabilities.

7.2.1 Deriving Specification Polynomials

The specification of an FSM can be extracted from its state transition diagram or

from a high-level description of the design (e.g., HDL modules). State transition graph

can be derived from the design documentation as well as other high-level behavioral

description of FSM such as RTL codes. In other words, deriving specification polynomials

does not require a golden design/netlist.

123



Modeling the whole FSM using only one specification polynomial is not possible

without considering the time notation in the specification polynomial as transitions

between different states may be dependent on binary values of a specific input variable

over different clock cycles. For example, as it is shown in Figure 7-2, state C can be

accessed from path G → C when in two consecutive clock cycles t1 and t1 + 1 such that

a = 0 in t1 and a = 1, b = 1 in t1 + 1. Writing these conditions as a polynomial (part

of the overall specification polynomial) without considering the timing will lead to a zero

polynomial as (1 − a).a.b = 0. However, if we add timing notations to our variables,

the implementation also has to be time unrolled to match with the specification which

increases the complexity of the equivalence checking problem. As a result, representing the

functionality of an FSM using one specification polynomial is not possible. We propose an

approach to model the specification of the FSM using polynomials without time unrolling

the design.

Transitions of an FSM can be decomposed as: FT =
n⋃
i=1

ASi
where n is the number

of states and ASi
shows all of the possible access ways of state Si and FT is the transition

function of the FSM. To derive a set of specification polynomials which represent the

whole FSM, we model each of ASi
as one polynomial representing the legal access ways to

state Si and we add it to the set Fspec.

A valid transition to state Si happens when the current state is one of the authorized

states and the corresponding input conditions are valid. In other words, Si will be

reached in the next clock cycle when the current state is Sj and condition Cj→i where

(Sj, Cj→i) ∈ ASi
are evaluated to true. Note that, we show the value of variable x in the

next cycle using x′ notation. Therefore, transition Sj → Si is modeled to a polynomial as:

fSj→Si
: Si

′ − (Sj.Cj→i) = 0. The polynomial of each of the conditions exits in ASi
should

be XORed to each other to derive a polynomial representing the whole ASi
since only one

of them should be valid at the same time. We illustrate our approach using Example 2.
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Example 2: In order to extract specification polynomials for FSM shown in

Figure 7-2, we consider each of the states independently and write a polynomial to

represent conditions which update the next value of the state. For example, state O

should only be accessed from state C when a = 1 and b = 1 or when the current state

is state O and input a is equal to one. Since it should be accessed only from one of these

conditions at a time, the conditions should be XORed to each other to show the effect of

one condition at a time (the only exception is the condition of a = 0 in state G that will

be ORed to other conditions since it works as the reset signal). The O′ shows the next

value of state O. The specification of the FSM shown in Figure 7-2 can be modeled as a

set of three abstract polynomials (Fspec = {fG, fC and fO}) as shown in Equation 7–1.

Fspec : {fG : G′ − ((1− a) ∨ (C.(1− a.b)⊕O)) =

G′ − (1− a + a.O + 2.a.b.C.O + a.C − 2.a.C.O − 1.a.b.C) = 0

fC : C ′ − a.b.G = 0

fO : O′ − (a.b.C) = 0}

(7–1)

We will describe how specification polynomials are used to check security properties

of an FSM in Section 7.2.3. Before performing the equivalence checking, we need to

refine specification polynomials to apply proposed FSM equivalence checking process

since the proposed method requires that specification variables’ names be the same as

the corresponding variables in the implementation. We refine specification polynomials

based on the FSM encoding style as well as corresponding names of state flip-flops

in the implementation (name mapping between flip-flop names and corresponding

variables in specification polynomials). We refine the variables which represent states

in specification polynomials based on naming and encoding information that can be found

in the high-level description of the design such as RTL modules as we describe in Example

3. As a result, the specification of FSM outputs can also be modeled with word-level

specification polynomials based on state variables as well as primary inputs.
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Example 3: Suppose that the RTL code shown in Listing 1 is the RTL version

of the state machine shown in Figure 7-2. We can see that states G, C and O are

encoded as {01, 10, 00} respectively. The state variable and next states are presented

using variables {s0, s1} and {n0, n1}. Therefore, the variables shown in Equation 7–1

can be updated based on the above-mentioned information. For instance, variable G and

next state variable G′ can be modeled as (1 − n1).n0 and (1 − s1).s0, respectively. As a

result, the specification polynomials shown in Equation 7–1 can be rewritten as shown in

Equation 7–2. Note that, considering C encoded as s1.(1 − s0) and O as (1 − s1).(1 − s0),

the term −2.C.O as well as 2.a.b.O.C of FG in Equation 7–1 are evaluated in updated

specification polynomials).

Fspec : {fG : (1− n1).n0 − (1− a.b.s1 + a.b.s0.s1 − a.s0) = 0

fC : n1.(1− n0)− (a.b.(1− s1).s0) = 0,

fO : (1− n1).(1− n0)− (a.b.s1.(1− s0)) = 0}

(7–2)

Specification polynomials can be extracted directly from the RTL modules by using

some specific rules. The logical operations in If statements can be mapped to polynomials.

For example, by considering the encoding, line G : if(a == 1‘b1&&b == 1‘b1)n <= C can

be modeled as equation n1.(1 − n0) = a.b.(1 − s1).s0 In the next step, the corresponding

polynomials of If Then Else are XORed together to achieve the exclusive nature of these

statements. The derived specification polynomials will be used in the equivalence checking

procedure.

Listing 7.1. RTL module of FSM shown in Figure 7-2.

module fsm ( input c lock , a , b ; output v a l i d ) ;

reg [ 1 : 0 ] s , n ;

parameter O=2’b00 , G=2 ’01 , C=2’b10 ;

always @( a , b , s ) begin

case ( s )

G: i f ( a == 1 ’ b1 && b == 1 ’ b1 ) begin
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n <= C;

end else i f ( a == 0) begin

n <= G; end

C: i f ( a == 1 ’ b1 && b=1’b1 )

n <= O;

else

n <= G; end

O: n <= G;

end

always @(posedge c l o ck )

begin

i f ( a==1’b0 ) s <= G;

else s <= n ; end

end

endmodule

7.2.2 Generation of Implementation Polynomials

Our goal is to partition the design and find the regions that are responsible for

implementing each of the states and represent them as implementation polynomials.

In order to perform this task, a mapping between state names and their corresponding

gate-level state flip-flop names is needed. Here, we assume that the name of state inputs,

outputs as well as state flip-flops are same between specification (RTL, state diagram, etc.)

and implementation, or name mapping can be done based on existing methods in [100].

For the ease of the illustration, we explain how to extract the implementation polynomials

when the FSM encoding is binary-encoding. Our proposed approach works for any state

encoding.

After name mapping, we partition the gate-level implementation of the FSM based on

state flip-flops. The state region construction starts from the input of the corresponding

state flip-flop. The region construction continues with the inputs of the state flip-flop

and moves backward recursively until it reaches to primary inputs or flip-flop outputs.
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The constructed region is converted to a polynomial by converting each of its gates to a

polynomial as shown in Equation 3–1 and combining them to each other to create one

polynomial representing the whole region. We illustrate our approach using Example 4.

Example 4: Figure 7-3 shows the gate-level netlist which implements the FSM shown

in Figure 7-2. In the implementation, FSM states are encoded using binary scheme

(two flip-flops are used to implement the functionality of three states shown in the state

diagrams of Figure 7-2). The implementation is partitioned starting from the input of

state flip-flop ni and it is continued until reaching either primary inputs or outputs of

state flip-flops (si). In the next step, the corresponding polynomial of each partition is

derived by combining polynomials of each gate in the region to represent the functionality

of next state variables (ni). The implementation polynomials are shown in Equation 7–3.

Fimp : {n0 − (1− a.b.s1 − a.s0 + a.b.s0.s1) = 0,

n1 − (a.b.s0 − a.b.s0.s1) = 0}
(7–3)

Figure 7-3. Implementation of FSM in Figure 7-2 using binary encoding.

When a gate’s output goes to more than one gate, it is called a fanout. A fanout-free

region is a set of gates that are directly connected together. Therefore, we partition the

implementation to fanout-free regions and model each of them as one polynomial. The

corresponding polynomials of each next state variable (nis) can be computed by combining
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the polynomials of the corresponding fanout-free regions. Polynomials of fanout-free

regions are calculated in order to reduce the efforts of implementation polynomial

generation since one fanout-free region may be used in constructing the functionality

of several nis. Note that, in the implementation shown in Figure 7-3, the functionality of

each ni is constructed with only one fanout-free cone.

Note that, the implemented functionality of FSM’s outputs also can be formulated

as a function of FSM inputs and states and presented as polynomials. In order to find

implementation polynomials corresponding to FSM’s outputs, each output gate is

considered and traversed backward until it reaches to either input/output of state flip-flops

or FSM inputs. The traversed gates are modeled using one polynomial showing the

functionality of the corresponding output, and those polynomials are added to set Fimp.

7.2.3 Equivalence Checking

From the security point of view, it is important to make sure that the implementation

of a design performs exactly its specification. We check the functional equivalence between

a control logic specification and its implementation in order to establish the trust of

the control logic. In this chapter, we formulate the FSM equivalence checking as ideal

membership testing based on Gröbner Basis theory. Implementation polynomials Fimp

are formed as an ideal I based on particular order > ( the topological order which exists

in the implementation). FSM implementation is trustworthy if all of the specification

polynomials in set Fspec are the member of ideal I =< Fimp >.

In order to check the trustworthiness of the implementation, each specification

polynomial Fspeci from set Fspec is reduced over polynomials in Fimp. All of the variables in

specification polynomials (except primary inputs and flip-flops’ outputs) are substituted

with the corresponding functionality of the variable from the implementation polynomials.

Note that, the reduction procedure is done using sequential polynomial division as

shown in Section 3. The reduction process continues until a zero remainder or a non-zero

polynomial which contains a combination of primary inputs and flip-flop outputs is
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reached. If reduction Fspeci over set Fimp results in a zero remainder, it means that Fspeci

belongs to the ideal I =< Fimp >. In other words, set Fimp has successfully implemented

the specification Fspeci. Otherwise, the implementation of Fspeci is not trustworthy

(implementation is not equal to specification). If all of the remainders are equal to zero

polynomials, it means that the overall implementation is equal to FSM’s specification

since set Fspec includes specification of the FSM states as well as specification of FSM’s

outputs (specification polynomials cover all specification space). Algorithm 14 shows the

equivalence checking procedure.

Algorithm 14: FSM Equivalence Checking Algorithm

1: Input: Gate-level netlist imp and specification polynomials Fspec
2: Output: FSM anomalies E
3: Fimp=findImplementationPolynomials(imp)
4: for each fspeci ∈ Fspec do
5: ri = reduction of fspeci over Fjs ∈ Fimp
6: if (ri! = 0) then
7: Ti = findNonZeroAssignments(ri)
8: E.put(fspeci,Ti)
9: end if

10: end for
11: Return: E

Algorithm 14 takes the gate-level netlist imp of a given FSM as well as the specification

polynomials Fspec as inputs and tries to find any existing anomalies in the FSM. First, it

computes the implementation polynomials (Fimp) as described in Section 7.2.2 (line 4).

In the next step, every specification polynomial fspeci (corresponding to state Si) in Fspec

is reduced over a set of implementation polynomials Fjs using Gröbner Basis theory in

order to find the remainder ri (line 6). If the remainder is non-zero, it means that there

are some malicious functionality in implementing specification polynomial fspeci . Every

assignments that make the remainder non-zero, activates the malicious access path to Si.

The Algorithm stores the anomalies in the map E (lines 7-9).

Example 5: Consider the specification polynomials of Equation 7–2, gate-level netlist

in Figure 7-3 as well as implementation polynomials shown in Equation 7–3. The
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Equation 7–4 shows the equivalence checking procedure with respect to topological

order {n1, n0} > {s1, s0, a, b}. Note that, reducing of variables {n1, n0} happen at the same

time as their orders are the same. However, we show the reduction of Fspec1 in two steps to

illustrate the procedure better.

