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 Computing deviCes pervade our everyday 
life. In addition to traditional desktops and lap-
tops, we have in the past decade already seen the 
emergence and ubiquity of handheld devices such 
as smartphones and tablets. Today, we are in the 
midst of a further explosive proliferation of com-
puting fueled by the Internet of things (IOT) [1], 
where computing devices equipped with sensors, 
integrated electronics, and sophisticated software 
are attached to physical objects of “things” to make 
them smart and adaptable to their environment. For 
instance, highly complex computing systems are 
now attached to wearables (e.g., watches, fitness 
trackers, ear buds), household items (e.g., ceiling 
fans, light bulbs, refrigerators), and automobiles, all 

connected to the Internet and coordi-
nating and communicating to provide 
smart, immersive, and transformative 
user experiences. We anticipate an 
estimated 50 billion smart, connected 
computing devices by 2020 from a 
“mere” 500 million in 2003 [2], with 
estimates of trillions within the next 
decade, representing the fastest growth 
for any sector in our entire history.

Modern embedded computing 
devices are generally architected 

through a system-on-chip (SoC) design paradigm. 
An SoC architecture includes a number of prede-
signed hardware blocks (potentially augmented 
with firmware and software as well) of well-defined 
functionality, often referred to as “intellectual prop-
erties” or “IPs.” These IPs communicate and coor-
dinate with each other through a communication 
fabric or network-on-chip (NoC). Figure 1 shows the 
major IPs in a typical SoC design. The idea of SoC 
design is to quickly configure these predesigned IPs 
for the target use cases of the device and connect 
them through standardized communication inter-
faces, enabling rapid design turnaround time for 
new applications and market segments.

Given the diversity of critical applications of com-
puting devices in the new era, as well as the complex-
ity of the devices itself, their validation is clearly a 
crucial and challenging problem. Validation includes 
a host of tasks, including functional correctness, 
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adherence to power and performance constraints 
for the target use cases, tolerance for electrical noise 
margins, security assurance, and robustness against 
physical stress or thermal glitches in the environment. 
Validation is widely acknowledged as a major bottle-
neck in the SoC design methodology, accounting for 
an estimated 70 percent of overall time and resources 
spent on the SoC design validation [3].

In this paper, we take a close look at post-silicon 
validation, which represents one of the most crucial, 
expensive, and complex components of the SoC 
design validation methodology. Post-silicon valida-
tion makes use of a fabricated, preproduction silicon 
implementation of the target SoC design as the valida-
tion vehicle to run a variety of tests and software. Note 
that this is in stark contrast to the pre-silicon activities, 
where the validation target is typically a model of the 
design rather than an actual silicon artifact. The goal 
of post-silicon validation is to ensure that the silicon 
design works properly under actual operating condi-
tions while executing real software, and identify (and 
fix) errors that may have been missed during pre-sili-
con validation. The complexity of the post-silicon vali-
dation arises from the physical nature of the validation 
target: it is much harder to control, observe, and debug 
execution of an actual silicon device than a comput-
erized model. Post-silicon validation is also performed 
under a highly aggressive schedule, in order to ensure 
adherence to time-to-market requirements.

Post-silicon validation is, of course about as old as 
silicon design itself. Ever since the early days of silicon 

design, one devised means to ensure that 
the system functioned correctly, performed 
appropriately, and was robust against differ-
ent software versions. By the 1980s and 1990s, 
post-silicon validation of microprocessors and 
embedded systems were firmly established 
in the industrial practice of design validation. 
Consequently, there has been significant work 
over the years on making this task streamlined 
and disciplined, both in academic research 
and in industrial practice. However, much 
of this work was targeted toward a specific 
hardware design type. For example, micro-
processor implementations included signifi-
cant instrumentation for post-silicon debug of 
pipelines [4], [5], cache memories [6], [7], 
or trace-based debug [8]. With the advent of 
mobile devices and IOTs, this paradigm and 

infrastructure of validation has become inadequate. In 
particular, for a modern SoC design, the microproces-
sor is one among about a hundred different IP compo-
nents. While targeted techniques for its validation are 
still necessary, the need in the SoC era is for uniform, 
generic validation technologies and tools that can be 
used across multiple IPs. Furthermore, the functionality 
of an SoC design today hardly has a clear demarcation 
of the hardware and software components. Depending 
on the deployment target, use cases, and necessary 
power/performance tradeoffs, any design functional-
ity in an IP may be moved to a hardware or a software 
(firmware) implementation. Moreover, most systems 
today are “vertically integrated,” with the system use 
cases only realized by a composition of hardware, soft-
ware, applications, and peripheral communications. 
Consequently, validation in general—and post-silicon 
validation in particular—is a complex co-validation 
problem across the hardware, software, and peripheral 
functionality, with no clear decomposition into individ-
ual components. Third, with integration of significant 
design functionality into one system, it is getting more 
and more complex to control and observe any indi-
vidual design component as necessary for validation. 
Finally, with reduced time-to-market, the number of 
silicon spins available for validation has decreased dra-
matically. Consequently, when an error is found in sili-
con, one must find clever workarounds to detect other 
errors in the same silicon spin.

The focus of this paper is on post-silicon vali-
dation, specifically as applicable in the modern 
SoC design era. We primarily focus on post-silicon 

Figure 1. An SoC design integrates a wide variety 
of IPs in a chip. It can include one or more proces-
sor cores, digital signal processor (DSP), multiple 
coprocessors, controllers, analog-to-digital (ADC), 
and digital-to-analog converters (DAC), all con-
nected through a communication fabric.
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functional validation techniques, although we pro-

vide rough overviews of some of the other categories, 

viz., electrical and marginality. The SoC validation 

challenges outlined above have resulted in a num-

ber of architectures, infrastructures, test and CAD 

flows, and so on. However, they are not utilized in 

a top-down, disciplined manner. In fact, tools, flows, 

and design instrumentations have been incremen-

tally accumulated over time in response to specific 

challenges or requirements. Today, over 20 percent 

of the design real estate and a significant component 

of the CAD flow effort are devoted toward silicon val-

idation. It is nontrivial to transform or mold the archi-

tecture for specific device use cases. In addition to 

providing a survey of the various facets of silicon val-

idation, our goal is to deconstruct this complexity, 

facilitate understanding of the rationale for many of 

the available flows and architectures, and illustrate 

experiences in post-silicon validation for real indus-
trial examples.

Figure 2 shows three stages of SoC validation: 
pre-silicon validation, post-silicon validation, and 
on-field debug. The figure also shows some of the 
important activities associated with the different 
stages. The remainder of the paper describes the 
major tasks relevant for post-silicon and debug. The 
first section reviews the spectrum of validation activi-
ties from pre-silicon through post-silicon and on-field 
survivability. The next section gives a flavor of the 
diverse range of activities involved in post-silicon 
validation, while the “Silicon validation challenges” 
section discusses some of the high-level challenges. 
The next section focuses on post-silicon planning, 
that is, the pre-silicon activities targeted toward facil-
itating and streamlining post-silicon validation. In 
the “Trace signal selection” and “Test generation” 
sections, we delve into some details on two aspects 
of this planning, signal selection, and test genera-
tion. The next section discusses an industrial post-sil-
icon validation experience, with IBM Power8, and 
the conclusion is drawn in the final section.

The validation spectrum
We can roughly divide validation activities into 

three components: pre-silicon, post-silicon, and 
on-field survivability. To understand the different 
post-silicon activities involved, it is crucial to com-
prehend the position it holds among validation 
activities across different phases of SoC design and 
development. Indeed, validation is best viewed as a 
“continuum” of activities using artifacts with increas-
ing levels of maturity. As we move from pre-silicon to 
post-silicon and finally on-field execution, more and 
more complex usage scenarios are exercised poten-
tially stimulating errors that could not be seen in 
previous validation phases. At the same time, observ-
ability and controllability of the design during these 
executions get progressively more complex making 
it harder to root-cause a failure. At the same time, 
the cost of a bug increases and the time available for 
debug decreases as we go further into the system life 
cycle. In this section, we provide a high-level over-
view of this continuum of validation activities. The 
timeline for these activities is shown in Figure 3.

