
1

Secure Register Allocation for Trusted Code
Generation

Priyanka Panigrahi, Vemuri Sahithya, Chandan Karfa, and Prabhat Mishra

Abstract—In this paper, we investigate the inherent vulnera-
bility of register allocation in which the variables of a source
program are mapped to the registers in hardware. This paper
makes three important contributions. Specifically, we show that
register allocation is secure if there is no spilling. Next, we show
that register allocation with spilling does not preserve the security
properties of the source program. Our experimental evaluation
using a wide variety of benchmarks demonstrates that register
allocation in LLVM is not secure. Finally, we propose a secure
register allocation in LLVM that will not introduce additional
information leaks in the generated code due to spilling.

Index Terms—Secure Compilation, Register Allocation,
Spilling, Taint Analysis, Information Flow, LLVM.

I. INTRODUCTION AND RELATED WORK

COMPILATION in embedded system focuses on gen-
erating functionally correct assembly under power and

performance constraints. It applies various optimizations to
improve performance. The primary objective of a compiler is
to guarantee that the generated code is functionally equivalent
to the source program. However, it is a vital requirement in
many embedded and cyber-physical systems (such as safety-
critical systems) that the compilation should not introduce
any security vulnerabilities. While recent advancements in
secure compilation try to ensure that the generated code
(target assembly) preserves the security properties of the
source program, there is a limited effort in securing compiler
transformations. Therefore, it is important to ensure that the
generated assembly code preserves the security properties of
the source program [1].

One promising direction to ensure secure compilation is to
establish that none of the compiler transformations introduce
any security vulnerabilities. In this work, we investigate the
security of register allocation. D’Silva et al. [1] studied various
compiler transformations to identify the leaky one. The secure
version of dead store elimination and single static assignment
(SSA) transformations are proposed by Deng and Namjoshi
[2], [3]. Recently, Besson et al. [4] proposed Information Flow
Preserving program transformations in which they model the
information leak of a program using the notion of attacker
knowledge. In [5], they analyze the Information Flow Preser-
vation of register allocation in the CompCert C compiler,
where the mapping information of registers and corresponding
locations are available. However, such mapping is difficult
to obtain in modern compilers like LLVM, in which source
variables are renamed, and many temporary variables are in-
troduced in Intermediate Representation (IR). Thus, our work
does not take any mapping information from the compiler
during the security analysis of register allocation.

We assume the attacker has access to the executable code
but not the secret data, and the attacker’s goal is to gain
information about the secret data. The attacker does have
access to the final memory at the end of the program [4]
but has no access to direct registers. Assuming the functional
correctness of register allocation, this paper tries to answer an
important question - is register allocation secure with respect
to preserving information leakage? Specifically, this paper
makes the following major contributions:

• We show that register allocation is secure in the absence
of spilling.

• We show that register allocation with spilling is not secure
- it introduces additional leaky paths.

• Experimental results using diverse benchmarks demon-
strate that register allocation in LLVM is not secure.

• We propose a secure register allocation in LLVM that
will not introduce information leakage due to spilling.

II. SECURITY ANALYSIS OF REGISTER ALLOCATION

Register allocation is an essential step in a compiler in
which the variables of a program are mapped to bluepossibly
fewer number of physical registers. Two or more variables can
be mapped to a single register if their lifetimes do not overlap
[6]. If a single variable is defined multiple times, it may be
split to be mapped to two or more different registers for better
register usage. However, for moderate-sized programs, it is
impossible to map all the variables into registers. Spilling a
variable is storing the value of a variable into memory instead
of register. In this work, we have analyzed the security issues
of register allocation with and without spilling. Note that we
are not considering the security effects of register allocation
on system cache in this work.

Variables of a program can be partitioned into sensitive, i.e.,
high security (H), and non-sensitive, i.e., low security (L).
An input of a program can be termed as H or L based on
its sensitiveness. A program variable or an output is said to
be leaky if it leaks any sensitive information. Formally, the
information leakage of a program is defined as follows [2]:

Definition 1. (Information Leakage:) Let us have two input
variables, IH and IL, where IH is a sensitive input and IL
is a non-sensitive input of a program. Consider two pairs of
values (IH = a, IL = c) and (IH = b, IL = c) such that
a ̸= b. Suppose for a program, the computation on both the
input pairs (a, c) and (b, c) either differ in the sequence of
output values or the value of one of the low-security variable
differ at their final states when both the computation terminate.
In that case, the program is said to leak information, and (a,
b, c) is called as a leaky triple for the program.