Fspec1 : fG : (1− n1).n0 − (1− a.b.s1 + a.b.s0.s1 − a.s0)

stp11 : (1− a.b.s0 + a.b.s0.s1).n0 − (1− a.b.s1 + a.b.s0.s1 − a.s0)

stp12 : (1− a.s0 − a.b.s1 + a.b.s0.s1)− (1− a.b.s1 + a.b.s0.s1 − a.s0) = 0

Fspec2 : fC : n1.(1− n0)− (a.b.(1− s1).s0)

stp21 : (−a.b.s0.s1 + a.b.s0)− (a.b.(1− s1).s0) = 0

Fspec3 : fO : (1− n1).(1− n0)− (a.b.s1.(1− s0))

stp31 : (a.s0 − a.b.s0 + a.b.s1)− (a.b.s1 − a.b.s1.s0) =

(remainder) : a.s0 − a.b.s0 + a.b.s0.s1

(7–4)

As shown in Equation 7–4, specification polynomials of states G and C are reduced to

zero which means that they are safely implemented by the gate-level netlist. However,

the reduction of specification polynomial of the protected state O results in a non-zero

remainder. The remainder reveals potential vulnerabilities in the gate-level implementation

of the design to access the protected state O. Every assignment that makes the remainder

non-zero, discloses an unauthorized access path to the state O. Table 7-1 shows

the malicious access paths. As it can be observed from Table 7-1, don’t care state

{s1, s0} = 2‘b11 can access the protected state O due to synthesis tool optimization

(when input a is true). There is another malicious access path to the state O from state

G when a = 1 and b = 0. This extra access is a hardware Trojan that was inserted by an

adversary or a rogue designer.

Table 7-1. Malicious access paths to the protected state O shown in Figure 7-2

s1 s0 a b
1 1 1 X
0 1 1 0
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7.3 Experiments

7.3.1 Experimental Setup

In order to evaluate the effectiveness of our FSM anomaly detection approach, we

have implemented the proposed Algorithms using Java. Our experiments were run on

a PC with Intel core i7 and 16 GB memory. We have applied our method on various

FSM benchmarks from OpenCores [66]. The benchmarks are described using RTL

modules (that we treat as the specification). To obtain the gate-level implementation, we

synthesize RTL modules using Synopsys Design Compiler [1]. We extract specification

polynomials from RTL modules of FSM benchmarks considering their state transitions

and output assignments. We have implemented a Java program such that we define the

valid transitions to states in the form of abstracted polynomials and it generates one

specification polynomial representing all of the logical transitions to a given state. The

same approach was used to produce the specification polynomials for FSM outputs. On

the other hand, implementation polynomials are driven automatically from the synthesized

gate-level netlist using our proposed framework. In order to generate implementation

polynomials, gate-level netlist is partitioned into the fanout-free regions which are

restricted to flip-flops boundaries as well as primary input and primary outputs. We

use fanout-free regions to reduce the number of implementation polynomials. We reduce

specification polynomials over a set of implementation polynomials and each non-zero

remainder represents an FSM security threat. The goal is to find the assignments to

activate the vulnerabilities (if any).

7.3.2 Results

We have conducted two sets of experiments based on whether the vulnerability

is introduced by the synthesis tool (unintentional) or an attacker (intentional). In the

first set of experiments, the gate-level implementations are Trojan-free, and all the

potential vulnerabilities are caused by the synthesis tool. Note that different encoding

styles and values can create different vulnerabilities. In the second set of experiments,
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Table 7-2. Result of the proposed FSM Anomaly detection technique using Equivalence
Checking.

Benchmark Encoding #Gates #FF #Sts #Trans.
Our Approach

DC Sts DC Tran. EQ (s)
TAP controller One-Hot 136 16 16 33 3 6 80.63
AES Encryption One-Hot 88 5 5 11 0 0 6.26
AES Encryption Binary 60 3 5 11 3 6 5.03
RSA Encryption One-Hot 114 7 7 9 0 0 18.48
RSA Encryption Binary 76 3 7 9 1 1 6.2
SHA Digest One-Hot 153 7 7 47 121 121 50.89
multiplier Controller binary 52 3 5 8 3 3 1.85
SAP controller Binary 135 4 12 25 0 0 17.23

we have inserted hardware Trojans in state transitions as well as state outputs of the

implementations in order to show the effectiveness of our approach. The results are shown

in Table 8.4.2 and Figure 8-4, respectively.

Table 8.4.2 represents the result of proposed FSM equivalence checking approach

for eight different benchmarks. The first column shows the type of the benchmark. The

second column represents the encoding style of the FSM design. We have considered

binary and one-hot encoding methods to show that our proposed approach is not

dependent on the encoding approach. The third, fourth and fifth columns represent

the number of gates, number of state flip-flops, and the number of states, respectively.

The sixth column represents the number of transitions in the FSM design. The next

two columns indicate the number of don’t care states and don’t care transitions that our

method finds, respectively. Note that our method does not report the don’t care states

that are not connected to any other states. Finally, the last column shows the CPU

time that our proposed equivalence checking (EQ) approach to find anomalies in FSM

benchmarks.

To show that our proposed approach can also detect hardware Trojans inserted in

the state transition function as well as in the logic that generates the outputs of the

FSM, we inserted hardware Trojans by exploiting the unspecified functionality of different

benchmarks. Figure 8-4 shows the required time to detect the injected Trojan. The

attributes of the benchmarks are the same as shown in the Table 8.4.2.
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Figure 7-4. Time required to detect hardware Trojans in output logic and state transition
function.

The experimental results demonstrated that our approach could detect the hidden

vulnerabilities introduced by synthesis tool optimization while Formality fails to detect

them. Note that some state encodings are more likely to have vulnerabilities caused by

synthesis tools. For example, the synthesis tools tend to map all of the don’t care states

to a state with all zero’s encoding (e.g. 3’b000) assuming that the state represents reset

or ideal state. If the protected state is mapped using this encoding, there may be a direct

access to the protected state from some don’t care state caused by the synthesis tool.

7.4 Summary

It is critical to make sure that FSMs are correctly implemented, and there is no

deviation from the specified functionality of the FSM since any unexpected functionality

can endanger the integrity of the whole design. FSM vulnerabilities can be caused

intentionally through an adversary by inserting hardware Trojan in the implementation or

unintentionally using CAD tools such as synthesis tools. In this chapter, we presented an

approach to formally detect anomalies in finite state machines using symbolic algebra. Our

proposed approach models the specification of an FSM as a set of polynomials such that

each polynomial represents all of the valid transitions to one of the states of the FSM. We

modeled the implementation of an FSM as a set of polynomials. We check the equivalence

of the specification polynomials and implementation polynomials using Gröbner basis
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theory. We have showed our approach can detect hidden vulnerabilities created by both

synthesis tools or an adversary.
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CHAPTER 8
TROJAN ACTIVATION BY INTERLEAVING CONCRETE SIMULATION AND

SYMBOLIC EXECUTION

Modern System-on-Chip (SoC) designs consist of a wide variety of computation,

communication and storage related Intellectual Property (IP) blocks. Developing and

verifying each of these IP blocks in-house is infeasible due to time-to-market and budget

constraints. It is a common trend in industry to rely on third-party IPs to keep the cost

low and to meet firm deadlines. However, using IPs gathered from untrusted third-party

vendors introduces security and trust concerns. These IPs may come with malicious

modifications (hardware Trojans) inserted by a rogue designer or an adversary. Hardware

Trojans can be hidden under rare branches or assignments such that they are triggered

under extremely rare input sequences. As a result, traditional validation approaches

are unable to activate them. A Trojan can leak secret information, create backdoor for

attackers, alter functionality, degrade performance, halt the system, etc. [18, 81, 130, 131].

Therefore, it is crucial to have effective validation techniques to detect hardware Trojans.

Trojan detection methods based on side-channel analysis monitor changes in physical

characteristics such as power, delay, and current [74, 103, 120, 137]. However, these

approaches are unable to detect functional hardware Trojans since they mostly consist

of a few gates which have a negligible effect on physical characteristics. Moreover,

the minor change in side-channel signature may not be detectable due to relatively

large environmental noise and process variations. The other class of methods relies on

statistical parameters to distinguish Trojan-inserted circuits from Trojan-free circuits

[135, 142]. However, these methods can lead to many false positives even if the circuit

is Trojan-free. Logic testing based methods focus on functional comparison instead of

looking at side-channel signatures. All these above-mentioned techniques require input

vectors for activating the Trojan to measure the difference from expected behavior.

Researchers have proposed model checking based approaches [73] for activating hardware

Trojans. However, these methods suffer from inherent capacity restrictions of formal
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methods while dealing with large designs. Therefore, such methods are not effective for

activating hardware Trojans in complex register-transfer language (RTL) models.

In this chapter, we propose a scalable directed test generation method to activate

potential hardware Trojans in RTL designs using concolic testing. Concolic testing is an

effective combination of concrete simulation and symbolic execution. It is scalable since

it can avoid state space explosion by exploring one execution path at a time in contrast

to dealing with all possible execution paths simultaneously (like conventional formal

methods). While this approach has shown promising results in the context of software

verification using concolic testing [59, 123], this area has not been explored in the context

of test generation for detecting hardware Trojans. This chapter makes the following four

important contributions.

• To the best of our knowledge, our proposed approach is the first attempt in

developing an automated and scalable technique to generate directed tests to

activate hardware Trojans in RTL models.

• We develop a threat model involving rare branches and rare assignments in RTL

designs. This threat model leads to a list of potential security targets for directed

test generation.

• We propose an effective combination of concrete simulation and symbolic execution

to generate directed tests to activate these security targets.

• We show that detection of hardware Trojans boils down to coverage of rare branches

and assignments in RTL models. Our experimental results demonstrate the

effectiveness of our approach by activating hard-to-detect Trojans in large and

complex benchmarks.

The remainder of the chapter is organized as follows. We provide a brief overview of

concolic testing in Section 8.1. We present our threat model in Section 8.2. Section 8.3

describes our test generation framework for hardware Trojan detection. Section 8.4

presents our experimental results. Finally, Section 8.5 concludes the chapter.
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8.1 Background: Concolic Testing

Concolic testing generates tests by effective combination of concrete simulation and

symbolic execution. The idea was first demonstrated in software domain [59, 122, 123],

and later applied on hardware designs [89, 108]. The first step involves concrete simulation

with an initial set of input vectors. The execution path taken by the simulation can be

decomposed into a set of constraints, referred as path constraints. Next step is to force

the execution through an alternate route. This is done by selecting one of the unexplored

branches in the execution path, negate corresponding constraint, and symbolically solve

it using a constraint solver. If the solver comes up with a solution input set, then for that

input execution will go through that alternate branch. If no solution is found, another

branch is selected for negation. These steps are repeated until required target branch is

reached. Concolic testing explores one path at a time, thus not prone to state explosion

problem like model checkers that consider all design state space at a time. This advantage

makes it an attractive choice for large designs.

Unlike random and constraint random test generation approaches, concolic testing

tries to cover the design space uniformly. Although concolic testing is more beneficial than

random test generation approaches in most of the time, this approach still suffers from

long runtime due to its exhaustive branch selection methodology. Figure 8-1 shows three

different test generation approaches. If we apply random strategy as shown in (a), there is

no guarantee that target will be reached. If we use concolic testing search which uniformly

prioritizes each branch like in (b), then it will eventually reach the target, but may take

infeasibly long time. Note that the strategy used for alternate branch selection determines

how quickly we reach the target. In this chapter, we propose a directed test generation

approach (c) that utilizes the distance feedback to quickly reach the desired target.

8.2 Threat Model

An adversary (e.g., a rogue designer or an untrusted IP vendor) can insert hard-to-detect

Trojans in the RTL design to affect the trust level of the design. To escape the detection
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Figure 8-1. CFG traversal of different test generation methods. S is the start (current)
node and T is the target. Covered nodes are dark colored. (a) Random tests:
T is not covered. (b) Uniform tests using concolic testing: T is covered after
many iterations. (c) Directed tests using proposed approach: T is quickly
covered.

of the inserted Trojans during different steps of verification/validation procedure, Trojans

are designed such that only a very rare set of input sequences can trigger them. In other

words, Trojans are dormant during the normal execution, and activated under unusual

(rare) conditions. Therefore, a smart adversary is likely to insert Trojans in RTL designs

under rare branches which may reside in the unspecified functionality of the design.

Otherwise, traditional simulation techniques using random or constrained-random tests

can detect them, and the attacker’s attempt would fail.

We also consider rare continuous/concurrent assignments in our threat model.

These are assignments that may not be under any branches. Therefore, there is a high

chance that they are not covered by targeting rare branch coverage. We transform rare

assignments to branches without changing the functionality of the design in order to

generate tests to cover them. Therefore, our threat model boils down to covering only

rare branches including both original and newly created ones (due to conversion of rare

assignments to branches).