Pre-silicon activities
Pre-silicon validation refers to all of the vali-

dation activities performed before the first silicon 

Figure 2. Three important stages of SoC validation: 
pre-silicon validation, post-silicon validation, and on-
field survivability.
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is available, and forms the bulk of the validation 
activities along the design life cycle. Pre-silicon val-
idation activities include code and design reviews, 
simulation and testing, as well as formal analysis. 
Different design models are subjected to these 
activities at different stages of the life cycle. At the 
beginning of exploration, the only models available 
are high-level architectural specifications. Later, 
abstract virtual models for the different IPs are gen-
erated, which are primarily used as the prototyp-
ing framework [9], [10] for software and firmware 
development and validation. These virtual models 
are highly abstract software models of the hardware 
design that only preserve the basic functionality of 
the hardware/software interfaces. With these mod-
els, one can perform some coarse-grained valida-
tion of hardware/software use cases. Subsequently, 
detailed RTL models are developed for different 
IPs, which can be subjected to simulation and for-
mal analysis. Concurrently, software components 
mature and are also subjected to reviews, simula-
tion, and formal verification.

RTL simulation is typically performed on a 
per-IP basis, although some full-chip tests are typ-
ically performed to ensure that the IPs coordinate 
effectively together. Note that simulation with RTL 
models is approximately a billion times slower than 
the target clock speed for the system; consequently, 
an activity that would take a few seconds of exe-
cution time on the target silicon (e.g., booting an 
operating system) would take several years on an 
RTL simulator. This precludes the possibility of exe-
cuting software on top of an RTL model, and only  
short, directed, or random testing is typically used 
with RTL simulation. For hardware/software co-val-
idation in pre-silicon, one can map the RTL into a 
reconfigurable architecture such as field program-
mable gate arrays (FPGA), or specialized acceler-
ators and emulators [11]–[13]. These models run 
about a hundred to thousand times faster than an 
RTL simulator. Consequently, one can execute 
hardware/software scenarios such as an operating 
system boot in a few hours. This speed is obtained 
at the cost of controllability and observability. In 
a simulator, one can observe any internal signal 
of the design at any time. In contrast, in FPGA 
(which are the fastest of the pre-silicon platforms) 
the observability is restricted to a few thousands 
of internal signals. Furthermore, one must decide 
on the signals to be observed before generating 

the FPGA bit-stream; reconfiguring the observabil-
ity would require recompilation of the bit-stream, 
which might take several hours.

Validation with silicon
Post-silicon validation starts with the first 

pre-production silicon, and continues until the start 
of mass production of the product. Since the sili-
con is used as the validation vehicle, tests can run 
at target clock speed enabling execution of long 
use cases (e.g., booting a full-scale operating sys-
tem within seconds, exercising various power man-
agement and security features involving multiple 
IPs, etc.). Post-silicon tests consequently provide 
the ability to exercise the system under realistic 
on-field scenarios and workloads. Furthermore, 
due to the physical nature of the validation vehi-
cle (viz., actual silicon rather than a model), it 
becomes possible to validate the artifact for non-
functional characteristics such as power consump-
tion, physical stress, temperature tolerance, and 
electrical noise margin. On the other hand, it is 
considerably more complex to control or observe 
the execution of silicon than that of an RTL simu-
lator (or even FPGA or emulation models). In an 
RTL simulator, virtually any internal design signal 
is observable; even in emulation or FPGA, one can 
observe hundreds or thousands of internal signals. 
In contrast, in silicon one can only observe about 
a hundred hardware signals in any execution as 
described in the “Trace signal selection” section. 
Furthermore, recall that for a pre-silicon platform, 
changing observability or rearchitecting the design 

Figure 3. High-level categorization of different com-
ponents of an SoC design life cycle. Tape-out refers 
to the time when the design is mature enough to 
get to the first fabrication. Product release qualifi-
cation (PRQ) refers to the decision to initiate mass 
production of the product.
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to facilitate more control would at most require 
a recompilation (although recompilation is non-
trivial and may take several hours); however, for 
silicon, it requires silicon respin (i.e., redesign, val-
idate again, and expensive refabrication). Indeed, 
most of the critical challenges in post-silicon vali-
dation stem from observability and controllability 
constraints, and we discuss these challenges in the 
“Silicon validation challenges” section.

To underline the criticality of post-silicon, it is 
important to note the factors contributing to the 
aggressive debug timeline requirements and the 
high cost of bug (and bug escape) in post-silicon 
validation. Post-silicon validation is the final vali-
dation activity before mass production is initiated. 
The timeline for beginning mass production is gov-
erned by several factors many of which are dictated 
by market economics, e.g., the need for launching 
a product to align with winter holiday shopping or 
back-to-school timeframe. Missing such a window 
may mean millions to billions of dollars of loss in 
revenue, and in some cases missing the market for 
the product altogether. The decision to move for-
ward with mass production or cancel the product 
altogether (referred to as the “PRQ” call) is made 
based on the trend and type of bugs found during 
post-silicon, results of power-performance valida-
tion, tolerance of the product to target noise mar-
gins, and electrical variations, all of which depend 
critically on post-silicon validation. Consequently, 
post-silicon validation must enable aggregation of 
substantial trending data on design bugs as well as 
nonfunctional characteristics to enable a decision 
on product launch (and hence mass production). 
Note that the launch timeframe is typically deter-
mined a long time (even years) in advance based on 
target market forecast for the product and changes 
can result in substantial economic repercussions. 
Consequently, the post-silicon activity must per-
form high-quality validation within the limited and 
fixed timeframe (between first silicon and PRQ) 
to ensure a marketable product: delay in post-sili-
con can risk a product cancellation resulting in a 
loss of the entire investment on the product from 
architecture to validation, or in launching a prod-
uct that malfunctions on-field in ways not covered 
by on-field survivability architectures (see below), 
resulting in loss of millions to billions of dollars in 
revenue due to product recall, impact on company 
reputation, etc.

Survivability and on-field debug
Survivability refers to the validation and debug 

activities employed on a system or device to mit-
igate errors or malfunctions observed during 
on-field execution. One may argue that survivabil-
ity is not a validation activity at all, since it happens 
on-demand at deployment sites, rather than with 
following a preplanned schedule as for other vali-
dation activities. Nevertheless, it is still considered 
in concert with validation activities, since many of 
the technologies used in survivability bear a strong 
resemblance to post-silicon validation. In particular, 
survivability activities depend on design-for-debug 
(DfD), that is, hardware features introduced specif-
ically to facilitate debug and validation of silicon. 
Most mitigation techniques employed for surviva-
bility involve  “patching” or reconfiguring the func-
tionality of the system through software or firmware 
updates. Note that in order to successfully patch 
design functionality, the design itself must include 
significant configurability options. Furthermore, 
once an error or vulnerability is discovered on-field, 
the time available for developing a mitigation or 
workaround strategy is extremely short. One reason 
for the short time availability is that many of the 
errors might be exploited as security vulnerabilities 
which, once detected and advertised on-field, can 
be exploited for malicious purposes; it is important 
to repair such vulnerabilities before a catastrophic 
exploitation is performed. Even if the error is not 
catastrophic, on-field problems can get significant 
(negative) limelight, causing damage to the com-
pany reputation, which may result in significant 
revenue loss. On the other hand, it may be a highly 
creative process to identify a patching strategy to 
mitigate on-field problems. In particular, the ability 
to patch a design depends on how much configur-
ability and controllability have been built into the 
system to enable the patch. Developing complex 
system designs with a flexible, configurable archi-
tecture is one of the crucial challenges in the SoC 
era, and we will describe it in the context of plan-
ning for post-silicon validation in the “Planning for 
post-silicon readiness” section.

Overview of post-silicon activities
Post-silicon validation includes a number of dif-

ferent activities including validation of both func-
tional and timing behavior as well as nonfunctional 
requirements. Each validation activity entails its own 
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challenge and includes techniques, tools, and meth-
odologies to mitigate them. In this section, we dis-
cuss a few of these activities, to give a flavor of their 
range and diversity.

Power-on-debug: One of the first activities per-
formed when a preproduction silicon arrives at a 
post-silicon laboratory for the first time is to power 
it on. Powering on the device is actually a highly 
complex activity. If the device does not power 
on, the on-chip instrumentation architecture 
(see below) is typically not available, resulting in 
extremely limited (often zero) visibility into the 
design internals. This makes it difficult to diag-
nose the problem. Consequently, power-on debug 
includes a significant brainstorming component. 
Of course, some visibility and controllability still 
exist even at this stage. In particular, power-on 
debug typically proceeds with a custom “debug 
board,” which provides a higher configurability 
and fine-grained control over a large number of 
different design features. The debug activity then 
entails coming up with a bare-bone system config-
uration (typically removing most of the complex 
features, e.g., power management, security, and 
software/firmware boot mechanisms,), which can 
reliably power on. Typically, starting from the time 
the silicon first arrives at the laboratory, obtaining 
a stable power-on recipe can take a few days to a 
week. Once this is achieved, the design is recon-
figured incrementally to include different complex 
features. At this point, some of the internal DfD 
features are available to facilitate this process. Nev-
ertheless, it is still a highly challenging enterprise 
and can take several weeks to achieve. Note that 
as designs become more and more configurable, 
the process of defeaturing and refeaturing for pow-
er-on debug can get increasingly harder. Once the 
power-on process has been stabilized, a number of 
more complex validation and debug activities can 
be initiated.