2

1 foo (m, n )
2 {
3
4 p= g e t _ k e y ( ) ;
5 n=m+n ;
6 p=p+n ;
7 re turn p ;
8
9 }

(a) Source Program S

1 fooRA (m, n )
2 {
3 r1 = g e t _ k e y ( ) ;
4 r2 =m;
5 r3 =n ;
6 r3 = r2 + r3 ;
7 r1 = r1 + r3 ;
8 re turn r1 ;
9 }

(b) T1 after RA

1 foo (m, n )
2 {
3 p= g e t _ k e y ( ) ;
4 s t o r e p , pm ;
5 n=m+n ;
6 l o a d pm , p ;
7 p=p+n ;
8 re turn p ;
9 }

(c) S after Spilling

1 fooRA (m, n )
2 { r1 = g e t _ k e y ( ) ;
3 r2 =m;
4 s t o r e r1 , pm ;
5 r1 =n ;
6 r1 = r2 + r1 ;
7 l o a d pm , r2 ;
8 r2 = r2 + r1 ;
9 re turn r2 ; }

(d) T2 after Spilling

Figure 1: An example of register allocation

The input of register allocation (RA) is the source program,
and the output is transformed program. The inputs (and their
security types) and the outputs are the same for both source
and transformed programs. In this work, we are concerned
about the relative security of RA, i.e., we check if RA
introduces any new information leakage to the source program.
It may be noted that the source program can still be leaky.

Definition 2. (Relative Security:) A transformed program after
RA from a source program is said to be relatively secure if all
the leaky triples belong to the transformed program are also
belong to the source program.

To identify the information leakage of a program, static taint
analysis is popularly used. Taint analysis [7] checks the direct
and indirect influence of sensitive inputs on each variable at
each program location, violating the security properties of the
program. It is an over approximate method, i.e. the variables
defined inside a tainted condition are also to be tainted due to
control flow. Thus, it does not generate false-negative results,
i.e., a variable is not tainted but leaking some sensitive content.
It may be noted that leaky triple in Definition 1 cannot quantify
the leakiness of the program, i.e., a leaky program can be
transformed to a more leaky program, but they can have same
leaky triples. For a high input that is not leaked in the source
program but is leaked in the transformed program, a leaky
triple can be obtained, which is not satisfying Definition 2.
For such case, taint analysis will identify some new tainted
program variable(s). Therefore, using taint analysis in the
context of our attack model for the relative security of register
allocation is sound.

Motivating Example: Consider the example of a source
program segment S in Figure 1a. Program S takes two
low-security (L)-inputs m and n and outputs p. The func-
tion get_key() returns sensitive (i.e., high-security (H)-input)
information. Live variable analysis [8] of S tells that at
least three registers are required to map all the variables of
S. Assume that the machine has three free registers. The

transformed program after RA (T1) is shown in Figure 1b.
If the machine does not have three free registers, it spills one
variable of S. Assume that the variable p has been spilled.
Then, the source program segment after inserting the spill code
is shown in Figure 1c. The transformed program T2 after RA
with two available registers and spilling variable p is shown
in Figure 1d.

The variable p in S and the corresponding mapped register
r1 in T1 are not leaking sensitive information since both of
them have been redefined. Therefore, T1 would be as secure
as S. However, the memory location pm in T2 contains the
sensitive value of the variable p; thus, pm is tainted. Whereas
p has been redefined in S. There is no corresponding leak in S
for the tainted memory location pm. Thus, T2 is not relatively
secure as compared to S. It shows RA with spilling leads to
information leakage.

A. Security Analysis

We analyze the security issues in RA with and without
spilling. There are two scenarios of RA; Scenario 1 (RA
without spilling): All variables are mapped to registers only,
and no memory location is used. Scenario 2 (RA with spilling):
Some variables are spilled to memories.

Let us denote the source program before RA as S, the
transformed program in scenario 1 as T1, and the transformed
program in scenario 2 as T2. Our objectives are to find (i) Is
T1 as secure as S?, and (ii) Is T2 as secure as S?

Scenario 1: During RA, the variables are mapped to regis-
ters. Therefore, T1 is exactly the same program as S, except
the variables of S are renamed with corresponding registers
in T1. Let (a, b, c) be a leaky triple for T1. Thus, T1 is leaky
only if for inputs (IH = a, IL = c) and (IH = b, IL = c):
the value of one of the low-security variables (i.e., a register)
differs at their final states. The sequence of output values must
be the same for both the inputs as S and T1 are functionally
equivalent.