Example 1: Suppose that an RTL IP contains an assignment statement which is as

follows: assign Tj Trig = count 1 & count 2. Assuming Tj Trig is the trigger
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signal of the hidden Trojan and it becomes true when both count 1 and count 2 overflow

at the same time. Signal Tj Trig becomes rare for value ‘1’ if two of the counters are

large enough. In order to consider such rare assignments in the test generation phase, we

convert the assignment to a conditional statement as follows.

Listing 8.1. Converting an assign statement to a conditional statement.

i f ( count 1 & count 2 )

Tj Tr ig <= 1 ;

else

Tj Trig <= 0 ;

In this chapter, we aim to activate the Trojans that change the functionality (e.g.,

causing information leakage or denial of service) and they can be triggered internally

and externally. There may be cases when the Trojan’s trigger is dependent on several

rare branches. However, the trigger should be used somewhere in the design to cause the

malicious functionality. Since the trigger value is rare, the branches/assignments that use

the trigger would be rare to be activated, consequently. Therefore, by covering all of the

rare branches and assignments, we can activate hidden Trojans in RTL designs.

While we use rare branches and rare assignments as our threat model in this chapter,

our approach can easily incorporate suspicious nodes marked by other methods such

as Transition Probability Calculator (TPC) [69], FANCI [135], VeriTrust[142] as well

as score-based classification methods [105] to perform our Trojan detection analysis.

Moreover, while this chapter uses Verilog examples, our approach is also applicable on

VHDL designs.

8.3 Test Generation for Trojan Activation

Figure 8-2 shows the overview of our proposed approach. It consists of three major

steps: i) design instrumentation, ii) obtaining security targets of the design based on

identification of rare branches and assignments, and iii) directed test generation to activate

security targets. The remainder of this section describes these steps in detail.
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Figure 8-2. Proposed hardware Trojan activation framework consists of three main tasks:
i) design instrumentation, ii) finding suspicious branches and assignments, and
iii) test generation for Trojan detection.

8.3.1 Design Instrumentation

In order to both identify rare branches and generate path constraints during test

generation, we need to generate the trace files from the simulation of the design.

Therefore, we instrument the RTL code such that the sequence of events and the type

of operations are recorded during different concrete execution paths. The design is

flattened to ensure the uniqueness of variables during different clock cycles. Note that

the instrumentation will not change the functionality of the design, since it only inserts

print-related statements. The design is instrumented once, and traces are generated during

the Trojan activation process.
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Example 2: Listing 2 shows the instrumented version of Trojan circuit in AES-T100

benchmark [69] where “c” shows the current clock cycle (display statements are added).

The Trojan is triggered when state variable becomes a particular value from 2128 possible

values (state = specific value) 1 .

Listing 8.2. Instrumented version of a part of the code shown in AES-T100 [69]

always @( rs t , s t a t e )

begin

i f ( r s t == 1) begin

$display ( IF r s t==1 taken )

$display ( ( Tj Trig , c+1) = 0)

Tj Tr ig <= 0 ;

end else i f ( s t a t e==s p e c i f i c v a l u e ) begin

$display ( IF s t a t e==s p e c i f i c v a l u e taken )

$display ( ( Tj Trig , c+1) = 1)

Tj Tr ig <= 1 ;

end

end

8.3.2 Identification of Suspicious Branches

To find rare branches which can potentially host hardware Trojans, we utilize random

tests. We simulate the instrumented design using random tests. We count the number

of times a branch is covered. We mark a set of branches as rare based on a specific

threshold. For example, having a threshold of zero implies only uncovered branches as

suspicious. Therefore, the default threshold should be zero. However, it can be a small

number depending on the importance of specific IPs or designers’ inputs. All the branches

1 specific value = 128‘h00112233 44556677 8899aabb ccddeeff
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below the threshold are considered as security targets for the proposed Trojan activation

framework.

Example 3: Consider the Trojan circuit shown in Listing 2, the Trj Trig signal remains

zero most of the time. However, when the state input gets the rare value shown in line

10, the Trj Trig signal is activated. The chance of the branch shown in line 10 is being

covered during random test simulation is extremely low (probability of 1/2128) and most

likely it will not be covered. Therefore, our method marks this branch as a rare branch

(security target).

After identifying rare branches, we model conditions of each rare branch as a security

target such that the branch will be taken if the conditions are evaluated true. The

security targets are used by our test generation framework to produce the input conditions

(directed tests) to activate the respective rare branch in order to make sure that no Trojan

or malfunction resides inside those rare branches.

Algorithm 15: Security Targets Identification

1: Input: Design under test DUT, Threshold π
2: Output: Set of security targets P
3: P = {}, Φ = {}
4: DUT ′ = InstrumentDesign(DUT)
5: for i = 0; i < π; i+ + do
6: Input vector I = randomTest()
7: Path Trace φ = Simulate(DUT ′, I)
8: Φ = Φ ∪ φ
9: end for

10: A = identifyRareAssignments(DUT ′, Φ)
11: B = identifyRareBranches(DUT ′, Φ)
12: for each a ∈ A do
13: B = B∪ createEquivalentBranch(a)
14: end for
15: for each b ∈ B do
16: P=createSecurityTarget(b)
17: P = P ∪ P
18: end for
19: Return P
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Algorithm 15 shows the procedure to mark security targets. The algorithm takes

the design under test (DUT) as well as threshold π (indicates the number of random

simulations as inputs) and it produces a set of targets P as output. To trace the execution

path, the design is instrumented (line 4). Then, the design is simulated using random tests

for π times, and simulation traces are stored in set Φ (lines 5-9). When the simulation

phase is over, branches that are not covered are identified using the information extracted

from simulation traces Φ and added to set B (lines 11). Note that for each branch b, two

conditions are considered: i) b is taken, and ii) b is not-taken. The same procedure is done

for identifying the rare assignments (line 10). Each rare assignment a is converted to an

equivalent branch and added to set B (lines 12-14). Finally, for each branch b where b ∈ B

is converted to an assertion, and it is added to the output set P (lines 15-19).

Example 4: Consider the Trojan circuit shown in Listing 2. The branch shown in line 7,

if (state == specific value) has been not covered during random simulation, and thus it

is marked as a rare branch. Therefore property assert eventually state = specific value is

added to the design for security validation.

Similarly in Listing 1, since the condition (count 1 == 1 & count 2 == 1) is a rare

event, we create a security target as: assert eventually count 1 == 1 & count 2 == 1.

8.3.3 Coverage Guided Test Generation for Trojan Activation

Algorithm 16 takes an RTL design as well as security targets as inputs and generates

directed tests to cover targets. First, we perform a preprocessing step to reduce the total

number of security targets. The number of security targets has a direct impact on the

performance of the test generation approach. The number of targets can be reduced based

on the dependency between them due to the fact that all branches within a rare branch

are also rare. Covering the inside branch will also cover the parent branch, and thus it

can be removed from target list. Such dependency can be resolved by looking at the

control flow graph (CFG) of the design. If a target is dominator of any other target, it can
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be pruned. An example is shown in Figure 8-3. Here (a) shows the initial targets as B,

D, and E. However, B is a dominator of target D, hence can be removed. This is done

statically, without unrolling the design for multiple cycle. Static analysis only prunes part

of the dependent branches. Dynamic pruning with actual unrolling of design would result

into more pruned targets, but we do not use it in this work since it is susceptible to state

explosion.

After pruning step (line 4), one of the targets is selected for test generation. Distance

from the target is then evaluated by running breadth first search (BFS) starting from the

target branch, and following predecessor edges in the CFG. An example is shown in Figure

8-3(d). Here, D is selected to be covered first. Initially, target D is assigned distance 0

and all other branches are assigned infinity. Next, we run BFS starting from D, and follow

predecessor edge. After distance evaluation is finished, distance would be: B = 1, A = 2

and others infinity. This procedure is also done statically without actually unrolling the

design. Next, we apply concrete simulation followed by symbolic execution for several

iterations in order to generate tests to activate the potential hardware Trojan. In each

iteration, the instrumented design is simulated for a specific number of clock cycles and a

trace file is produced (Figure 8-3(e)). The information of the trace file is then converted

into path constraints (line 15). These constraints model the execution path taken by

the concrete simulation. In the next step, one of the alternate branches is selected to

be explored. We have selected the branch which has lowest assigned distance value

(line 17). In other words, we have given priority to the branches that are closer to our

security target. Path constraints that leads to that branch is then symbolically solved by a

constraint solver (line 19). If a solution exists, then we again do concrete simulation with

that solution, this time forcing execution through that alternate branch. This concrete and

symbolic execution steps are repeated until target is covered (Figure 8-3(e)-(f)), or some

terminating conditions are met (e.g. timeout). If all of the branches are exhausted and no

new input vector I can be generated, algorithm returns generated tests (line 25).
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Figure 8-3. Overview of test generation procedure. Targets are darkened. (a) Initial
targets. (b) Targets after pruning. (c), (d) Selects one target, and evaluates
distance for that target. (e) Runs concrete simulation. Execution path is
marked as red. (f) Selects an alternate branch and symbolically solves for
input.

Example 5: Consider the instrumented code in Listing 2. The concolic testing generates

a test vector to activate the rare branch (line 7) where rst = 0 and state = specific value.

This input vector makes Tj Trig true, and therefore, activates the Trojan.

We effectively utilize the advantages of both concrete simulation and symbolic

execution to generate directed tests to activate hidden Trojans in the design. Our

approach avoids the state space explosion by examining one path at a time in contrast

to traditional formal methods that consider all simultaneously. Therefore, it is capable of

reaching to hard-to-detect paths and activating hidden Trojans.

8.4 Experiments

8.4.1 Experimental Setup

Experiments are performed using a 64-bit Red Hat Enterprise Linux server machine

with Core-i5 3427U CPU and 16GB of RAM. The CPU has two cores running at 1.80GHz.

Our hardware Trojan detection approach is implemented using C++. Icarus Verilog is

used for parsing and simulating the RTL design [139]. Yices is used as the constraint

solver [45]. EBMC model checker is used to perform property-based test generation [86].

Our Trojan detection framework is tested with Trojan inserted designs of Trust-Hub
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Algorithm 16: Generation Tests for Trojan Activation

1: Input: Instrumented Design under test DUT ′, Security targets P
2: Output: Set of test vectors T
3: T = {}
4: P′ = pruneOverlappingTargets(P)
5: Input vector I = random()
6: while I is not null do
7: T = T ∪ I
8: Path Trace φ = Simulate(DUT ′, I)
9: for each P ∈ P′ and isCovered(P, φ) do

10: P′.remove(P )
11: end for
12: if P is empty then
13: Return T {All security targets are covered}
14: end if
15: C = findConstraints(DUT ′, φ)
16: for all uncovered branches C do
17: b = branchWithLeastDistanceFromTarget(C, p)
18: bn = ¬b
19: I = satisfy(C + bn)
20: if I! = null then
21: break {To execute new input}
22: end if
23: end for
24: end while
25: Return T

benchmark suite [69]. Additionally, some custom designed benchmarks are used to

demonstrate the scalability of our method. Synopsys Design Compiler is used for

synthesizing benchmarks. To identify suspicious branches/assignments, we simulated

each of the design for one million clock cycles using random test vectors.

8.4.2 Results

In this section, we show the efficiency of our framework to generate test vectors

to activate the hidden Trojans in Trust-Hub benchmarks. We compare our approach

with model checking. Please note that there are no existing approaches for rare branch

activation using model checking for Trojan detection in RTL models. We provided these

results to show that EBMC model checker works well when the design is small. This also
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highlights the fact that our fault model and security targets can be utilized by existing

approaches.

8.4.2.1 Results using Model Checking

The model checker takes the design and the negation of the security targets and

tries to generate a counterexample (test) to cover the security targets. Table 8-1 shows

the results of hardware Trojan detection using EBMC model checker. The first column

indicates the type of the benchmark. The second column indicates the number of cycles

that the design needs to be unrolled until the Trojan is activated. The third column

shows the number of rare branches. The fourth column shows the coverage of the security

targets. Finally, the last column presents the required time for the model checker to

generate the tests to activate the Trojan. Based on Table 8-1, when the designs are small,

and the security targets are not complex (are not dependent on too many internal states

and variables), using EBMC is effective. However, using EBMC for large designs with

complex targets is not effective as demonstrated in the next section.

Table 8-1. Results to generate directed tests that activate the Trojan using EBMC model
checker in RTL Trust-HUB Benchmarks. NA= not applicable

Benchmark
Cycles
Unrolled

#Rare
Branches

Rare Branch
Coverage

EBMC
(sec)

RS232-T100 250 0 NA (*) NA
RS232-T200(**) 250 1 100.00% 1.56
RS232-T400 250 2 100.00% 2.83
RS232-T800 250 1 100.00% 1.84
wb conmax-T200 10 1 100.00% 8.71
wb conmax-T300 10 1 100.00% 11.77

* All branches are covered during random tests.
** Corrected trigger condition. Original condition is impossible to trigger.