Basic hardware logic validation: The focus of the 
logic validation is to ensure that the hardware 
design works correctly, and exercise specific fea-
tures of constituent IPs in the SoC design. This is 
typically done by subjecting the silicon to a wide 
variety of tests that include both focused tests for 
exercising specific features as well as random and 
constrained-random tests. Traditionally, the SoC is 

placed on a custom platform (or board) designed 
specifically for debug with specialized instrumen-
tation for achieving additional observability and 
controllability of internals of  different IPs. Signifi-
cant debug software is also developed to facilitate 
this testing (see below). Note that these tests are 
different from system-level directed tests. In par-
ticular, tests executed for post-silicon validation 
are system-level, involving multiple IPs and their 
coordination.

Hardware/software compatibility validation: Compat-
ibility validation refers to the activities to ensure that 
the silicon works with various versions of systems, 
application software, and peripherals. The valida-
tion accounts for various target use cases of the sys-
tem, the platforms in which the SoC is targeted to 
be included, etc. Compatibility validation includes, 
among others, the following: 

• validation of system usage with add-on hardware 
of multiple external devices and peripherals; 

• exercising various operating systems and appli-
cations (including multimedia, games, etc.); 

• use of various network protocols and communi-
cation infrastructures. 

In addition to the generic complexities of post-sil-
icon validation (see below), a key challenge here 
is the large number of potential combinations (of 
configurations of hardware, software, peripheral, 
and use cases) that need to be tested. It is com-
mon for compatibility validation to include over 
a dozen operating systems of different flavors, 
more than a hundred peripherals, and over 500 
applications.

Electrical validation: Electrical validation exercises 
electrical characteristics of the system, compo-
nents, and platform to ensure adequate electrical 
margin under worst-case operating conditions. 
Here “electrical characteristics” include input–out-
put, power delivery, clock, and various analog/
mixed-signal (AMS) components. The validation is 
done with respect to various specification and plat-
form requirements, e.g., input–-output validation 
uses the platform quality and reliability targets. As 
with compatibility validation above, a key challenge 
here is the size of the parameter space: for system 
quality and reliability targets, the validation must 
cover the entire spectrum of operating conditions 
(e.g., voltage, current, and resistance) for millions of  
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parts. The current state of practice in electrical vali-
dation is an integrated process of the following:

• sampling the system response for a few sample 
parts; 

• identifying operating conditions under which the 
electrical behavior lies outside specification; 

• optimization, redesign, and tuning as necessary to 
correct the problem. 

Note that unlike the logic and compatibility valida-
tion above, electrical validation must account for 
statistical variation of the system performance and 
noise tolerance across different process corners. 
PRQ requires the average defect to be low, typically 
less than 50 parts per million.

Speed-path validation: The goal of speed-path valida-
tion is to identify frequency-limiting design paths in 
the hardware. Because of variations, the switching 
performance of different transistors in the design var-
ies. This leads to data being propagated at different 
rates along different circuit paths. The speed at which 
the circuit can perform is ultimately constrained by 
the limitations of the slowest (in terms of data prop-
agation speed) path in the design. Identifying such 
slow paths is therefore crucial in optimizing the design 
performance. Speed path analysis includes identifica-
tion of both a potentially slow transistor, among mil-
lions or billions of them in a design, responsible for 
the speed path; and the execution cycle (over a test, 
potentially millions of cycles long) that causes a slow 
transition. Speed path debug makes use of a number 
of technologies, including specialized testers, Shmoo 
(2-D plot) of chip failure pattern over the voltage and 
frequency axes, DfD instrumentation available for 
observability, as well as laser-assisted observation 
of design internals [14] and techniques for stretch-
ing and shrinking clock periods [15]. More recently,  
analysis techniques based on formal methods have 
been successfully used for speed-path identification 
[16], [17]. In spite of these latest developments, a 
significant ingenuity is necessary to isolate frequency 
limiting paths for modern designs.

Obviously, the above list of activities is not exhaus-
tive. In addition to the above, validation covers the 
behavior of the system under extreme temperatures, 
physical stress, etc. Even the categories themselves 
are not “cast in stone”: post-silicon validation in prac-
tice typically involves close collaboration among val-
idators of all the different areas. As an example, with 

increasingly tightening hardware/software integration 
in modern SoC designs, the boundary between basic 
hardware logic validation and compatibility validation 
with software has become blurred. In many cases, it is 
impossible to validate the hardware standalone with-
out also considering (at least) the firmware running on 
the different IP cores. Indeed, post-silicon functional 
validation today often refers to the union of logic and 
compatibility validation.

Silicon validation challenges
Post-silicon validation and debug clearly involve 

coordination of several complex activities per-
formed under an aggressive schedule. In this sec-
tion, we enumerate some of the challenges involved. 
In the “Planning for post-silicon readiness” section, 
we will discuss the advance planning performed to 
anticipate and address these challenges.

Observability and controllability limitations
Limitations in observability and controllability con-

stitute one of the key factors that distinguish validation 
based on a silicon artifact from the pre-silicon activities. 
The problem arises because it is not possible to observe 
or control all of the billions of internal signals of the 
design during silicon execution. In order to observe a 
signal, its value must be routed to an observation point, 
such as an external pin or internal memory (e.g., trace 
buffer). Consequently, the amount of observation that 
can be performed is limited by the number of pins or 
by the amount of memory dedicated for debug observ-
ability. Similarly, the amount of controllability depends 
on the number of configuration options defined by the 
architecture. Note that both observability and control-
lability must be accounted for during the design of the 
chip, since the hardware needs to be in place to route 
the appropriate design signals to an observation point 
or configure the system with specific controls. On the 
other hand, during design one obviously does not know 
what kind of design bugs may show up during post-sili-
con validation and what signals would be profitable to 
observe to debug them. The current state of industrial 
practice primarily depends on designer experiences to 
identify observability. Note that any missing observa-
bility is typically only discovered at post-silicon, viz., in 
the form of failure to root-cause a given failure. Fixing 
observability at that time would require a new sili-
con spin, which is typically impractical. Streamlining 
observability and controllability is consequently one of 
the crucial requirements of post-silicon research.
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Error sequentiality
Traditional software or (pre-silicon) hardware 

debugging tends to work by sequentially finding 
and fixing bugs. We find a bug, fix it, and then go 
on to find the next bug. Unfortunately, this natu-
ral mental model of debugging breaks down for 
post-silicon. In particular, fixing a hardware bug 
found during post-silicon would require a new step-
ping. We clearly cannot afford a stepping per bug. 
Consequently, when a bug is discovered—even 
before the root cause for the bug is identified—one 
must find a way to work around the bug in order to 
continue the post-silicon validation and debug pro-
cess. Finding such workarounds is a challenging and 
creative process: on the one hand, the workaround 
must eliminate the effect of the bug, and on the other 
it must not mask other bugs from being discovered.

Debugging in the presence of noise
A consequence of the fact that we are using the 

actual silicon as validation vehicle is that we must 
account for factors arising from physical reality in 
functional debug, e.g., effects of temperature and 
electrical noise. For example, a logical error may be 
masked by a glitch or fluctuating voltage levels, and 
may even require a certain thermal range to repro-
duce. A key challenge in post-silicon validation is con-
sequently to find a recipe (e.g., via tuning of different 
physical, functional, and nonfunctional parameters) 
to make a bug reproducible. On the other hand, a 
positive factor is that the notion of “reproducibility” 
in post-silicon is somewhat weaker than that in pre-sil-
icon validation. Since post-silicon validation is fast, an 
error that reliably appears once in a few executions 
(even if not 100% of the time) is still considered repro-
ducible for post-silicon. Nevertheless, given the large 
space of parameters, ensuring reproducibility to the 
point that one can use it to analyze and diagnose the 
error is a significant challenge.