Let us assume that the values of register r differ at the final
states for the execution of T1 with (IH = a, IL = c) and
(IH = b, IL = c). If we apply taint analysis on T1, we can
show that the taint value of input IH is actually propagating
to r in T1. It indicates that there must be a control and/or
data flow path from IH to r through which the taint value of
IH propagates to r. Let us consider that the variable v of S
is mapped to register r at the final states. Since the control
and data flow of S is the same as that of T1, there must be
a control or data flow path from IH to v in S, and the taint
value of H must be propagated to v in S through that path.
Therefore, the values of variable v differ at the final states for
the execution of S with ((IH = a, IL = c) and (IH = b,
IL = c). Hence, (a, b, c) is also a leaky triple for S. Thus,
any leak in T1 will have a corresponding leak in S. So, T1 is
as secure as S.

In the case of splitting, a variable is mapped to more than
one register. Assume in Figure 1a, the first assignment of
variable p is mapped to register r1, and the second assignment
is mapped to register r2. Potentially, r1 can leak p if it
continues to hold the value of p till the end of the program
execution. However, it would not lead to any information



3

leakage as we assume that the attacker has no access to direct
registers.

Scenario 2: There may be information leakage through
memory with spilling. Assume that in S, a tainted variable
x mapped to register r has been spilled to memory xm in the
assembly. Assume x has been redefined later and becomes
untainted in S. RA does not guarantee that xm will be
redefined if x has been redefined in S. Therefore, the memory
location xm has the tainted value of x for the rest of the
program’s execution. So, xm leaks information in T2. Thus,
any leak in T2 does not induce a corresponding leak in S. So,
T2 is not relatively secure to S.

III. SECURING REGISTER ALLOCATION

There are four register allocators (RA) in LLVM [9],
namely, basic, fast, greedy, and PBQP. In this work, we
show how to secure the Greedy Register Allocation (GRA) of
LLVM. We choose GRA since its the default one for optimized
code in LLVM. We explain the approach of GRA in brief.

Compiler performs live interval analysis of all the program
variables for allocating them to registers. The GRA finds the
spill weights of all live intervals based on heuristics such
as the number of uses, conflicts, etc. A priority queue is
constructed based on allocation priorities of live intervals of
the program variables. GRA marks all the variables as not to
be split initially. The following steps are performed for each
live interval in the priority queue until all the live intervals
are allocated to registers. In each iteration, the live interval
with the highest allocation priority (say x) is de-queued and
assigned a register if the machine has a free register. In case of
unavailability of a free register and x is not marked to be split,
GRA checks if eviction of an already allocated register (say r)
is beneficial. If yes, it evicts a cheaper interfering interval (say
y) from r based on low spill weight and assigns the current
interval (x) to the register r. The evicted interval y again
en-queued with the same allocation priority. Otherwise, x is
marked to be split and en-queued again with lower allocation
priority. When there is no free register and x is marked to be
split, splitting is performed on x if it is beneficial. Otherwise, x
will be spilled to memory. Splitting divides the live interval x
into smaller ones and creates new live ranges. The spill weight
is calculated for all new intervals, which are to be en-queued
into the priority queue based on allocation priorities. Control
goes back to consider the next interval in the queue. When
splitting is also not beneficial, it goes for spilling. Spilling
stores the value into memory. It also creates new live ranges
after inserting spill code. The spill weight is calculated for new
intervals, and new live intervals are en-queued into the priority
queue based on the allocation priorities. The above steps are
shown in Figure 2 where the dotted box demonstrates our
proposed spilling approach in GRA.

To make spilling secure, our basic intuition is flushing out
the secure information from the memory location used for
spilling by storing zero in the earliest possible time, i.e.,
immediately after the last use of each spilled memory location
to reduce the lifetime. In fact, any garbage value can be used
to flush out the sensitive content of the memory location.
Let the live interval x is to be spilled. The GRA inserts

Figure 2: Secure Greedy Register Allocation in LLVM

spill instruction after definition and reload instruction before
use of x. Consequently, the live ranges of new intervals of
x due to spilling are created, and the old live interval does
not exist anymore. Whenever GRA reloads the content from
memory location (m) into a register, we check whether it is
the last reload from the memory location (i.e., last use of m).
We find the last reload by live interval analysis. If it is the
last reload from m, we store zero into m just after the last
reload. This process continues until we store zero after the
last reload of each spilled memory location in GRA. It may
be noted that a variable may be defined once and used multiple
times. Inserting zero after each reload would result in incorrect
functionality. The spill locations within the stack frame of a
single function are heavily reused. Moreover, the entire stack
frame space tends to be reused between different functions
while a program executes. Therefore, actual information left
in spill locations depends on the unique memory locations
used for spilling. Since we insert store zero instruction only
once for each spilled memory location, our approach adds
minimum spill zero instructions. We also clear the sensitive
memory content immediately after last use. Thus, our proposed
approach is the best possible solution to make spilling secure.