8.4.2.2 Results using Concrete Simulation and Symbolic Execution

Table 8-2 presents the results of Trojan detection using our approach on Trust-hub

benchmarks. The first and second columns show the type of the benchmark and the

number of unrolled clock cycles, respectively. The third column shows the number of

security targets that are used for Trojan detection. The fourth column indicates the

coverage of rare branches using our approach. The fifth and seventh columns present
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Table 8-2. The required time and memory to generate directed tests that activate the
Trojan using EBMC as well as our approach in RTL Trust-HUB Benchmarks.
MO = memory out of 16 GB.

Benchmark
Cycles

Unrolled
#Rare

Branches
Rare

Branches
Coverage

EBMC Our Approach Time
Improvement

Memory
ImprovementTime

(sec)
Memory

(MB)
Time
(sec)

Mem
(MB)

wb conmax-T200 10 1 100.00% 8.71 659.5 13.36 124.7 -1.53x 5.29x
wb conmax-T300 10 1 100.00% 11.77 1198.9 11.06 118.8 1.06x 10.09x

AES-T500 10 5 100.00% 67.07 7436 11.67 599 5.74x 12.41x
AES-T1000 10 2 100.00% 68.37 7441 3.88 525 17.62x 14.17x
AES-T1100 10 5 100.00% 71.03 7449 11.8 601 6.01x 12.39x
AES-T1300 10 9 100.00% 68.57 7449 2.65 524 25.87x 14.21x
AES-T2000 10 6 83.33% 69.27 7554 6.75 600 10.26x 12.59x
cb aes 01 5 1 100.00% 1.27 179.4 0.51 55.3 2.49x 3.24x
cb aes 05 10 1 100.00% 11.47 1450.3 4.03 244.3 2.84x 5.93x
cb aes 10 15 1 100.00% 33.17 4130.6 14.47 502.4 2.29x 8.22x
cb aes 15 20 1 100.00% 70.78 8041.2 32.14 778.2 2.20x 10.33x
cb aes 20 25 1 100.00% 110.13 13202.8 86.03 1085.5 1.28x 12.16x
cb aes 25 30 1 100.00% - MO 150.54 1405.3 - -
cb aes 30 35 1 100.00% - MO 243.02 1780.3 - -
cb aes 35 40 1 100.00% - MO 371.23 2112.7 - -
cb aes 40 45 1 100.00% - MO 851.25 2532 - -

the required time for Trojan activation using EBMC model checker and our approach,

respectively. The sixth and eight columns show the required memory to generate the test

to activate the Trojan using EBMC and our approach, respectively. The last two columns

demonstrate the improvement over EBMC regarding the required time and memory.

The results in the first two rows of the table demonstrate that even though that EBMC

may have comparable runtime results for small benchmarks, the memory requirements

are significantly higher than proposed approach. Our approach has significantly (an

order-of-magnitude) better runtime as well as memory results for larger benchmarks

in comparison with EBMC. Besides Trust-Hub benchmarks, one additional custom

benchmark is used to demonstrate scalability of our approach. The benchmark is named

cb aes xx. It is a modified version of AES benchmarks, where the Trojan trigger depends

on the xx-th round’s output. As shown in Table 8-2, the bounded model checking tool

EBMC fails to generate a test case due to state space explosion (out-of-memory error)

while our approach works. This shows that the proposed approach can scale with design

size. Table 8-2 demonstrates the significant reduction of the required memory using the

proposed approach.
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Figure 8-4. Comparison of test generation time to activate the Trojan in cb aes xx
benchmarks.

Figure 8-5. Comparison of memory requirement to activate the Trojan in cb aes xx
benchmarks.

Figures 8-4 and 8-5 show the scalability of our approach in comparison with the

model checking based approach for cb aes xx benchmarks when we change the number

of AES encryption rounds. These rounds are cascaded sequentially, and the Trojan is

designed such that its activation is dependent on all intermediate stages. Therefore,

increasing the number of rounds lead to increasing the complexity of Trojan activation.

Furthermore, as the Trojan activation depends on the last round, the design should be

unrolled for at least the number of rounds. Figure 8-4 shows the required test generation

time, and Figure 8-5 shows the memory requirement by the two approaches.

Our results demonstrate that effective interleaving of concrete and symbolic

execution leads to a scalable approach for automated generation of directed tests

to activate hard-to-detect Trojans in large RTL designs. The results show that the
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run time of our approach is comparable to model checking for small designs, but an

order-of-magnitude faster for large designs. Moreover, the memory usage of our approach

is an order-of-magnitude better than model checkers. As a result, our proposed approach

can generate efficient tests to detect hidden Trojans when state-of-the-art approaches fail.

8.5 Summary

In this chapter, we presented an automated and scalable approach to activate

hard-to-detect hardware Trojans in RTL designs. The first step in our detection

methodology involves marking branches and assignments which are likely to contain

Trojans. We used rarity of a(n) branch/assignment to make this decision. We proposed

a threat model involving rare branches and rare assignments. We automatically generate

security targets based on the fault model. We effectively utilize interleaved concrete

simulation and symbolic execution to generate directed tests by covering security targets

to detect potential hardware Trojan in the design. Our experimental results demonstrated

that our test generation technique is scalable and effective for detecting Trojans in large

RTL IPs when state-of-the-art methods fail. Our approach can be easily integrated into

existing design flows and it can be applied on any RTL designs with single or multiple

clock domains. Moreover, the proposed method can detect a wide variety of combinational

and sequential Trojans in modern IP cores.
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CHAPTER 9
OBSERVABILITY-AWARE POST-SILICON TEST GENERATION

A major challenge in post-silicon debug is to generate efficient tests that both

activate requisite coverage goals on the target hardware as well as produce results that

are observable through a given on-chip design-for-debug architecture. Unfortunately, such

tests cannot be generated directly from RTL models, due to both design complexity and

bugs in the design itself.

In this chapter, we present a technique for observability-aware post-silicon directed

test generation through analysis of pre-silicon design collaterals. Our key approach to

overcome the scalability and relevance challenges mentioned above is to exploit more

abstract transaction-level models (TLM) for the designs to perform our analysis. TLM

definitions are much more abstract, structured, and compact, compared to RTL, which

permits effective application of exploration to identify high-quality directed tests. A key

challenge is to map design functionality and observability between TLM and RTL so that

the tests generated at TLM can be translated to effective, observability-aware tests for

RTL. Our approach involves mapping test and observability requirements between TLM

and RTL, enabling TLM analysis to generate post-silicon tests. We provide case studies

to demonstrate the flexibility and effectiveness of the approach. In this dissertation,

we propose an approach to address this problem by exploiting transaction-level models

(TLM). We provide case studies from a number of different design classes to demonstrate

the flexibility and generality of our approach.

The remainder of the chapter is organized as follows. Section 9.1 discusses our overall

framework, some of the challenges faced, and our approach to overcome them. Section 9.2

discusses our experimental results. Finally, Section 9.3 concludes the chapter.

9.1 Observability-aware Test Generation

Suppose we have an RTL model M, a set of checkers and coverage conditions A to be

exercised in post-silicon, and a set of traceable signals S. Our goal is to develop directed
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tests for exercising A such that the results of the test can be inferred by observing the

signals in S. Our approach uses TLM models for post-silicon test generation. We impose

some key constraints on the underlying design for viability of our approach. Our key

requirement is the existence of a TLM description of the system (in addition to RTL),

where the TLM is assumed to be the “golden” specification. Our second requirement is

that TLM and RTL models must have the same external (input-output) interfaces. Since

SoC designs re composed of a number of hardware or software intellectual property (IP)

blocks, we require the IPs to have the same interface variable definitions in TLM and

RTL models. Finally, we will only consider assertions from A that are stutter-insensitive.

The general class of stutter-insensitive properties is LTL\X properties (X denotes next

operator). Tests for stutter-insensitive properties are natural targets for generation based

on TLM since the TLM models are untimed.

Fig. 9-1 provides an overview of our approach. The approach involves four important

steps: i) mapping observability constraints as part of test targets, ii) mapping test targets

from RTL to TLM, iii) test generation using TLM description, and iv) translating

TLM tests to RTL. The basic idea is to transform a RTL assertion (φ) as well as

observability constraints (ψ) to create a modified RTL assertion with observability

constraints (π). The modified assertion needs to be mapped to TLM assertion (α). The

TLM assertion/property would be used to construct a TLM test. Finally the TLM test

would be translated to an RTL test. In the remainder of this section, we describe each of

the steps in detail.

9.1.1 Mapping Observability Constraints

Let MR and MT be the RTL and TLM models of a design with (common) primary

inputs I = 〈I1, I2, ..., In〉 and primary outputs O = 〈O1, O2, ..., Om〉. Let R =

〈R1, R2, ..., Rl〉 be the set of observable RTL signals. Consider a stutter-insensitive

RTL assertion φ over I, O and R from A. For the purpose of the discussion below,
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Figure 9-1. The proposed methodology with four important steps

it is convenient to think of φ as an LTL\ X formula. Our method for generating

observability-aware tests for φ involves the following steps.

1. Trace Cone-of-influence Calculation: We traverse the control/data flow of the

RTL backwards from the signals in R to the variables in φ. This cone-of-influence

calculation is made under the constraint that φ holds. All signals in R whose

cone-of-influence does not include any variable in φ are discarded.

2. Assertion Propagation: We use symbolic simulation to forward-propagate

variables in φ along the cone of influence found in Step 1. The result is a restatement
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of φ into a new formula ψ stated in terms of traceable variables (including signals in

R and O).

3. Assertion Abstraction: We construct a formula π subsuming φ and ψ as follows.

(i) If ψ is consequent of φ, π : (φ → Fψ) and vice versa. (ii) If φ and ψ can be

satisfied concurrently, π : (φ ∧ ψ).

Example 1: Figure 9-2 shows a router in RTL and TLM that receives a packet of data

from its input channel. The router analyzes the received packet and sends it to one of the

three channels based on the packet’s address. F1, F2 and F3 receive packets with address

of 1, 2 and 3, respectively. Input data consists of three parts: i) parity (data in[0] in RTL

and pkt in.parity in TLM) ii) payload (data in[7..3] in RTL and pkt in.payload in TLM)

and iii) address (data in[2..1] in RTL and pkt in.addr in TLM).

Figure 9-2. Router design, RTL and TLM implementations

The RTL implementation consists of one FIFO connected to its input port (F0) and

three FIFOs (one for each of the output channels). The FIFOs are controlled by an FSM.

The routing module reads the input packet and asserts the corresponding target FIFO’s

write signal (write1, write2 and write3). Consider generating a test to check that signal

read0 from F0 (which is internal signal) is not stuck at zero. The corresponding assertion,

written as an (LTL\ X) formula, is (φ : F read0). Suppose that the address part of input

data of F1 (F1.data in[2..1]) is selected as a trace signal. In order to observe activation’s

effect of φ through F1.data in[2..1], the following predicate must be true two cycles after
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read0 becomes true: ψ : F1.write1 ∧ F1.pkt in[2..1] = 1. Thus, following the above steps

we get:

π : Fread0→ XX(F1.write1 ∧ F1.data in[2..1] = 1)

9.1.2 Mapping Test Targets (Assertions) from RTL to TLM

The key challenge in mapping assertions from RTL to TLM is to bridge the

abstraction level between the two designs. We achieve this by exploiting the commonality

of interfaces. Our goal is to find TLM property α that is test equivalent of RTL assertion π

constructed in the previous section. Here by test equivalence we mean that they generate

equivalent tests or counterexamples. The problem reduces to transforming π into a

formula α such that (i) α is an LTL\X property over I and O, and (ii) If a test T is a

counter-example of α in TLM then T is also a counter-example to π in RTL. If π contains

internal RTL variables, we need to turn it to a test equivalent RTL LTL\X property where

it is only over the variables in the interface.

We can define α through symbolic simulation of variables in π analogous to the

previous section, but this time over the TLM model. Suppose that π is a temporal logic

formula over P1, P2, . . . , Pn where each Pi shows one condition on interface or internal

variables. For propagation to interface variables, CDFG is traversed backward from

point/points that Pi is true to reach primary inputs. 1 As a result, each of Pi be restated

as a temporal formula θ over Qi = q1, . . . , qm where qj denotes a condition on interface

variables. The next step is to remove exact timing notation from θ. Our approach is based

on the observation that the original assertion φ is stutter-insensitive. Thus distributive

property is applied such that their operands are atomic (e.g. X(qi ∧ qj) ≡ X(qi) ∧X(qj)).