Security and power management challenges
Modern SoC designs incorporate highly sophisti-

cated architectures to support aggressive energy and 
security requirements. These architectures are typi-
cally defined independently by disparate teams with 
complex flows and methodologies of their own, and 
include their unique design, implementation, and vali-
dation phases. A thorough treatment of these activities 
is outside the scope of this paper. However, it is impor-
tant to understand the interaction of these features with 

post-silicon (functional) validation. The challenge of 
security on observability is more direct, and has also 
been discussed before [18]. SoC designs include a 
large number of assets, e.g., cryptographic keys, DRM 
keys, firmware, and debug mode, which must be 
protected from unauthorized access. Unfortunately, 
post-silicon observability and the DfD infrastructure in 
silicon provide an obvious way to access such assets. 
Furthermore, much of the DfD infrastructure is avail-
able on-field to facilitate survivability. This permits 
their exploitation by malicious hackers to gain unau-
thorized access to the system assets after deployment. 
Indeed, many celebrated system hacks [19], [20] have 
made use of post-silicon observability features. Such 
exploits can be very subtle and difficult to determine 
in advance, while having a devastating impact on the 
product and company reputation once carried out. 
Consequently, a knee-jerk reaction is to restrict DfD 
features available in the design. On the other hand, 
lack of DfD may mean making post-silicon validation 
difficult, long, and even intractable. This may mean 
delay in product launch; with aggressive time-to-mar-
ket requirement, a consequence of such delay can be 
loss of billions of dollars in revenue or even missing 
the market for the product altogether.

Power management features also affect observa-
bility, but in a different manner. Power management 
features focus on turning off different hardware and soft-
ware blocks at different points of the execution when 
they are not functionally necessary. The key problem is 
that observability requirements from debug and valida-
tion are difficult to incorporate within the power man-
agement framework. In particular, if a design block is 
in a low power state, it is difficult to observe (or infer) 
the interaction of the block with other IPs in the SoC 
design. Note that the lack of observability can affect 
debug of IPs different from the one subjected to power 
management. For example, consider debugging an  
IP A during a specific silicon execution. For this pur-
pose, signals from A need to be routed to some obser-
vation point such as a memory or output pin (see the 
“Trace signal selection” section). Suppose the rout-
ing includes an IP B, which is in no way functionally 
dependent on A. It is possible then for B to be powered 
down during a part of the execution when A is active. 
However, this means that the route of observable sig-
nals from A is not active during that time, resulting in no 
observability of internal behavior of A. One approach 
to address this challenge is to disable power manage-
ment during silicon debug. However, this restricts our 
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ability to debug and validate the power management 
protocols themselves, e.g., the sequence of activities 
that must happen in order to transition an IP to different 
sleep (or wakeup) states.

Developing a post-silicon observability archi-
tecture that accounts for the security and power 
management constraints is highly nontrivial. In par-
ticular, to comprehend the security/power-manage-
ment/validation tradeoffs, such an architecture must 
account for a number of other factors. A previous 
paper [18] discusses some of these considerations 
in the context of security. Relevant considerations 
include issues from high-volume manufacturing, 
reusability, flexibility against late changes, and late 
variability, among others.

Planning for post-silicon readiness
The primary goal of post-silicon validation is 

to identify design errors by exploiting the speed of 
post-silicon execution. It should be clarified that it 
is not necessary for post-silicon validation to com-
pletely diagnose or root-cause a bug. The goal is to 
narrow down from a post-silicon failure to an error 
scenario that can be effectively investigated in the 
pre-silicon environment. Note that since a physical 
object (also known as silicon) is involved in the 
validation process, the path from an observed fail-
ure (e.g., a system crash) to a resolution of the root 
cause for the failure is not straightforward. Roughly, 
the path involves the following four steps.1

Test execution: This involves setting up the test envi-
ronment and platform, running the test, and in case 
the test fails, performing some obvious sanity checks 
(e.g., checking if the SoC has been correctly set up 
on the platform, power sources are connected, all 
switches are set up as expected for the test, etc.). If 
the problem is not resolved during the sanity check, 
then it is typically referred to as a pre-sighting.

Pre-sighting analysis: The goal of pre-sighting analysis  
is to make the failure repeatable. This is highly non-
trivial, since many failures occur under highly subtle  
coordinated execution of different IP blocks. For 
instance, suppose IP A sends a message to IP C within 
a cycle of another IP B sending a different message 

to C. This may result in a buffer overflow (eventually 
resulting in a system crash) when occurring in a state 
in which the input queue of C had only one slot left 
and before C has the opportunity to remove some item 
from the queue. Making the failure repeatable requires 
running the test several times, under different software, 
hardware, system, and environmental conditions (pos-
sibly with some knowledge and experience of poten-
tial root cause) until a stable recipe for failure is discov-
ered. At that point, the failure is referred to as sighting.

Sighting disposition: Once a failure is confirmed as 
a sighting, a debug team is assigned for its disposi-
tion. Disposition includes developing a plan to track, 
address, and create workarounds for the failure. The 
plan typically involves collaboration among rep-
resentatives from architecture, design, and imple-
mentation, as well as personnel with expertise of the 
specific design features exercised in the failing tests 
(e.g., power management, secure boot, etc.).

Bug resolution: Once a plan of action has been devel-
oped for a sighting, it is referred to as a bug, and the 
team assigned is responsible for ensuring that it is 
resolved in a timely manner based on the plan. Reso-
lution includes both finding a workaround for the fail-
ure to enable exploration of other bugs, and triaging 
and identifying root cause for the bug. We will discuss 
the challenges involved in workaround development 
in the  “Silicon validation challenges” section. Triag-
ing and root-causing bugs is one of the most complex 
challenges in post-silicon validation. In particular, the 
root cause for a failure observed on a specific design 
component can be in a completely different part of 
the design. One of the first challenges is to determine 
whether the bug is a silicon issue or a problem with 
the design logic. If it is determined to be a logic error, 
the goal is typically to recreate it on a pre-silicon plat-
form (viz., RTL simulation, FPGA, etc.). Note that the 
exact post-silicon scenario cannot be exercised in 
a pre-silicon platform: one second of silicon execu-
tion would take several days or weeks to exercise on  
RTL simulation. Consequently, the bulk of the crea-
tive effort in post-silicon involves creating a scenario 
that exhibits the same behavior as the original post-sil-
icon failure but involves execution small enough to 
be replayable in pre-silicon platforms. In addition 
to this key effort, other activities for bug resolution 
include grouping and validating the bug fix. Note 
that the same design error might result in different 
observable failures for different tests, e.g., a deadlock 

1The terminology we use to define various bug diagnosis stages (e.g., “presighting”, 
“sighting”, etc.) has been standard across semiconductor industry, although it has 
not been formally introduced in the literature before. Since one goal of this paper 
is to discuss the practice of silicon validation, we consider this an opportunity to 
introduce this terminology. Note that some of the terms (e.g., sighting) has been used 
before in similar contexts [21].
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in a protocol might result in a system crash in one test 
and a hang in another. Given aggressive validation 
schedules, it is imperative not to waste resources to 
debug the same error twice. Consequently, it is criti-
cal to group together errors arising from the same root 
cause. Note that this is a highly nontrivial exercise: 
one must bucket errors with the same (or similar) root 
cause but with possibly different observable failures 
before they have been analyzed. Finally, once a fix 
has been developed, one must validate the fix itself to 
ensure that it does indeed correct the original error, 
and it does not introduce a new error.

Given the scope and complexity of post-silicon 
validation and the aggressive schedule under which 
it must be performed, it is clear that it needs metic-
ulous planning. We have already highlighted the 
importance of the design of appropriate DfD infra-
structure to enable observability and controllability 
of the internal behavior of the system during silicon 
validation. Other requirements include defining 
post-silicon tests, test cards, and custom boards. In 
fact, a crucial activity during the pre-silicon time-
frame is post-silicon readiness, that is, activities 
geared toward streamlined execution of post-sili-
con validation. Post-silicon readiness activities pro-
ceed concurrently with system architecture, design, 
implementation, and pre-silicon validation.

Figure 4 provides a high-level overview of the 
different activities pertaining to post-silicon readi-
ness and execution, together with a rough schedule 
within the system design life cycle. Note that the 
readiness activities start about the same time as the 
product functionality planning and span the entire 
pre-silicon portion of the life cycle.

Test plans
Test plans constitute arguably the most critical and 

fundamental readiness activity for post-silicon valida-
tion. The goal is to identify the different coverage targets, 
corner cases, and functionality that need to be tested 
for the system being deployed. Post-silicon test plans 
are typically more elaborate than pre-silicon plans, 
since they often target system-level use cases of the 
design, which cannot be exercised during pre-silicon 
validation. Note that test plan development starts con-
currently with design planning. Consequently, when 
the test plan development starts, a detailed design (or 
even an elaborate microarchitecture for the most part) 
is unavailable. Initial test planning correspondingly 
depends on high-level architectural specifications. As 

the design matures and more and more design fea-
tures are developed, the test plans undergo refinement 
to account for these features. The plans also need to 
account for the target applications, the new versus leg-
acy IPs used in the system design, etc.