IV. EXPERIMENTAL RESULTS

We have used an Intel Xeon(R) CPU E5-2620 v4 2.10GHz,
64GB of RAM, running Ubuntu 18.04.3 LTS in our exper-
iments. We ran a wide variety of LLVM test suites using
different RAs in LLVM 10.0.1. Each benchmark has been
compiled to generate the LLVM IR using Clang. After a few
optimizations, the llc tool of LLVM generates the assembly
code with the specified RA from the LLVM IR. The number
of spills has been analyzed from the generated assembly, and
all the performance parameters have been analyzed from the
report generated by llvm-mca. We have run our proposed
approach for around thirty benchmarks but presented results
for ten arbitrarily chosen benchmarks in Table I and Table II
due to limited space. Note that we have observed a similar
trend from other benchmarks as well.

A. Results with Register Allocations in LLVM

Table I shows the number of total spills (Ts) versus leaks (L)
generated by different benchmarks for different RAs in LLVM.
The number of leaks (L) for all the existing RAs of LLVM
is the unique memory locations used for spilling. We have
assumed that all inputs are high-security such that any spill
is a potential leak. The second to ninth, eleventh, and twelfth
columns provide spills and leaks due to Basic, Fast, PBQP,



4

Table I: Spills (Ts) and Leaks (L) in Basic, Fast, and PBQP
RA, and Ts, L, and Registers (Rn) in SGRA Vs GRA

Benchmark Basic Fast PBQP GRA SGRA
Ts L Ts L Ts L Ts L Rn Ts L Rn

linpack-pc 91 22 313 74 93 21 63 17 163 80 0 163
almabench 115 15 96 59 115 15 47 15 124 62 0 124
n-body 28 8 58 17 28 8 10 7 139 17 0 139
partialsums 30 12 35 25 30 12 22 12 103 34 0 103
fftbench 24 8 226 44 23 9 16 7 109 23 0 109
misr 23 10 80 30 19 10 12 10 168 22 0 168
lpbench 8 6 108 22 9 6 9 7 150 16 0 150
Queens 8 8 22 14 8 8 8 8 114 16 0 114
recursive 10 5 34 11 10 5 7 5 102 12 0 102
chomp 4 3 116 20 4 3 4 3 118 7 0 118

Greedy RA (GRA), and our proposed secure GRA (SGRA),
respectively. It may be noted that actual leaks (L) are quite
low compared to the total spills (Ts) since the memory space
is heavily reused during spilling. Our method inserts ‘L’ store
zero operations in SGRA. The results show that fast generates
the maximum leaks among existing RA algorithms.

The results in Table I show that register allocation without
spilling is impossible for practical test cases. Therefore, regis-
ter allocation in LLVM is leaky. The leaks for SGRA are zero
in all cases because we flushed the sensitive data from spilled
memory locations. The number of spills for SGRA increases
from GRA because of additional spill zero instructions. We
analyzed that there would be no change in the number of
registers required at any time for both GRA and SGRA, as
our added instructions do not need any register to perform the
memory operations.

Table II: Performance overhead in SGRA versus GRA wrt In-
structions, Cycles, Block RThroughput, and Resource Pressure

Benchmark Instrs (K) Cycles (K) BlockRT ResPre (%)

G
R

A

SG
R

A

G
R

A

SG
R

A

G
R

A

SG
R

A

G
R

A

SG
R

A

linpack-pc 162.4 164.6 101.7 103.7 568.3 573.8 7.27 7.52
almabench 51.8 53.4 44 44.4 202.8 206.8 5.26 7.42
n-body 27.2 27.9 21.6 21.8 96.8 98.5 8.33 7.37
partialsums 20.4 21.7 17.3 17.9 80.8 84.0 8.14 10.5
fftbench 129.8 132.6 137.9 140.4 593.5 607.0 1.67 2.49
misr 41.7 42.7 32.7 33.4 149.0 151.5 2.29 4.15
lpbench 47.2 47.9 35.6 35.8 168.0 169.8 3.10 2.52
Queens 16.2 17.5 14.7 15.1 60.8 64.0 0.77 4.02
recursive 18.0 18.5 18.7 19.1 81.0 82.3 1.87 2.61
chomp 77.2 79.3 79.6 80.4 332.5 338.3 1.63 1.37
Avg. 1.42% 0.82% 0.04% 0.97%