In addition, we apply the following rules.

1 For some assertions like Pi → Pj, backward traversal from Pi and forward traversal
from Pj would be beneficial. However, in most of the cases performing one of them is
enough.
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• F (Xp) = F p. Thus, operator F can subsume X.

• A property p→ XX...Xq can be replaced by p→ Fq.

• A property p ∧X¬p can be replaced by p ∧ F¬p.

• A property p1 ∧ X..Xp2 can be replaced by p1 → F (p2) when p2 is a condition on

variables from set O.

The modified assertion is an LTL\X that contains conditions on interface variables

so it can be applied on TLM. In fact, assertion π is mapped as a sequence of put and get

transactions. The next step is to perform name mapping when the interface signal names

are not identical. The resultant assertion is our desired assertion α.

Example 2: Consider assertion π from Example 1, we want to turn it to TLM assertion

α which is time insensitive an it is formulated over interface variables. From CDFG

traversal we know that signal read0 (shown in Fig. 9-2) is asserted when F0 is not empty.

Thus, X(Xread0 = 1) ≡ (¬F0.empty). Having non-empty F0 implies that write signal of

F0 has been asserted before. Thus, we can rewrite the formula as XX(F0.read0 = 1) ≡

X(¬F0.empty) ≡ (F0.write) Using the knowledge (F1.data in[2..1] = 1 ∧ F1.write1) ≡

(X(F1.read1) ∧XX(F1.data out1[2..1] = 1). we get the following formula:

θ : write→ FXX(read1→ FXdata out1[2..1] = 1)

Finally, assertion α (after name mapping) can be written as:

α : Fwrite→ F(read1→ Fpkt out1.addr = 1)

9.1.3 Test Generation at TLM Level

An assertion α represents a functional property which holds in the design and

violation of it exhibits a design fault. Assertion based test generation methods take

property ¬α and use model checkers to generate a counter-example for ¬α. In other

words, checking property ¬α leads to generate a test which can activate the scenario of

the property α. Therefore, proper set of assertions results in higher fault coverage and

guarantees the success of property based test generation.
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In this research, we make use of SMV as a formal specification to model TLM. SMV

model checker [28] is utilized to find the counter-example of property ¬α over SMV model

of TLM. The counterexample’s assignments to primary inputs is the TLM test case.

9.1.4 Translate TLM tests to RTL tests

The final step is to map TLM test vectors to the RTL tests. Since TLM test lacks

the timing information in RTL implementation, they cannot be applied to RTL directly.

The mapping process consists of two parts. First, the input/output variables are mapped.

Next, templates are utilized to map TLM transactions to sequence of RTL computations.

The template enables addition of timing relationship. This process is the inverse of our

RTL to TLM assertion mapping. The timing relationship in templates can be provided by

the designers or can be extracted by design analysis tools [31].

9.2 Case Studies

We discuss the application of our approach on two case studies: a NoC switch

protocol and a pipelined processor. In these experiments we make use of Bounded SMV

Model Checker [28] to optimize test generation time.

9.2.1 Wormhole Protocol on NOC Switches

Switches are used as the building block of a Network on Chip (NoC). They receive

packets as input and forward it to respective output ports. In this case study, the router

uses wormhole routing protocol. We consider test generation for five intersting properties:

property 1 is related to reservation of output port of channels, property 2 is about making

two internal FIFO’s full at the same time, property 3 is about receiving a packet with

a specific value, property 4 is related to forcing the acknowledgment signal true and

property 5 is related to deadlock detection.

Table 9-1 shows the effectiveness of our method in generating observability-aware

tests for these five properties. Since there are no prior efforts for observability-aware

post-silicon test generation, we have tried to show the usefulness of our approach in two

ways: (i) our approach (with observability constraints) takes reasonable test generation
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Table 9-1. Test generation’s time for safety properties in network with four switches

Prop. Random TG Our Proposed Method
Directed TG TG with Obs. Constraints

(min) (min) (min)

Property 1 > 600 4.83 6.11
Property 2 > 600 3.45 7.72
Property 3 205 0.49 2.45
Property 4 502.6 1.85 4.73
Property 5 > 600 8.54 13.49

time compared to directed test generation (without observability), (ii) random test

generation may be infeasible to activate buggy scenarios and propagate their effects to

trace signals. We also tried to generate the test directly from RTL when the RTL is

buggy; however, test generation failed because the counterexample cannot be produced.

This observation emphasizes the importance of test generation in golden TLM. Table

9-1 provides statistics of test generation on four other selected properties. The column

DirectedTG shows the needed time for generating directed test without considering

observability constraints. The time consumption is comparable with the proposed

approach but the effect is not observable on trace signals so these test are not useful

for post-silicon. Table 9-1 also shows that TLM random test generation is drastically

worse than our approach and in most of the cases it cannot activate the scenario.

9.2.2 Pipelined Processor

We have applied our method on a MIPS processor with 5 stages: Fetch (it fetches the

new instruction from memory), Decode (it decodes the instruction and reads the possible

operands), Execute (it executes the instruction), MEM (it is responsible for load and store

operations) and WriteBack (stores the results in instruction’s target register). These stages

are implemented by one or more IP block in both RTL and golden TLM implementations.

These IP blocks are connected by FIFOs together. The result of test generation based on

properties related to testing fetch, decode execution units of the processor are reported

in Table 9-2. It is obvious that test generation with observability constraints is most

beneficial for post-silicon validation.

159



Table 9-2. Test Generation’s Time for safety properties in a pipelined processor

Prop. Random TG Our Proposed Method
Directed TG TG with Obs. Constraints

(min) (min) (min)

Property 1 > 600 0.83 1.90
Property 2 92.10 1.12 1.17
Property 3 297.05 3.00 7.47
Property 4 416.02 1.12 1.36

9.3 Summary

This chapter presents a high level directed test generation method based on a golden

TLM model of the design. The proposed method generates directed test cases at TLM

level and maps them back to RTL level to measure the effectiveness of the generated test

cases. We generate test cases in a way that not only activate buggy scenarios (especially

the scenarios that are hard to activate), but also they guide the effect of buggy scenario

to observable points in order to help the debugger to root-cause the source of faults.

Our approach has several merits. First, it enables test generation for buggy RTL designs

since our tests are generated using golden TLM model. Secondly, our proposed method

overcomes the limit of applying direct test generation methods at RTL level since TLM

models are significantly less complex than RTL implementation. Thus, the complexity

of applying model checkers at TLM level is lower. Finally, our test generation takes

observability into consideration by forcing results of the buggy scenario activation to the

trace signals. Our case studies using NOC router, Flash protocol and processor designs

demonstrated the effectiveness and feasibility of observability-aware test generation.
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CHAPTER 10
COVERAGE OF SECURITY PROPERTIES IN RUN-TIME

Post-silicon validation is a major challenge due to the combined effects of debug

complexity and observability constraints. Assertions as well as a wide variety of checkers

are used in pre-silicon stage to monitor certain functional scenarios. Pre-silicon checkers

can be synthesized to coverage monitors in order to capture the coverage of certain events

and improve the observability during post-silicon debug. Synthesizing thousands of

coverage monitors can introduce unacceptable area and energy overhead. On the other

hand, absence of coverage monitors would negatively impact post-silicon coverage analysis.

In this chapter, we propose a framework for cost-effective post-silicon coverage analysis by

identifying hard-to-detect events coupled with trace-based coverage analysis.

Post-silicon validation techniques consider many important aspects such as effective

use of hardware verification techniques [101] and stimuli generation [4]. Several approaches

are also focused on test generation techniques [32, 48] that can address various challenges

associated with post-silicon debug. There are also some techniques that focus on coverage

analysis of some functional events in the manufactured design. They use extra components

(coverage monitors) corresponding to assertions in post-silicon validation to address

controllability and observability issues in post-silicon as well as to provide a coverage

measurement during run-time [8]. The pre-silicon assertions are converted to automatons

and gate-level hardware to monitor certain events during post-silicon validation [8,

23]. Coverage monitors can be reconfigured during run-time to change the focus of the

observability. Unfortunately, synthesized coverage monitors can introduce unacceptable

hardware overhead. Adir et at. proposed a method to utilize post-silicon exerciser on a

pre-silicon acceleration platform in order to collect coverage information from pre-silicon

[6]. However, the collected pre-silicon coverage may not accurately reflect post-silicon

coverage in many scenarios.
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Currently there is no effective way to collect coverage of certain events directly

and independently on silicon. Engineers need to assume that they will cover at least

the same set of post-silicon coverage events as they cover with pre-silicon exercisers

using accelerators/emulators [5]. However, we cannot be sure about the accuracy of

these coverage metrics since silicon behaves differently than the simulated/emulated

design mainly because of asynchronous interfaces. Moreover, because of time constraints,

validation engineers are not able to hit all of the desired coverage events during pre-silicon

validation or some coverage events are not activated enough. Therefore, they are seeking

for an accurate and efficient way to know the coverage of desired events on silicon.

Knowledge of internal signal states during post-silicon execution helps to trace

the failure propagation to debug the circuit. Trace buffers are used to sample a small

set of internal signals since they can help in restoration of other signals and improve

the design observability. There are different techniques to select trace signals such as

structure/metric-based selection [12], simulation-based selection, as well as hybrid of

both approaches [87]. Recently, Ma et al. have proposed a metric that models behavioral

coverage [95]. However, none of these approaches consider functional coverage analysis as a

constraint for signal selection. Our proposed signal selection improves functional coverage

analysis without compromising the debugging observability.

This chapter makes three major contributions. We propose a method to utilize

existing debug infrastructure to enable coverage analysis in the absence of synthesized

coverage monitors. This analysis enables us to identify a small percentage of coverage

monitors that need to be synthesized in order to provide a trade-off between observability

and design overhead. To improve the observability further, we also present an observability-aware

trace signal selection algorithm that gives priority to signals associated with important

coverage monitors. Our experimental results demonstrate that an effective combination

of coverage monitor selection and trace analysis can maintain the debugging observability

with drastic reduction (up to 10 times) in the required coverage monitors.
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Although our proposed method can provide coverage data only for the recorded cycles

(instead of the complete execution), it can significantly reduce the post-silicon validation

effort for various reasons. First, the traced data for specific cycles are able to restore

untraced signals for additional cycles. Moreover, when we know that certain events have

been hit (covered) by trace analysis, the validation effort can be focused on the remaining

set of events. From a practical perspective, it is not valuable to collect coverage data when

generating testcase for an exerciser [80] or during checking a testcase since the exerciser

code is relatively simple, repetitive and not expected to hit bugs on silicon. If the trace

buffer is reconfigured to record signals during testcase execution, more insight about

coverage events can be obtained.

The remainder of the chapter is organized as follows. Section 10.1 provides an

overview about assertion-based validation. Section 10.2 describes our post-silicon

functional coverage analysis framework. Section 10.3 presents our experimental results.

Finally, Section 10.4 concludes the chapter.

10.1 Overview on Assertions

Based on the functional coverage goal, a design is instrumented to check specific

conditions of few internal signals. For example, assertions are inserted in a design to

monitor any deviation from the specification. These days, designers mostly use one of the

powerful assertion languages such as PSL (Property Specification Language) to describe

interesting behavioral events (linear temporal logic assertions). First, we give an overview

of PSL assertions and then we describe our method using them. However, the presented

method in this chapter is not dependent on any assertion language. There are two general

types of assertions: assert and cover statements. There is a single bit associated with

assert which indicates the pass or fail status of the assertion. The cover assertion triggers

at the end of the execution when the assertion is not covered during the run-time. PSL

assertions contain several layers such as Boolean and temporal layers and it can be used

on top of different HDL languages including Verilog and VHDL. It denotes temporal
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sequence using different operators such as “;” (notation of one clock cycle step), “:”

operator for concatenation and operators [low : high], [∗] or [+] present the notation

of bounded or unbounded repetition. Operator [∗] shows the repetition of zero or more

instances; however, [+] denotes one or more repetition. Operators “&” and “|” show the

logical AND and OR between sequences. Different operators such as always, eventually!

and implication and non-overlapped implication which means right hand side property

can hold one cycle after occurrence of left hand side sequence can be combined with other

arguments and operators. Assertions are usually accompanied by an active edge of the

clock (usually the rising edge of the clock is considered as default). PSL assertion can

include Boolean expressions (bi), sequences of events of Boolean primitives (si = bl; ...; br)

and properties on Boolean expressions and sequences.