On-chip instrumentation
On-chip instrumentation refers to the DfD features 

integrated into the silicon to facilitate post-silicon 
debug and validation. A key target of the DfD is observ-
ability. Modern SoC designs include a significant 
amount of hardware for this purpose, with estimates 
running to 20 percent or more in silicon real estate 
in some cases. Two critical observability features are 
scan chain [22] and signal tracing [23]. Scan chains 
enable observability of the internal state of the design. 
Scan chains, of course, are highly mature architec-
tures originally developed for identifying manufactur-
ing defects in the circuit. However, they also provide 
critical observability during post-silicon validation. 
Signal tracing, on the other hand, specifically target 
post-silicon validation. The goal is to identify a small 
set (typically hundreds) of internal signals of the 
design to be observed for each cycle during silicon 
execution. To achieve this, the relevant signals are 
routed to an observation point, which can be either 
an output pin or a designated section of the mem-
ory (referred to as trace buffer). In addition to these 
two architectures, there are also instrumentations 
to transport internal register values off-chip, quickly 
access large memory arrays, etc. Note that these 
architectures can get highly complex. For example, in 
recent SoC designs, data transport mechanisms may 
repurpose some of the communication mechanisms 

Figure 4. Overview of different activities pertaining to 
post-silicon validation along the SoC design life cycle.
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already present in the system, e.g., universal serial bus 
(USB) port. This requires a thorough understanding of 
both the functionality and the validation use cases to 
ensure that they do not interfere when using the same 
interface. Finally, there is instrumentation to provide 
controllability of the execution, e.g., by overriding the 
system configuration, updating microcode on-the-fly 
during execution, etc.

There has recently been significant research on 
improving post-silicon observability through disci-
plined DfD architecture. Some of the key work in this 
area has focused on trace signal selection, and we 
discuss this problem in the “Trace signal selection” 
section. Among on-chip instrumentation techniques, 
one of the earliest work is due to Gopalakrishnan 
and Chou [24]. They use constraint solving and 
abstract interpretation to compute state estimates 
for memory protocols. Park and Mitra [4] develop 
an architecture called IFRA for disciplined on-chip 
observability of pipelined microprocessors. Boule  
et al. [25] present architectures for post-silicon asser-
tion checkers. Ray and Hunt [7] present an archi-
tecture for on-chip monitor circuits for validation of 
specific concurrent protocols.

Debug software development
Debug software is another crucial component of 

post-silicon validation readiness. It includes any soft-
ware tool and infrastructure that is necessary to ena-
ble running post-silicon tests and facilitating debug, 
triage, or validation of different coverage goals. We 
can categorize debug software roughly into the fol-
lowing classes.

Instrumented system software: Post-silicon valida-
tion, particularly for hardware logic and compat-
ibility validation, requires running long compli-
cated tests, identifying complex corner cases, and 
root-causing errors excited by subtle hardware/
software coordination. To achieve this, one typi-
cally needs to run an application software stack 
on the target system. Doing this by executing an 
application on top of an off-the-shelf operating sys-
tem is typically difficult. Modern operating systems  
(e.g., Linux, Windows, Android, MacOS, etc.) are 
highly optimized for performance and power con-
sumption, and significantly complex. To enable 
debug of underlying hardware issues one typically 
needs a highly customized system software, with a 
reduced set of “bells and whistles” while including 

a number of hooks or instrumentations to facilitate 
debug, observability, and control. For example, one 
may want to trace the sequence of branches taken 
by an application in order to excite a specific hard-
ware problem. To achieve this, often specialized 
operating systems are implemented that are targeted 
for silicon debug. Such system software may be writ-
ten by silicon debug teams from scratch, or by signif-
icantly modifying the off-the-shelf implementations.

Tracing, triggers, and configurations: Some cus-
tomized software tools are also developed for con-
trolling, querying, and configuring the internal state 
of the silicon. In particular, there are tools to query or 
configure specific hardware registers, setting triggers 
for tracing, etc. For example, one may wish to trace 
a specific signal S only when some internal register 
R contains a specific value u. Assuming that both S 
and R are observable, one needs software tools to 
query R and configure signal tracing to include S 
when R contains u.

Transport Software: Access software refers to tools 
that enable transport of data off-chip from silicon. 
Data can be transferred off-chip either directly 
through the pins, or by using the available ports from 
the platform (e.g., USB and PCIe). For example, 
transporting through the USB port requires instru-
mentation of the USB driver to interpret and route 
the debug data while ensuring the USB functionality 
is not affected during normal execution. Note that 
this can become highly complex and subtle, particu-
larly in the presence of other features in the SoC such 
as power management. Power management may in 
fact power down the USB controller when the USB 
port is not being used by the functional activity of 
the system.

The instrumented driver ensures that debug 
data is still being transported while still facilitating 
the power-down functionality of the hardware to be 
exercised during silicon validation. 

Analysis software: Finally, there are software tools 
to perform analysis on the transported data. These 
include tools to aggregate the raw signal or trace 
data into high-level data structures (e.g., interpret-
ing signal streams from the communication fabric 
in the SoC as messages or transactions among IPs), 
comprehending and visualizing hardware/software 
coordinations, as well as tools to analyze such traced 
and observed data for further high-level debug  
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(e.g., to estimate congestion across the communica-
tion fabric, traffic patterns during internal transactions, 
and power consumption during system execution).

One critical challenge in developing (and val-
idating) debug software is its tight integration with 
the target hardware design to be validated. Note that 
typically software development and validation make 
use of a stable hardware platform, e.g., one devel-
ops application software on top of a general-purpose 
hardware instruction set architecture such as X86 
or ARM. However, debug software is developed for 
an under-development target platform, often with 
evolving and changing features (e.g., in response to 
design or architectural challenges discovered late). 
This makes debug software design a vexing and 
complex problem in hardware/software co-design 
and co-validation. Indeed, it is not uncommon in 
post-silicon validation to root-cause an observed fail-
ure to an issue with the debug software rather than 
the target system. Developing a streamlined technol-
ogy for debug software development and validation 
is a challenging area of research.

Test generation and testing setup design
The central component of silicon debug is the 

set of tests to run. For the validation to be effective, 
the tests must expose potential vulnerabilities of the 
design, and exercise different corner cases and con-
figurations. Post-silicon tests can be divided into the 
following two categories.

Focused (directed) tests: These are tests carefully 
crafted by expert test writers to target specific fea-
tures of the system (e.g., multiprocessor and chipset 
protocols, CPU checks for specific register config-
urations, address decoding, power management 
features). Developing such tests involves signifi-
cant manual effort. Furthermore, the tests are often 
extremely long and targeted, running for several 
hours on silicon.

Random and constrained-random tests: In addition to 
focused tests, one exercises system features through 
random and constrained-random testing. Examples 
of such tests include executing a random sequence 
of system instructions, exercising concurrent inter-
leavings, etc. The goal of these tests is to exercise 
the system in ways not conceived by humans, e.g., 
random instruction tests can include hundreds of 
millions of random seeds generating instruction 
sequences.

In addition to the tests themselves, their appli-
cation requires development of specialized periph-
erals, boards, and test cards. This is specifically 
pertinent for compatibility validation where the 
system needs to be exercised for a large number of 
peripheral devices, software versions, and platform 
features. The  “Test generation” section test genera-
tion steps in detail.

Toward standardization of validation  
Infrastructure

As is evident from the above discussions, post-sil-
icon readiness is a complex and hard problem. To 
facilitate this, there have been efforts across the 
industry to standardize the debug and observabil-
ity architectures. Two such standardizations are the 
ARM Coresight and Intel Platform Analysis Tool. 
Both these architectures include a set of hardware 
IPs (e.g., for collecting, synchronizing, and times-
tamping signal traces and other observability col-
lateral from different design blocks, routing them to 
output ports and system memory), and software APIs 
for configuration, triggering, transport, and analysis. 
The specifics of the architectures vary. Coresight 
architecture [26] is instantiated into Macrocells 
that can interact with the IP functionality through a 
standard interface. Platform Analysis Tool includes 
a specialized IP called Trace Hub [27] responsible 
for aggregation and transport of both hardware and 
software traces, together with APIs that enable direct 
interaction with this IP for transport and analysis.

While such standardization assists in stream-
lining post-silicon readiness development, it must 
be emphasized that the current state of the art in 
standardization is rather rudimentary. For instance, 
the software tools to extract trace data for both the 
architectures above are typically APIs for accessing 
different internal design collateral; little assistance 
is provided to identify the specific collateral that 
would be useful or profitable for debug purposes. It 
is left to the expertise of the human designer and val-
idator to “hook up” the APIs with the hardware and 
software content in the target design for achieving 
validation objectives.