B. Performance Overhead

Table II presents the performance overhead of SGRA over
GRA concerning the total number of instructions (Instr in
thousands (K)), the total required execution cycles (Cycles
in thousands (K)), the block RThroughput (BlockRT), and
the resource pressure (ResPre in percentage) for the target
assemblies generated from the benchmarks. We have run
each benchmark for X86-64 architecture in llvm-mca for
100 iterations and recorded the results for these performance
parameters. The average overhead of all the ten benchmarks
for each parameter is shown in the last row of Table II. Block
RThroughput is the reciprocal of the block throughput. Block

throughput is computed as the maximum number of blocks
that can execute per simulated clock cycle. Resource pressure
is the maximum number of instructions executed in parallel in
each cycle. Total instructions, cycles, and block RThroughput
are increased marginally for all cases in SGRA due to the
added spills by our approach. The resource pressure varies for
benchmarks as the instruction scheduling getting changed in
SGRA. The results suggest there is no significant impact of
our proposed SGRA on overall performance.

V. SUMMARY AND FUTURE DIRECTIONS

In this paper, we investigated the inherent vulnerability of
register allocation in the presence of spilling. Our experimental
studies revealed that all LLVM RAs create information leaks
due to spilling. This work shows one simple way of making
register spilling secure by flushing the memory content after
last use. Our attack model is also practically relevant because:
(i) the attacker needs to first find few cycles where secure
data processes (say an encryption routine) which is a small
fraction of the actual program of millions of cycles. (ii) Once
the secure routine is identified, the attacker has to identify
the exact timing between register spill and store zero which
is extremely hard even with the state-of-the-art side-channel
analysis. (iii) Dumping of memory content randomly during
execution is also not trivial and involves many cycles since
the I/O speed is significantly slower than execution speed. The
existing approach [4] also assumes a similar attack model.

Our work opens up many questions on the security of the
register allocation process, as discussed here. (i) If the attacker
has access to the registers as well, splitting could also be leaky.
(ii) The security issues of RA need to be analyzed properly
under other attack models as well. (iii) Our implementation
can be enhanced to store zero only in the tainted spilled
memory locations. (iv) Another approach of making spilling
secure could be by avoiding the spilling of tainted variables to
memory. (v) If spilling performs into cache instead of memory,
we need to mitigate the leaks in the cache. (vi) A generic
translation validation approach is needed to ensure the relative
security of the compiler optimizations. These open problems
need to be explored further for a better analysis of secure
compilation.

REFERENCES

[1] V. D’Silva, M. Payer, and D. Song, “The correctness-security gap in
compiler optimization,” in IEEE Security and Privacy Workshops, 2015,
pp. 73–87.

[2] C. Deng and K. S. Namjoshi, “Securing a compiler transformation,” in
Static Analysis, X. Rival, Ed., 2016, pp. 170–188.

[3] ——, “Securing the SSA transform,” in Static Analysis’17, F. Ranzato,
Ed., 2017, pp. 88–105.

[4] F. Besson, A. Dang, and T. Jensen, “Securing compilation against memory
probing,” in PLAS ’18, 2018, pp. 29–40.

[5] ——, “Information-flow preservation in compiler optimisations,” in 2019
IEEE 32nd Computer Security Foundations Symposium (CSF), 2019, pp.
230–242.

[6] M. Poletto and V. Sarkar, “Linear scan register allocation,” ACM Trans.
Program. Lang. Syst., vol. 21, no. 5, pp. 895–913, Sep. 1999.

[7] D. Ceara, L. Mounier, and M. Potet, “Taint dependency sequences: A
characterization of insecure execution paths based on input-sensitive cause
sequences,” in ICST’10, April 2010, pp. 371–380.

[8] U. Khedker, A. Sanyal, and B. Karkare, Data Flow Analysis: Theory and
Practice, 1st ed. USA: CRC Press, Inc., 2009.

[9] LLVM Register Allocation, https://llvm.org/docs/CodeGenerator.html#register-
allocation, Accessed February 23 2021.