Assertions can be classified into two groups: conditional and obligation [24]. The

goal of a conditional assertions is to detect a failure. Therefore, it is activated every time

all of its events are observed. For example, “assert never b1” is called a conditional

assertion as every time b1 is evaluated true, a failure will happen and assertion should

be triggered. On the other hand, an assertion is in obligation mode when a failure in its

sequence triggers it. For example, “assert always b2” is in obligation mode as b2 should

be always true and every time it is evaluated to false, the assertion is activated.

Example 1: Consider a part of a circuit shown in Figure 10-1. Suppose that we have

two design properties: first, whenever signal E asserted, signal H is supposed to be

asserted within next three cycles. The following assertion describes this property A1 :

assert always(E → {[∗1 : 3];H}) @rising edge(clk). Consider a second property where

we would like to cover functional scenarios such that D and I signals are not true at the

same time. This property can be formulated as A2 : assert never(D&I).

During post-silicon, assertions are synthesized to checker circuits (coverage monitors)

which are responsible to check specific properties during run time. In other words,

checkers are extra components corresponding to assertions that are used in post-silicon
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Figure 10-1. A simple circuit to illustrate design properties

validation to increase the observability as well as provide a coverage measurement

technique.

10.2 Post-Silicon Functional Coverage Analysis

To have full observability in post-silicon, one option is to synthesize all of the

functional scenarios (typically thousands of assertions, coverage events, etc.) to coverage

monitors and track their status during post-silicon execution. However, this option is

not practical due to unacceptable design overhead. Therefore, designers would like to

remove all or some of the coverage monitors to meet area and energy budgets. It creates a

fundamental challenge to decide which coverage monitors can be removed. We propose an

approach to evaluate the assertion activation efforts by on-chip trace buffer and rank them

based on the difficulty in covering/detecting them. Clearly, the hard-to-detect ones should

be synthesized, whereas the easy-to-detect ones can be ignored (trace analysis can cover

them). Figure 10-2 shows an overview of our proposed method. Our proposed approach

consists of four major steps: decomposition of coverage scenarios, signal restoration,

coverage analysis and signal selection. The remainder of this section describes these steps.

10.2.1 Decomposition of Coverage Scenarios

Suppose that a gate-level design D as well as a set of pre-silicon RTL assertions A are

given and our plan is to use trace buffer information to determine activation of A in model

D during silicon execution. We propose an off-line functional event decomposition to

enable post-silicon coverage analysis. The decomposition can be done in pre-silicon. First,
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Figure 10-2. Overview of our proposed approach.

RTL assertions are scanned to extract their signals and their corresponding gate-level

signals based on name mapping methods. Next, each RTL assertion from set A is mapped

to a set of clauses such that each clause contains assignments to a set of signals in specific

cycles.

Formally, each pre-silicon assertion Ai ∈ A is scanned and its signals and its

corresponding gate-level signals are defined. Then, Ai is decomposed to a set of clauses

A ≡ C = {C1, C2, ..., Cn} based on its mode (conditional or obligation). Each Cj can be

formalized as Cj = {α1∆1α2∆2...∆m−1αm}. Each αk presents a Boolean assignment on

gate-level signal n ⊂ N (N shows all corresponding gate-level signals of set A) on cycle ct

where 1 ≤ ct ≤ CC (Suppose we know that the manufactured design will be simulated

for maximum CC clock cycles) such as αk : {n = val in cycle[ct]} where val ∈ {0, 1}.

Operators ∆k can be one of the logical operations such as AND, OR or NOT. As a result,

the original assertion is translated as a set of clauses C in a way that activation of one of

them triggers the original assertion.
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From now on, we assume that signals of Ai are mapped to corresponding assertion on

gate-level signals. In order to generate each of Cj, Algorithm 17 is used. It partitions

assertions based on their mode. If an assertion is in obligation mode, its original

conditions are negated since we are looking for conditions that cause the assertion to

fail (lines 7-8) and each Cj contains a subset of the negated conditions over different clock

cycles that cause the assertions to fail. On the other hand, if the assertion is in conditional

mode, the original assertions are kept as they are (lines 9-11). Each clause contains a

subset of conditions which is logically equivalent to a set of conditions (lines 12-13).

Clauses are also expanded over time and contain timing information (line 14). Therefore,

each assertion is mapped to a set of clauses such that activation of one of the clauses leads

to activation of the original RTL assertion (line 15). Specifically, the following rules are

used to generate the set of clauses (C):

• If an assertion is in obligation mode and it contains an AND operator (p ∧ q), the

operands are negated and AND will be changed to a OR operator ( p ∨ q). For

example, in assertion “assert always p & q”, whenever conditions p or q

are false, the assertion is activated. Therefore, the assertion is translated to a set of

clauses as C =
⋃CC
t=1{p = 0[t] ∨ q = 0[t]} (clauses are also expanded over time).

• If an assertion is in obligation and it contains OR operator such as:

assert always (p | q)

The conditions will be negated and the set of clauses is extracted as: C =
⋃CC
t=1{p =

0[t] ∧ q = 0[t]}.

• If an assertion is in obligation mode and it contains an implication operator,

antecedent conditions are not modified. However, consequent conditions are negated.

For example, if we have “assert always (p → next q)”, it is converted to

C =
⋃CC
t=1{p = 1[t] ∧ q = 0[t + 1]}. Next operation shows its effect in condition

q = 0[t+ 1].
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• If an assertion is in conditional and it contains OR operator such as

assert never (p | q)

It is translated to C =
⋃CC
t=1{p = 1[t] ∨ q = 1[t]}.

• If an assertion is in conditional mode and it contains an AND operator (p ∧ q), the

operation is kept as it is. For example, in assertion “assert never (p & q)”,

if p and q are true at the same time, the assertion will be activated. Therefore, the

assertion is translated as C =
⋃CC
t=1{p = 1[t] ∧ q = 1[t]}.

• If an assertion is in conditional mode and it contains implication operator,

antecedent and consequent conditions remain the same as the original assertion.

For example, if we have “assert never (p → next q)”, it is converted to

C =
⋃CC
t=1{p = 1[t] ∧ q = 1[t+ 1]}.

• If there are eventually! or until operators in an assertion, based on the mode of

assertion it shows its effect in generating repeating conditions in different clock

cycles. For example, “assert always (p → eventually q)” is translated to

C =
⋃CC
t=1{(p = 1[t])∧(q = 0[t]∧q = 0[t+1]∧...∧q = 0[CC])}. On the other hand, if we

have an assertion as “assert always (p until q)”, the conditions are found as:

C =
⋃t+n=CC
t=1 {(p = 1[t])∧(p = 0[t+1]∨p = 0[t+2]∨...∨p = 0[t+n−1])∧(q = 1[t+n])}.

Example 2: Consider the assertions in Example 1 form Section 10.1. We assume that the

circuit will be executed for 10 clock cycles for post-silicon validation. The first property

(A1) will be decomposed to equivalent conditions as follows:

CA1 : {{E = 1[1] ∧ H = 0[2] ∧ H = 0[3] ∧ H = 0[4]}, {E = 1[2] ∧ H = 0[3] ∧ H =

0[4] ∧H = 0[5]}, ..., {E = 1[7] ∧H = 0[8] ∧H = 0[9] ∧H = 0[10]}}

The assertion is activated if signal E is asserted and signal H remains false for next three

cycles. The second property is decomposed as shown below since it will be activated if

both D and I are true at the same time.

CA2 :
⋃10
t=1{D = 1[t] ∧ I = 1[t]}
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Algorithm 17: Assertion decomposition algorithm

1: Input: RTL assertions A
2: Output: C which maps each Ai ∈ A to equivalent C
3: C = {}
4: for each Ai ∈ A do
5: C = {}
6: if Ai is in obligation mode then
7: Ω = FindFailureConditions(Ai, G)
8: else
9: /*Ai is in conditional mode*/

10: Ω = FindPassingConditions(Ai, G)
11: end if
12: for every possible case do
13: C = C∪ SubsetOfEquivalentConditions(Ω)
14: addTiming(C)
15: end for
16: C .put(Ai,C)
17: end for
18: Return: C

The computed conditions are used to detect activation of assertions during post-silicon

validation as described in Section 10.2.3.

10.2.2 Restoration of Signal States

Trace buffers can be efficiently used to sample small number of signals during certain

number of clock cycles. The stored data can be used to restore other internal signals’

value and the design states. The design states are used to detect functional events’

activation. Suppose that we have a gate-level design with G internal signals and the

design has been executed for CC clock cycles during post-silicon validation. A set of

signals (S where S ⊂ G) are sampled and their values are stored in trace buffer T

during post-silicon execution for CCt clock cycles (CCt ≤ CC). The information of the

trace buffer (with |S| and CCt dimensions) can be used to find the values of other signals

(G − S). The restoration starts from the stored values of S signals over CCt cycles and

go forward and backward to fill the values of matrix MGxCC . Matrix M is used to present

states of the design during CC clock cycles. Each cell of matrix M can have value 0, 1 or
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X. Value X in mi,j ∈ M presents the fact that the value of signal i in clock cycle j cannot

be restored based on traced values of S sampled signals. We utilize matrix M information

to determine if any of assertions is definitely covered during run-time.

We consider all signals while computing restoration ratio. Instead of counting

the number of flip-flops that have valid value over different cycles [12], we count each

individual internal signal that has either 0 or 1 value in a specific clock cycle (each cell

of matrix M that has a non-X is counted) and divide it over the total number of internal

signals G multiplied by CC.

10.2.3 Coverage Analysis

Our plan is to use both traced and restored values to check the clauses that we found

in Section 10.2.1 to define easy-to-detect assertions. In order to find coverage for assertions

in set A, we consider each assertion Ai ∈ A and find its corresponding decomposed clauses,

set C, as described in Section 10.2.1. Set C is designed in a way that if one of the Ci ∈ C

can be evaluated to true on matrix M, assertion Ai is triggered. Using the proposed

method, each Ci contains a set of Boolean functions (αj) and each αj : n = val in cycle t

where 1 ≤ t ≤ CC is mapped to one cell of matrix M (mn,t). If the value of mn,t is equal

to val ∈ {0, 1}, the condition αj is evaluated true. Condition Ci is evaluated true when the

expression consisting of all αj and ∆s evaluated to be true. An assertion is called covered

during post-silicon validation if one of its Cis is evaluated to be true.

For assertions that originally contains implication operator (A : assert p → q), we

keep the information that which Boolean αj belongs to the precondition (p) and which

conditions belongs to the fulfilling condition (q) when we want to check their conditions

over M. In order to check assertion A, we start from rows which belongs to signals existing

in antecedent and check every cycle to find the desired value. Then, we continue the

search for consequent from those cycles when antecedent is true to find values that makes

whole A true. In other words, to be able to find out the activation of assertion A, we need

to minimize the number of X values in cells of matrix M. We also count how many times
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assertion A is activated for sure. Note that for checking conditions, 3-valued (ternary)

logic is used. In other words, condition p ∨ q is evaluated as true if signal p is true and

q has X value and vice versa. Algorithm 18 presents the coverage analysis procedure. It

counts the number of times an assertion is activated during execution. If activationCount

is equal to zero, it means that we cannot determine activation of the assertion based on

trace buffer values. The coverage (cov) percentage is computed by counting the assertions

that have been activated at least once and dividing it by the number of total assertions.

Algorithm 18: Assertion coverage measurement algorithm

1: Input: Trace buffer T , trace signals S, gate-level signals G, condition map C ,
assertions A, max cycle CC

2: Output: Coverage map Θ
3: T=Restoration(S);
4: M = ConstructDesignStatesMatrix(T,G, CC)
5: for each Ai ∈ A do
6: activationCount = 0
7: C =C .get(Ai)
8: for each Cj ∈ C do
9: if checkCondition(Cj,M) then

10: activationCount++
11: end if
12: end for
13: Θ.put(Ai, activationCount)
14: end for
15: Return: Θ

Example 3: Consider the circuit shown in Figure 10-1 and the associated assertions

shown in Example 1. Suppose that the only two signals (A and B) can be traced during

post-silicon validation (the width of trace buffer is two). Note that in signal selection part

we are not limited to flip-flops and every internal signal can be considered as potential

sampled signal. Table 10-1 shows the states of the design based on the stored values of

A and B signals. In fact, Table 10-1 shows matrix M. The restoration ratio is equal to:

67/(9 ∗ 10) = 0.74. In other words, 74.44% of internal states are restored. Suppose that

we take the clauses shown in Example 2 and the matrix shown in Table 10-1 as inputs to

compute the coverage of these assertions during run-time. Based on information shown
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Table 10-1. Restored signals for circuit shown in Figure 10-1 when A and B are trace
signals.