Trace signal selection
In this section, we delve slightly deeper into one 

aspect of post-silicon planning, viz., trace signal 
selection. As discussed in the “Planning for post- 
silicon readiness” section, trace signals are used to 
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address the observability limitation during post-sili-
con debug. The basic idea is to trace a set of signals 
during run time and store in a trace buffer such that 
the traced values can be used during post-silicon 
debug. It is important to note that since I/O speed 
(using JTAG, for example) is significantly slower 
than the speed of execution (e.g., MHz versus GHz), 
it is not possible to dump the traced values through 
I/O ports during execution. Therefore, internal trace 
buffer is required. Trace signal selection needs to 
maintain various design constraints. For example, the 
trace buffer size directly translates to area and power 
overhead. Moreover, routing the selected signals to 
the trace buffer may face congestion and other lay-
out-related issues. As a result, in a design with millions 
of signals, a typical trace buffer traces a few hundred 
signals for a few thousand cycles. For example, a 128 
x 2048 trace buffer can store 128 signals over 2048 
clock cycles. Design overhead considerations directly 
impose two constraints— how to select a small num-
ber of trace signals that can maximize the observabil-
ity, and how to effectively utilize traced values for a 
small number of cycles to enable meaningful debug.

In post-silicon debug, unknown signal states 
can be reconstructed from the traced states in 
two ways—forward and backward restoration. 
For example, if one of the inputs of an and gate 
is selected as a trace signal and the traced value 
 is ‘0’, we can definitely infer through forward res-
toration that the output of that and gate should be  
‘0’ in that clock cycle. Similarly, if we know the output 
of an and gate to be ‘1’ in a specific clock cycle, we 
can infer using backward restoration that the inputs of 
that and should be all ‘1’s. Of course, in many scenar-
ios, we need to know the values of multiple signals to 
be able to restore the values of untraced signals.

One metric used frequently to measure quality 
of selected trace signals is the state restoration ratio 
(SRR), which is based directly on 
the idea of reconstructing values of 
untraced signals from traced ones. To 
understand SRR, consider the circuit 
shown in Figure 5. The example cir-
cuit has eight flip-flops. Let us assume 
that the trace buffer width is 2, that is, 
states of two signals can be traced. 
The approaches of [29] and [30] will 
select C and F as trace signals. Table I 
shows the restoration of other sig-
nals using the traced values of C and  

F (shaded rows in the table). For example, if we 
know C is ‘0’ at clock cycle 3, we can infer that 
both A and B were ‘0’ in the previous cycle (clock  
cycle 2). Since we know now that A is ‘0’ at clock 
cycle 2, D should be ‘0’ in the next cycle (clock 
cycle 3). This process of forward and backward 
restoration is continued until no new values can be 
restored. The ‘X’s represent those states that cannot 
be determined. The SRR is then defined as

  RR =   # of states restored +  # of traced states   __________________________   
number of traced states

    (1)

In this example, we have traced 10 states (two sig-
nals for five cycles) and we are able to restore an  
additional 16 states. Therefore, the restoration ratio is 
(16 + 10) ÷ 10 = 2.6.

SRR-based signal selection techniques can be 
broadly divided into three categories. The signal 
selection techniques in the first category performs 
structural analysis of the design and selects the ben-
eficial signals based on their likelihood in restor-
ing the unknown (untraced) signals [28]–[31]. 
These approaches are very fast but they sacrifice 
the restorability. On the other hand, the simula-
tion-based signal selection techniques [32] utilize 
the deterministic nature of the signals in identify-
ing the most profitable trace signals. This approach 
provides superior restoration quality but incurs pro-
hibitive computation overhead. The third category 
of techniques tries to combine the advantages of 
both approaches utilizing hybrid [33], ILP [34], and 
machine learning [35], [36] techniques. There are 
also various approaches that try to take advantage 
of both trace and scan signals to improve post-sili-
con observability [37], [38].

We should point out that while SRR is widely 
used today as a research vehicle in evaluating trace 
signal quality, we are not aware of any industrial 
report on application of SRR. This is due to a variety 

Figure 5. An example circuit with 8 flip-flops [28].
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of reasons. For instance, SRR does not account 
for design functionality in signal evaluation. Note 
that the same IP may be used in different use 
cases, and the validation requirement (and conse-
quently, the corresponding observability) depends 
on the deployment target. Furthermore, SRR does 
not account for architectural and physical con-
straints that may preclude some signals from being 
selected, nor does it account for the fact that there is 
a significant amount of other DfD components that 
may be used in conjunction with tracing to facilitate 
observability.

To address the above challenges with SRR, other 
approaches have been proposed. In particular, there 
are approaches involving insertion of faults in the 
design and identifying signals best for identifying such 
faults [39]. Other approaches take a more functional 
view of the design, and attempt to identify signals best 
for a specific functionality. For example, in recent 
work, a version of the Google Pagerank algorithm was 
used for signal selection and showed a more promis-
ing coverage of design assertions [40]. Nevertheless, 
much research remains to be done to make signal 
selection more disciplined and systematic.

Test generation
Post-silicon validation is one stage of the com-

plete verification cycle, which starts with pre-silicon 
verification. However, both pre- and post-silicon 
verification cannot achieve their goals on their 
own; pre-silicon, in terms of finding all the bugs 
before tape-out, and post-silicon, in terms of finding 
the bugs that escaped pre-silicon. This creates an 
increasing need to bridge the gap between these 
two domains by sharing methodologies and tech-
nologies and building a bridge allowing easier inte-
gration between the domains. The need for strong 
connection between pre- and post-silicon is 
particularly evident in test generation, where 
post-silicon tests must be generated by making 
use of pre-silicon collateral and the generation 
procedure often span across the two phases.

Pre-silicon stimuli generation
A pre-silicon stimuli generator has to pro-

vide the user with the ability to specify the 
desired scenarios in some convenient way, 
and produce many valid high-quality test 
cases according to the user’s specification. 
These scenario specifications—termed test 

templates—are written in a language that should 
enable an easy and accurate way for specifying the 
scenarios from the verification plan. Figure 6 shows 
an example of a test template that defines a table-
walk scenario (on the left) and an example of a test 
generated from this template (on the right). The test 
template is written in the test-template language of 
Genesys-Pro [41]—IBM’s well-established test gener-
ation tool for the functional verification of proces-
sors using a software simulator platform. The rest of 
this section describes Genesys-Pro’s approach to test 
generation.

The scenario of Figure 6 starts with a Store and 
then a sequence of Loads each followed by a either 
an Add or a Sub instruction. The memory locations 
accessed by the Load instructions are contiguous 
in memory as seen in the “Resource initial values” 
 section of the test (addresses 0x100-0x1F0). This is 
managed by a test-template variable addr.

The use of test templates thus separates the test-tem-
plate writing activity from the generator’s development 
activity. The language consists of four types of state-
ments: basic instruction statements, sequencing-con-
trol statements, standard programming constructs, and 
constraint statements. Users combine these statements 

 
Table 1 Restored signals from traced ones across five cycles.

Figure 6. Test template and corresponding test.
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to compose complex test templates that 
capture the essence of the targeted scenar-
ios, leaving out unnecessary details. This 
allows directing the generator to a specific 
area, be it a small or a large one.

The generated test cases must be valid 
according to the processor’s architecture, 
and satisfy the user’s request specified in 
the template. In addition, they should also 
be different from each other as much as 
possible. This is done by specifying the 
rules determining the validity of a test 
case, as well as the user requests as con-
straints. The generator, then, produces a 
test case by random sampling of the solu-
tion space to the resulting constraints sat-
isfaction problem [42].

The distribution of the generated tests should 
not be uniform, as verification engineers would like 
to favor tests that include interesting verification 
events (e.g., register dependency, memory colli-
sions), especially ones that are extremely unlikely 
to occur under uniform distribution. This is done by 
having knowledge embedded in the generator, allow-
ing it to bias random decisions toward stimuli that 
causes interesting events [42]. This testing knowledge 
defines the interesting verification events, including 
the stimuli that trigger them. As the stimuli for some 
interesting events depend on the processor’s state, 
the generator also employs a reference model of the 
DUV, simulating on it for every generated instruction. 
This way the generator maintains an accurate view of 
all the architectural resources, taking it into account 
during generation of interesting events. This scheme 
is shown in the lower part of Figure 7.

Genesys-Pro has been in use by IBM for over 
15 years. It has proven to be effective in meeting the 
users’ requirements, enabling them to write test tem-
plates implementing the core verification plans of 
IBM’s complex processors [43].