Signal/Cycle 1 2 3 4 5 6 7 8 9 10
A 0 1 0 1 1 0 0 0 1 0
B 1 0 0 1 0 0 0 1 1 1
K X X X X X X X X X X
D 1 1 0 1 1 0 0 1 1 1
E X 1 1 0 1 1 0 0 1 1
F X 1 0 0 1 0 0 0 1 1
G X X 1 1 0 1 1 0 0 1
I X X X X X 0 X X 0 0
H X 0 X 0 1 0 0 0 0 0

in Table 10-1, assertion A1 is activated since signal E is asserted in cycle 6 and signal

H remains zero in the next three cycles, 7, 8 and 9 (activation of A1 is detected twice).

However, we cannot comment on A2 since the respective conditions cannot be evaluated.

Until now, we identified which assertions are activated during run-time for sure. We

rank assertions based on the required efforts to detect them using our proposed method

of Section 10.2.3 to decide which assertions are better to be kept as coverage monitors in

post-silicon to improve the design observability and increase the assertion coverage. The

assertions that are hard-to-detect (for example, cannot be detected even one time using

the proposed method) or represent critical functional scenarios are best candidates to be

kept as coverage monitors in silicon to improve the design observability. Algorithm 19

presents the proposed approach. The algorithm sorts set A based on their activation count

that obtained from Algorithm 10.2.3 and priority (critical scenarios or assertions that

their activation cannot be detected using trace buffer values have higher priority). Next,

we select assertions that fits in area and power budgets and increase total coverage and

add them to cov mon. For example, if two assertions have same priority, we choose the

one that has less number of operators and signals (represents less area overhead). The

algorithm returns the set cov mon as selected coverage monitors.
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Algorithm 19: Coverage monitor selection algorithm

1: Input: Assertions A, desired coverage des cov, budget for coverage monitors budg,
gate-level signals G, trace buffer T with trace signal S, trace buffer width W

2: Output: Selected coverage monitors cov mon
3: cov mon = {}
4: C =DecomposeAssertions(A)
5: Θ=CoverageAnalysis(T,S,G,C ,A, CC)
6: cov=findCoverageNumber(Θ,A)
7: U=findUndetectedAssertions(Θ,A)
8: SortBasedOnDetectionEfforts(A,Θ)
9: tmp cost = cost, tmp cov = cov

10: while cov t < des cov && cost t < budg do
11: find ai ∈ A where ai.selected = false and budg − cost t− ai.cost ≥ 0
12: cost t+ = ai.cost
13: ai.selected = true
14: if ai ∈ U then
15: cov t+ +
16: end if
17: cov mon = cov mon ∪ ui
18: end while
19: Return: cov mon

10.2.4 Coverage-aware Signal Selection

Traditional signal selection methods select signals that have priority over other

design signals as they may have a better restorability and more internal signals might be

restored during the off-chip analysis. However, if we select trace signals that have better

restorability on signals appear on assertions, we can increase the chance of finding the

activation of assertions. We propose a signal selection algorithm emphasizes restorability

of assertion signals to be able to improve the assertion-based coverage analysis. We show

that this way of trace signal selection has a better impact of analysis of assertion coverage

while it has a negligible effect on observability of the whole design.

Algorithm 20 shows our proposed signal selection algorithms that improves assertion

coverage analysis. In order to select trace signals that have a better restorability on

assertion signals, pre-silicon assertions A are scanned to find their signals (set N) and their

importance based on how many times a specific signal is repeated in map Ψ (lines 4 and
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Algorithm 20: Assertion-aware trace signal selection algorithm

1: Input: Assertions A, trace buffer width W , gate-level signals G
2: Output: Selected Trace Signals S
3: N=findSignalsExistInAssertions(A)
4: Ψ = findNumberOfOccuranceOfEachSignal(N)
5: S = {}
6: while S.size() < W do
7: generate random tests I
8: for each gi ⊂ G which is not in S do
9: calculate restoration of gi ∪ S

10: end for
11: select ni with maximum restorability on N.
12: S = S ∪ ni
13: end while
14: Return: S

5). We modify existing simulation-based trace signal selection algorithm to select signals

which has maximum restoration ratio on assertion signals (N) based on the simulated

values of random test vectors for several cycles. If there is a tie, we use the signal that

has a higher value in set Ψ. The algorithm continues until it selects as many as W trace

signals (lines 6-12). Please note that our approach (providing emphasis on assertion

signals) can be applied on top of other signal selection algorithms as well.

Example 4: As it can be seen from Example 3, the activation status of assertion A2

cannot be detected based on information of Table 10-1. Using Algorithm 3, only A

and I are selected as trace signals based on their good restorability on assertion signals

(E,H,D and I). Restoration and coverage analysis (using the traced values of new

signals) would be able to detect activation of both assertions in Example 1.

10.3 Experiments

10.3.1 Experimental Setup

In order to evaluate the efficiency of our proposed approach, we have implemented

our assertion decomposition, restoration, coverage analysis and signal selection algorithms

using C++. We have applied our proposed methods on ISCAS’89 benchmarks (since most

of the existing signal selection algorithms work with only these benchmarks). The trace
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buffers were chosen with a widths of 8, 16 and 32 and depth of 10241 . We have generated

assertions both in obligation and conditional modes based on the presented method of

[88]. Assertions were decomposed as a set of clauses using Algorithm 17. We simulated

the benchmarks using different trace buffers for 1024 clock cycles with random test vector

to model post-silicon validation. Trace signals were chosen based on our implementation

of the presented method in [15] since it is the most recent signal selection approach. In

the next step, we dumped the stored values of trace buffer and we tried to restore the

values of unsampled signals over different clock cycles to construct the matrix representing

the states of the circuit. Next, the assertion conditions were checked over matrix and

we counted the number of activated assertions during run-time based on Algorithm 18.

Finally, we used the signals selected by Algorithm 3 to further improve functional coverage

analysis. Moreover, we use Algorithm 19 to selectively synthesize some coverage monitors

which are more beneficial for improving functional coverage.

10.3.2 Results

Table 10-2 presents results for assertion coverage of total 12000 (4000 for each trace

buffer configuration) assertions for each benchmark. The first three columns show the type

of the benchmark, the number of its gates and the width of its trace buffer, respectively.

The fourth column shows the restoration ratio based on existing trace signal selection.

The fifth column shows the coverage of assertions using trace buffer (without introducing

any overhead). Note that, Observability-aware SS represents our assertion coverage

analysis framework on top of existing signal selection techniques. We improved the

assertion coverage using our proposed signal selection algorithm with negligible effect on

restorability of whole design (sixth and seventh columns). Note that, Coverage-aware SS

represents our assertion coverage analysis framework on top of our coverage-aware signal

1 A trace buffer with width 32 and depth 1024 represents that it can trace the values of
32 signals over 1024 clock cycles.
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selection method. Since signal selection algorithms are based on heuristic methods, in

some of the cases, our coverage-aware signal selection algorithms improves the restorability

of the design (such as s15850).

If we zoom in on each row of Table 10-2, the activation details of each type of

assertions are reported in Table 10-3. The first three columns of Table III show the type

of the benchmark, the number of its gates and the width of its trace buffer, respectively.

The fourth and ninth columns show the restoration of the design using existing trace

signal selection method as well as our proposed signal selection algorithms, respectively.

The fifth and tenth columns show the coverage of one thousand single variable assertions

(consisting of only one condition) on specific clock cycles. The sixth and eleventh columns

show the coverage of one thousand two-variable assertions with AND operators where

their conditions have templates of {n1 = vali [ci]& n2 = valj [cj]} using both

signal selection methods. The seventh and twelfth columns show the coverage of one

thousand three-variable assertions with AND operators where their conditions are in

the form of {n1 = vali [ci]& n2 = valj [cj]& n3 = valt [ct]} respectively. The

eighth and thirteenth columns show the coverage of one thousand three-variable assertions

with OR operators where their conditions are in the form of {n1 = vali [ci]| n2 =

valj [cj]| n3 = valt [ct]} respectively. The results demonstrated the fact that using our

approach enables designers to achieve significant functional coverage (up to 93%, 58% on

average) without synthesizing any coverage monitors.

10.3.3 Observability versus Hardware Overhead

The results shown in Tables 10-2 and 10-3 show the extent of functional coverage

analysis without introducing any hardware penalty for synthesized coverage monitors.

In other words, the reported coverage can be achieved for free during post-silicon debug.

Here, we talk about the trade off between the number of assertions we can keep in

the post-silicon as coverage monitors and the number assertions we delete. However,

if designers have a budget to tolerate extra power and area overheads of few coverage
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Table 10-2. Assertion coverage when the total number of assertions for each row is 4000
(12,000 per benchmark)

Benchmark Signal Selection

Type #gates #Traces
Observability-aware SS Coverage-aware SS

Restoration% Asser. Cov.% Restoration% Asser. Cov.%

S5378 2995
8 60.97 46.97 58.57 49.6
16 79.27 63.6 76.95 64.23
32 93.10 88.5 92.26 90.57

S9234 5844
8 84.85 65.4 76.03 65.8
16 90.19 75.27 83.70 83.12
32 94.54 90.67 93.8 93.45

s15850 10383
8 72.03 59.7 76.03 65.8
16 80.97 61.6 75.55 68.7
32 84.14 72.9 82.66 74.9

s35932 17828
8 41.09 26.825 41.63 27.02
16 41.35 26.825 41.88 27.05
32 41.79 26.825 42.22 27.25

s38417 23843
8 36.53 23.025 36.97 23.23
16 43.76 28.575 46.91 32.58
32 49.77 35.075 55.82 42.33

s38584 20717
8 72.97 47.625 67.78 59.8
16 79.15 63.65 76.53 69.3
32 88.85 73.65 87.27 82.78

Table 10-3. Assertion coverage using trace buffer information

Benchmark #gates #Trace

Observability-aware SS Coverage-aware SS

% restored % Single % Two % Three % Three % restored % Single % Two % Three % Three
Gates Variable Variable Variable Variable Gates Variable Variable Variable Variable

Assertion Assertion (AND) Assertion (AND) Assertion Assertion Assertion (AND) Assertion (AND) Assertion
(OR) (OR)

S5378 2995

8 60.97 63.6 36.2 25.4 62.7 58.57 64.2 42.6 25.3 66.3
16 79.27 77.5 56.3 41.9 78.7 76.95 79.6 58.8 44 74.5
32 93.10 92.6 86.5 80.9 94.0 92.26 94.5 88.4 84.8 94.6

s9234 5844

8 84.85 77.9 59.7 45 79 76.03 88.0 77.4 68.1 87.5
16 90.19 85.5 71.1 58.9 85.6 83.7 88.6 81.4 72.6 89.9
32 94.54 93.5 90.3 84.8 94.1 93.8 94.8 90.0 84.5 93.7

s15850 10383

8 72.03 73.9 54.8 37.1 73.0 76.03 76.5 61.7 46.9 78.1
16 80.97 75.1 55.5 40.1 75.7 75.55 81.1 63.1 50.2 80.7
32 84.14 82.2 68.1 56.6 84.6 82.66 84.2 70.6 59.5 85.3

s35932 17828

8 41.09 41.3 16.2 7.7 42.1 41.63 40.9 17.3 7.4 42.5
16 41.35 41.3 16.2 7.6 42.2 41.88 40.9 17.3 7.4 42.5
32 41.79 41.3 16.2 7.7 42.1 42.22 41.3 17.4 7.5 42.8

s38417 23843

8 36.53 38.2 13.8 3.9 36.2 36.97 37.7 13.9 5.8 35.9
16 43.76 44.5 19.7 8.1 42 46.91 46.91 24.2 10.5 48.7
32 49.77 51.2 26.5 12.4 50.2 55.82 56.3 35.5 19.2 58.3

s38584 20717

8 72.97 60.7 41.2 24.1 72.97 67.78 70.8 54.3 37.7 76.4
16 79.15 75.3 59 43.4 76.9 79.69 79.7 65.3 51.2 81
32 88.85 83.5 68.5 56.7 85.9 87.27 90.0 79.5 71.7 89.9

monitors, the primary challenge would be to determine the assertions that should be

selected and synthesized in hardware. Figure 10-3 shows coverage improvement if we

randomly choose 10% to 90% of the remaining assertions that we cannot be sure about

their activation using trace buffer information. The straight line shows the coverage when

our method is not used and observability is provided only by using synthesized coverage

monitors (the percentage of observability is equal to the percentage of synthesized
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assertions). On the other hand, we used Algorithm 19 to select hard to detect coverage

monitors.

As it can be seen in Figure 10-3 and Figure 10-4, 100% observability is achieved with

significant reduction in overhead (40-50% coverage monitors with observability-aware

signal selection can provide 100% functional coverage). Figure 10-4 shows the result of

observability of s9234 with different trace buffer widths and different coverage monitor

selection strategies (the straight line is cut on 50% for improved illustration). As it can

be seen, when our signal selection algorithm was used to choose 32 trace signals and our

coverage monitor algorithm was used, synthesizing only 10% assertion leads to 100%

observability. Although, we presented the result for s9234, we obtained similar results for

other ISCAS89 benchmarks.

It can be argued that it takes little effort to cover the first 90%, but significantly

more to cover the remaining 10%. Based on our proposed method, if the remaining 10%

of the assertions are synthesized, 100% coverage is achieved. However, if it is not possible

to synthesize those assertions due to design constraints, increasing the width or depth of

trace signals can be considered. Dynamic signal selection capability (if available) can be

utilized to focus in tracing of the remaining 10% assertions.

Figure 10-3. Coverage analysis for s9234: coverage monitors are selected randomly.
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Figure 10-4. Coverage analysis for s9234: coverage monitors are from hard-to-detect
events.

The experimental results demonstrated three important aspects of our approach.

We provided a technique to improve the design observability when designers have a

limited budget for synthesized coverage monitors. We showed that if they synthesize

hard-to-detect assertions, the observability improves significantly. Our assertion-aware

signal selection algorithm improves the assertion-coverage compared to existing signal

selection techniques.

10.4 Summary

We presented an approach to efficiently find functional coverage on silicon without

introducing any overhead. The proposed method utilizes the existing debug infrastructure

in modern designs to rank coverage monitors in terms of required efforts to detect them.

We proposed a framework for trace-based functional coverage analysis. We explored the

trade-off between observability and design overhead of synthesized coverage monitors.

We also introduced a signal selection algorithm to improve the coverage analysis with

negligible impact on restoration ratio. Our experimental results demonstrated that

efficient ordering and selection of coverage monitors can drastically reduce (up to 10 times)

design overhead without sacrificing functional coverage.
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CHAPTER 11
CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

We are living in a connected world where a wide variety of computing and sensing

components interact with each other. Safe connectivity is essential in the fabric of

Internet-of-Things (IoT) as intelligent computing devices are increasingly embedded in

every possible devices in our daily life such as wearable devices (e.g, fitness trackers, smart

watches, and glasses), autonomous vehicles and smart homes. These devices are recording,

collecting, analyzing, and communicating some of our most intimate personal information

such as health-related data in order to provide a real-time aid in daily basis. Unlike

microcontroller based designs in the past, even resource constrained IoT devices nowadays

incorporate one or more complex System-on-Chips (SoCs). Any failure of security and

trust requirements of SoCs may endanger human life and environment by causing damages

to critical infrastructure, violating personal privacy, or undermining the credibility of a

business.

The risk of cyber-attacks has increased more than anytime before. Attacks on

hardware can be more effective and efficient than traditional software attacks since

patching is extremely difficult (almost impossible) on hardware designs. Therefore, a

security attack can be successfully repeated on every instance of a vulnerable SoC. It is

a major challenge to verify the security requirements of SoCs in IoT devices, primarily

due to the fact that SoCs are designed using hardware Intellectual Property (IP) blocks

to reduce cost while meeting aggressive time-to-market constraints. In this dissertation,

I addressed challenges in SoC security validation using effective combination of formal

methods as well as test generation approaches.

With the globalization of the IC industry, the outsourcing and integration of

third-party hardware Intellectual Property (IPs) has become a common practice for

System-on-Chip (SoC) design. However, it raises major security concerns as an attacker

can insert malicious components (hardware Trojans) in third-party IPs and tamper the
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system. Hardware Trojans are inactive most of the time and can be triggered under very

rare input sequences. Therefore, using conventional validation method is not effective to

detect Trojans. In Chapter 4, I proposed use of Gröbner basis theory to formulate the

equivalence checking problem as an ideal membership testing in an algebraic domain and

find Trojan-inserted IPs in a deterministic and efficient way as word-level representations

are involved. In the proposed approach, equivalence checking formulation starts with

converting the design specification as well as its implementation to polynomials, fspec and

set F , respectively. Polynomial division is deployed to detect Trojans by reducing the

fspec over implementation polynomials (F ) until it leads to either a zero remainder or a

polynomial that contains only primary inputs. A non-zero remainder indicates that the

implementation is not trustworthy. I have applied this technique to large arithmetic IPs

with different architectures and the experimental results show that the proposed technique

is scalable in terms of runtime and memory usage (more than three orders of magnitude

improvement on average). I have also utilized remainder to activate and detect Trojans.

Any assignment which makes the total value of the remainder non-zero is a directed test

(counter-example) that activates Trojans. I have shown that the remainder as well as

directed tests can also be used to localize Trojans. Moreover, the terms and their patterns

of the remainder provide valuable information to detect and correct the hidden Trojans.

The existence of a Trojan in the deeper stages of the design may make it difficult

to generate the remainder. I also addressed scalability by proposing an incremental

Trojan detection framework in Chapter 5. The proposed approach partitions the primary

inputs’ space in order to solve the security validation problem in the increasing order of

the design complexity. Proposed approach can formally identify a Trojan-free IP from a

Trojan-inserted one and it can automatically activate and correct hidden Trojans.

Chapter 6 described an approach for hardware Trojan localization after non-functional

changes. Suppose that there is a golden model of a design (specification), and a modified

version (implementation) of it (after performing some non-functional changes such as
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doing synthesis, adding clock trees, scan chain insertion etc.). The goal is to make sure

that two versions of a design are functionally equivalent (nothing more, nothing less)

and an adversary cannot hide hard-to-detect malicious modifications during design

transformations. I proposed an approach based on Gröbner Basis theory. However,

applying the same approach on general IPs is limited due to several reasons such as

specification polynomial generation, sequential element and large number of the required

unrolling for Trojan activation. In order to address these challenges, I presented a design

partitioning method to generate polynomials in an efficient way and use them in our

proposed algorithm to localize and detect Trojans in third-party IPs. The proposed

approach is scalable and could efficiently detect and localize the hidden Trojans while

industrial tools fail.

Chapter 7 addressed issues in control flow integrity measurement. To detect

vulnerabilities introduced by Trojan insertion as well as CAD tools, I proposed an

efficient formal analysis framework based on symbolic algebra to find FSM vulnerabilities.

The proposed method tries to find inconsistencies between the specification and FSM

implementation through manipulation of respective polynomials. Security properties

(such as a safe transition to a protected state) are derived using specification polynomials

and verified against implementation polynomials. In case of a failure, the vulnerability is

reported and a counter-example is generated. I demonstrated the merit of the proposed

method by detecting the vulnerabilities in various current encryption and digest FSM

designs, while state-of-the-art approaches failed to identify the security flaws.

In chapter 8, I also proposed a scalable directed test generation method to activate

potential hardware Trojans in RTL designs using an effective combination of concrete

simulation and symbolic execution. The proposed test generation approach is scalable

since it can avoid state space explosion by exploring one execution path at a time in

contrast to dealing with all possible execution paths simultaneously (like conventional

formal methods). I developed a threat model involving rare branches and rare assignments
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in RTL designs. This threat model leads to a list of potential security targets for directed

test generation. To enable efficient test generation for security targets, I proposed a search

heuristic which avoids traversing same branches (path segments) during traversal to

improve rare branch coverage of security targets. Our experimental results demonstrated

the effectiveness of our approach in activating hard-to-detect Trojans in large and complex

RTL Trust-Hub benchmarks.

In Chapter 9, observability-aware test generation is discussed. Directed tests are

very promising in reducing the overall validation effort since a drastically small number

of directed tests are required compared to random tests to obtain the same coverage

goal. Manual development of directed tests can be both error-prone and infeasible

to generate all directed tests to achieve a coverage goal. In this work, I proposed a

directed test generation approach which facilities the observation of expected outputs

of the generated tests using the traced buffer signals. The proposed approach uses

transaction-level models (TLM) for post-silicon test generation. The proposed approach

has four steps: i) mapping observability constraints, ii) test mapping from lower level

abstractions (e.g, RTL modules) to higher-levels of abstractions (e.g., TLM), iii) test

generation using higherlevels descriptions, and iv) test translating to add details such as

timing. Our experimental results using an industrial processor demonstrate significant

reduction in both test-generation time and test program length compared to random or

constrained-random tests.

Chapter 10 discussed about cost-effective post-silicon coverage analysis techniques.

Assertions as well as a wide variety of checkers are used in pre-silicon stage to monitor

certain functional scenarios. Pre-silicon checkers can be synthesized to coverage monitors

in order to capture the coverage of certain events and improve the observability during

post-silicon debug. Synthesizing thousands of coverage monitors can introduce unacceptable

area and energy overhead. On the other hand, absence of coverage monitors would

negatively impact post-silicon coverage analysis. I proposed a method to utilize on-chip
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DfD infrastructure to perform post-silicon functional coverage analysis. I also evaluated

the importance of each coverage monitor in order to provide a trade-off between

observability versus design overhead. Our initial results show that only 10% coverage

monitors (if synthesized) can provide 100% assertion coverage analysis. In contrast, if DfD

architecture is not utilized, 10% synthesized monitors can provide coverage analysis for

only 10% assertions.

11.1 Future Research Directions

The research presented in this dissertation can be extended in the following

directions to establish trust in IoT SoCs: 1) use of analytics, formal validation, as well

as side-channel analysis approaches for scalable security validation, 2) streamlined

architecture for secure post-silicon and in-field control and requirements update, and 3)

trustworthy synthesis of hardware designs from high-level specifications. There are several

classes of hardware security vulnerabilities such as access privileges, buffer errors, resource

management, information leakage, numeric errors, crypto errors and code injection as

well as software and firmware attacks that threaten the security and integrity of the

design. I plan to explore each class of the security vulnerabilities and generate security

assertions for each type by developing a set of templates and rule-based transformation

of vulnerabilities to security assertions. The generated assertions need to be mapped to

the corresponding hardware/software designs and to be verified. Clearly, the research

requires the knowledge of security violation patterns from the static analysis or provided

by designers.

Another promising direction is to perform functional validation using machine

learning. While directed tests can check for known vulnerabilities, machine learning can

extend the scope for both known and unknown (e.g., known vulnerabilities with minor or

major variations) SoC security vulnerabilities. Existing data in verification environment

traces can be clustered into several buckets such that each bucket contains traces that

have failed as the result of the same cause. Therefore, debug of known security failures
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can be avoided. Future research can aim for effective utilization of three widely used

formal methods (equivalence checking, model checking and theorem proving) for scalable

security validation. The side-channel analysis is also beneficial since it does not require

activation/propagation of an unknown Trojan.

Another promising direction is to combine the advantages of logic testing and

side-channel analysis for effective Trojan identification. Effective in-field debug should

be performed in the case of Trojan-inserted fabricated silicon. Post-silicon validation

and debug is critical for IoT applications, where the device may need to be updated

during its long lifetime, or in response to changing security needs or new attacks.

Future work needs to develop efficient algorithms and techniques for debugging and

validating embedded devices using effective on-chip instrumentation techniques for

silicon observability, penetration test generation techniques, and enabling post-silicon

validation use-cases in pre-silicon validation platform. There is an inherent conflict

between increasing the observability and security. Although designing effective debug

infrastructures can drastically reduce the post-silicon validation and debug efforts by

increasing the observability, the extra observability can facilitate security attacks such as

trace buffer attack and scan-based side channel attacks.

There are several system-level security monitoring approaches that utilize dedicated

hardware design to check the operation of an embedded processor instruction-by-instruction.

Any deviations from the expected behavior (which may come from deign errors as well as

run-time attacks) is marked as a security threat [107, 132]. I plan to propose approaches

to make such security mechanisms smart and energy efficient.

Finally, existing Electronic Design Automation (EDA) tools can cause several security

vulnerabilities. It is extremely important to have design tools that can check for all

vulnerabilities in all phases of the design since it may be infeasible to patch later. The

tools must be able to tell all possible vulnerabilities such as the existence of hardware
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Trojans, information flow vulnerabilities, side channel leakage, etc., and suggest effective

countermeasures.
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