A unified verification methodology
To better integrate post-silicon validation to 

the overall verification process and improve its  
synergy with pre-silicon verification, a unified ver-
ification methodology is needed that is fed from 
the same verification plan source. A key ingredient 
for the success of such methodology is providing 
common languages for the pre- and post-silicon 
aspects of it in terms of test specification, progress 

measure, etc. Figure 8 depicts such a methodology.  
This verification methodology leverages three differ-
ent platforms: simulation, acceleration, and silicon. 
The methodology requires three major components: a 
verification plan, directable stimuli generators suited 
to each platform, and functional coverage models. 
Note that important aspects in any verification meth-
odology, such as checking, are omitted from the  
figure to maintain focus on stimuli generation.

The verification plan includes a long list of line 
items, each targeting a feature in the DUV that 
needs to be verified. Each such feature is associ-
ated with coverage events that the verification team 
expects to observe during the verification process 
and the methods to be used to verify the feature. 
The verification plan is implemented using random 
stimuli generators that produce a large number 
of test cases, and coverage tools that look for the 
occurrence of events in the verification plan. The 
random stimuli generators are directed toward the 
verification goals by using test templates. The test 
templates allow the generators to focus on areas 
in the DUV ranging from large generic areas, like 

Figure 7. Threadmill versus Genesys-Pro tool flows.

Figure 8. A unified verification methodology.
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the floating-point unit, to very specific areas, like 
a bypass between stages of the pipeline. Coverage 
analysis identifies gaps in the implementation of the 
plan. Its feedback is used to modify test templates 
that do not fulfill their goals, and create new ones.

This methodology is extended to post-silicon 
validation by leveraging the acceleration platform 
to measure coverage of post-silicon tools. To take 
advantage of the coverage information collected by 
the accelerators and use it in the post-silicon, shortly 
before first silicon samples come back from the fab, 
a regression suite of exerciser test templates is cre-
ated based on the coverage achieved on the accel-
erators. This regression suite is then used to continue 
the verification process on the silicon platform.

With the unified methodology, each of the line 
items in the verification plan is attached to one or 
more target platforms on which it will be verified. 
These line items are converted to test templates 
in the languages of the generation tools used by 
each platform. A key ingredient for the success of 
the unified methodology is similar operation of the 
stimuli generators. In this sense, designers would 
like the generators to use the same test-template 
language, and when provided with the same test 
template, one would like the tools to produce simi-
lar (though not identical) test cases. Of course, the 
different platforms provide different opportunities 
and put different constraints and requirements on 
the generation tools, but whenever possible, there 
are advantages to having similar tools. First, the pre- 
and post-silicon teams can share the task of under-
standing the line-items in the verification plan and 
planning ways to test them. In addition, the com-
mon language allows for easier adaptation of test 
templates from one platform to another. For exam-
ple, when a bug is detected on the silicon platform, 
narrowing down the test template and hitting it on 
the simulation platform eases the root-cause analy-
sis effort.

It is important to note that the differences 
between platforms also dictate differences in the 
way test templates are written for pre- and post-sil-
icon tools. A test template could be very specific 
and describe a small set of targeted tests or it could 
be more general leaving more room for randomiza-
tion. The validation engineer writing test templates 
for a post-silicon exerciser must bear in mind the 
fact that the test template is used to generate a huge 
number of test cases and get many processor cycles. 

To effectively use these test cycles, the test template 
must allow for enough interesting variation. A test 
template that is too specific will quickly “run out of 
steam” on silicon and start repeating similar tests. A 
pre-silicon test template on the other hand would 
typically be more directed to ensure that the tar-
geted scenarios are reached within the fewer cycles 
available on simulation. There are also many efforts 
in automated generation of directed tests using for-
mal methods [44]–[48].

Threadmill
Threadmill was developed in IBM for the purpose 

of enabling the unified methodology described in 
the previous subsection; namely, to support a verifi-
cation process guided by a verification plan by ena-
bling the validation engineers to guide the exerciser 
through test templates. The high-level tool architec-
ture of Threadmill is depicted in Figure 7, along with 
the flow of Genesys-Pro [49]—the pre-silicon test 
generator tool described in the “Pre-silicon stimuli 
generation” section.

Like Genesys-Pro, the main input to Threadmill is 
a test template that specifies the desired scenarios. 
As described earlier, the templates used for pre- and 
post-silicon tests have different characteristics. The 
test-template language of Threadmill is very similar 
to the language of Genesys-Pro, but to adhere to the 
simplicity and generation of speed requirements, 
several constructs that require long generation time, 
such as events, are not included in Threadmill’s lan-
guage. Other inputs to Threadmill are the architec-
tural model and testing knowledge and the system 
topology. Again, for simplicity reasons, many testing 
knowledge items that are included in Genesys-Pro 
models are not used by Threadmill.

The Threadmill execution process starts with 
a builder application that runs offline to create an 
executable exerciser image. The role of the builder is 
to convert the data incorporated in the test template 
and the architectural model into data structures that 
are then embedded into the exerciser image. This 
scheme eliminates the need to access files or data-
bases while the exerciser is running.

The exerciser image is composed of three major 
components: a thin, OS-like, layer of basic services 
required for Threadmill’s bare-metal execution; a 
representation of the test template, architectural 
model, and system configuration description as 
simple data structures; and fixed (test-template 
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independent) code that is responsible for exercis-
ing. The executable image created by the builder 
is then loaded onto the silicon platform where the 
exerciser indefinitely repeats the process of gener-
ating a random test case based on the test template, 
the configuration and the architectural model, exe-
cuting it, and checking its results.

In the case of Genesys-Pro, the test generation 
process is carried outside of the simulation envi-
ronment (say on a dedicated server) and only the 
generated tests are loaded and run on the simulation 
platform. Simulation cycles would be too slow to 
allow generation on simulation. The “offline” gener-
ation on the other hand can afford to spend time on 
sophisticated generation and checking—for exam-
ple by using a reference-model as shown in Figure 7 
for Genesys-Pro. Threadmill’s test generation compo-
nent was designed to be simple and fast. Therefore, 
IBM designers opted for a static test generator that 
does not make use of a reference model. Reference 
models provide the generator information about the 
state of the processor before and after the genera-
tion of each instruction. This information is used for 
checking but also to create more interesting events. 
Reloading resources, such as registers, can be a par-
tial replacement to the reference model, but this 
solution potentially interferes with the generation of 
the requested scenarios. For data-oriented events, 
such as divide-by-zero, a simple yet effective solution 
is to reserve registers to hold interesting values. Of 
course, the generator has to ensure that the reserved 
registers are not modified during the test.

Execution of the same test case multiple times is 
used as a partial replacement for checking done by 
the reference model. This is done by comparison of 
certain resource values such as registers and part of 
the memory for consistency in different executions 
of the test case. Running the same test case multiple 
times may result in different results even when bugs 
are not present. For example, when several threads 
write to the same memory location, the final value at 
this location depends on the order of the write oper-
ations. This requires that certain mechanisms be 
implemented in the generator to restrict the number 
of unpredictable resources. Although the multipass 
comparison checking technique is limited, it has 
proven to be effective when control-path oriented 
bugs, or bugs that reside in the intersection of the 
control and data paths, are concerned. To increase 
the probability of exposing such bugs, it is beneficial 

to introduce some kind of variability into the differ-
ent execution passes, while making sure that the var-
iability maintains the predictability of the compared 
resources. This can be done, for example, by chang-
ing the machine mode, or changing thread priorities.

Tests targeting errors
We now turn to the question: how can we ensure 

that a test excites a bug and propagates it to a failure 
within a reasonable time? In this subsection, we con-
sider the question from the perspective of test gener-
ation; in the next subsection the same question will 
be considered from the perspective of observability 
constraints.

Traditionally, post-silicon tests have sported a long 
latency between when a bug is excited and when its 
effect is observed as a failure. For instance, consider 
a memory write to some address that writes an incor-
rect value. The effect of this bug may not be observed 
unless the value written is subsequently read (maybe 
several thousands of cycles later) and the error result-
ing from this read propagated to cause some observ-
able effects. Clearly, it is important to reduce the 
latency of error observability, from the point in which 
the bug is triggered to an observable effect.

There has been significant research in develop-
ing effective post-silicon tests. In particular, a general 
technique called quick error detection (QED) spe-
cifically focuses on reducing the latency mentioned 
above [50], [51]. The idea is to transform a test into 
another one with lower latency between bug excita-
tion and failure. For instance, for the memory read 
example above, a QED test would transform the orig-
inal test by introducing a memory read immediately 
after each memory write; thus, an error introduced 
by the write would be excited immediately by the 
corresponding read. Note that doing this in general 
requires a comprehensive characterization of errors 
in terms of a cause–effect relationship. QED manages 
it by defining this relationship for errors in a num-
ber of categories. By capturing a diversity of error 
characterizations, it has managed to be successfully 
adapted for a diversity of post-silicon tests, including 
those for functional as well as electrical errors.

Observability-aware test generation
Observability constraints make it difficult to diag-

nose bugs. In fact, it is also difficult to figure out if a 
test has executed as expected, if the result of that test 
execution activates a signal that is not observable. 
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Therefore, it is crucial that the post-silicon tests are 
observable directly (if it activates one of the trace sig-
nals) or indirectly (values of the activated signal can 
be restored using the trace signals). Unfortunately, it 
would be hard to generate observability-aware tests 
for various reasons. First, the post-silicon test genera-
tion and trace signal selection are typically performed 
concurrently by different teams during an industrial 
SoC development. Moreover, it is difficult to per-
form automated generation of observability-aware 
directed tests after the observability architecture has 
been defined. This is due to the fact that such a test 
generation approach would require analysis of com-
plex and potentially buggy RTL models. Industrial 
RTL models consist of millions of lines of code, and 
therefore, automated formal analysis of such mod-
els exceeds the capacity limitations of directed test 
generation tools. Even if such an analysis was possi-
ble, the generated test would not be useful if the RTL 
models contains functional or design errors—an erro-
neous model can at best lead to generation of buggy 
tests, which is unlikely to activate the design flaws. 
Even if it activates a specific scenario, the accuracy 
of such a validation method becomes questionable.

Recent research efforts [52] provide an alternative 
mechanism to generate observability-aware post-sil-
icon tests using golden pre-silicon models. The test 
generation is performed by analyzing golden 
transaction-level models (TLM) instead of 
buggy RTL models. Analysis of TLM model 
also takes care of the scalability issue since 
a TLM model is significantly simpler than the 
respective RTL model. Clearly, this approach 
requires a golden TLM model. This work also 
assumes that both TLM and RTL models have 
the same input/output interfaces at both SoC 
and individual component levels. This is rea-
sonable for SoC design since it consists of 
hardware or software intellectual property 
(IP) blocks with well-defined interfaces.

Figure 9 provides an overview of observ-
ability-aware test generation for a given 
RTL assertion. This approach involves four 
important steps: 

1)  defining test targets with observability 
constraints; 

2) mapping test targets from RTL to TLM; 
3) test generation using TLM model; 
4) translating TLM tests to RTL tests. 

This work essentially incorporates observability 
constraints into an RTL assertion to create a new RTL 
assertion. The modified assertion is then mapped to 
a TLM property. The TLM property is used to auto-
matically construct a TLM test. The last step is to con-
vert the generated TLM test to an RTL test [53]. The 
generated RTL test is observability-friendly, since it 
would not only activate the assertion but also propa-
gate its effects to the observability architecture (e.g., 
trace signals).

Post-silicon validation of IBM POWER8
In this section, we provide a high-level overview 

of the post-silicon methodology and technologies 
put into use for functional validation of POWER8. 
We describe various factors that contributed to this 
successful bring-up. A detailed discussion on the 
functional verification of POWER8 and its bring-up 
can be found in [54] and [55].

The POWER8 Chip
POWER8 is the latest IBM chip in the POWER 

series. Designed for high-end enterprise-class serv-
ers, it is one of the most complex processors ever 
created. The POWER8 chip is fabricated with IBM’s 
22 nm silicon-on-insulator technology using copper 

Figure 9. Observability-aware test generation consists of four 
important steps: construct RTL assertion with observability 
constraints, map RTL assertion to TLM, generate TLM test, 
and translate TLM to RTL test.
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interconnects and 15 layers of metal. The chip is  
650 mm2 and contains over 5 billion transistors.

Figure 10 depicts a high-level block diagram of 
the POWER8 processor chip. Each processor chip 
has 12 cores. Each core is capable of 8-way simul-
taneous-multithreading (SMT) operation, and 
can issue up to 10 instructions every cycle. The 
memory hierarchy includes a per-core L1 cache, 
a per-core SRAM-based 512KB L2 cache, and an 
eDRAM-based shared L3 cache. In addition, an off-
chip eDRAM L4 cache per memory buffer chip is 
supported. There are two memory controllers on 
the chip supporting a sustained bandwidth of up 
to 230 GB/s. The chip also holds a set of hardware 
accelerators, including a cryptographic accelera-
tor and a memory compress/decompress mech-
anism. Finally, the chip includes a PCIe adapter 
and bridge to a bus supporting a coherent con-
nection to an FPGA. The FPGA is directly acces-
sible to user applications through a hashed table 
translation.

Preparing for the lab
The bring-up work of POWER8 started way before 

silicon samples were ready. The team responsible 
for preparing the tools and tests for the lab began its 
work as soon as the key features of POWER8 were 
determined at the high-level design (HLD) stage. The 
first step in that work was to ensure that the post-sil-
icon tool teams better understand the new features 
they need to support and the design team under-
stand the validation requirements and incorporate 
them into the design.

When sufficient functional stability was achieved, 
the pre-silicon verification team, together with the 
exerciser team, started running exerciser shifts on 
Awan simulation acceleration platform [56]. This 
phase, termed exercisers on accelerator (EoA), 
achieved several goals. First, it ensured the quality 
of the exercisers software. In addition, it helped the 
pre-silicon verification of POWER8. In fact, EoA was 
responsible for finding about 1 percent of the total 
bugs found in pre-silicon verification. Finally, EoA 
was used to develop and test the shifts that were later 
used during the actual bring-up.

To that extent, an important aspect of the EoA 
work was the synthesis of coverage monitors syn-
thesized into the DUT model. These coverage mon-
itors were added to the logic model running on the 
accelerator, but not to the silicon itself, because of 

area, timing, and power issues. Leveraging acceler-
ation-synthesized coverage monitors allowed the 
use of a pre-silicon-like coverage-driven method-
ology for post-silicon test development [57]. With 
this approach, the exerciser shift developers could 
validate that a specific shift covers the targeted func-
tionality. This is done by observing that the related 
coverage events are hit when the exerciser shift is 
run on the accelerator. The acceleration-synthesized 
coverage monitors played a major role in selecting 
which shifts to run during bring-up to best utilize the 
scarce silicon resources. There are also recent efforts 
in post-silicon coverage analysis without using syn-
thesized coverage monitors [58]. A different use of 
accelerators during the bring-up preparation was to 
prepare the different procedures and tools for the 
lab team. This included the validation of the differ-
ent steps required to boot the system (virtual pow-
er-on, or VPO), track the execution of an exerciser 
as it runs, and dump and format debug data from the 
embedded trace arrays.

Triggering bus—Stimuli generation
Bare-metal exercisers (an example of which is 

described in the “Threadmill” section) were the pri-
mary vehicle for test-case generation in the POWER8 
post-silicon validation. The characteristics of the 
post-silicon platforms create challenges and impose 
tradeoffs that affect the design of these exercisers. 
While post-silicon platforms offer a huge number of 
execution cycles, their low availability and high cost 
calls for maximizing the time spent executing test 
cases and minimizing overhead. Accordingly, the 
exerciser team developed a set of exercisers, each 

Figure 10. The POWER8 processor chip.
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capturing a different tradeoff between generation 
complexity and checking capabilities. Bare-metal 
exercisers possess a list of attributes that make them 
highly suitable for post-silicon validation. Bare-metal 
exercisers are inherently “self-contained,” meaning 
that once the exerciser shift is loaded onto the plat-
form, be it an accelerator or a silicon one, it can run 
“forever” with no interaction with the environment. 
This significantly reduces the overhead related to 
initializing the platform, loading the exerciser, and 
so on.

Overall, during the POWER8 pre-and post-sili-
con development process, the bare-metal exercisers 
approach proved highly successful, as in the case of 
other previous processors. This approach is key in 
IBM’s post-silicon validation strategy. In fact, bugs that 
were found with OS-based tests or actual software are 
considered escapes from our validation strategy.

In addition to bare-metal exercisers, IBM design-
ers leveraged a set of hardware irritators embedded 
in the design. A hardware irritator is a piece of logic 
embedded in the design that can trigger microarchi-
tectural events at random. The irritators are initial-
ized during the processor’s power-on sequence, and 
randomly inject events as the processor executes 
instructions. For example, an irritator can be used 
to flush the pipeline at random, without having the 
executed instruction stream create the conditions 
required for this event.

Irritators are extremely useful in bringing the 
DUT to some “tough” corners, without creating 
the stimuli needed to actually reach these corners. 
Furthermore, irritators can mimic large system 
behavior. For example, in a single chip system, an 
irritator can inject a random translation lookaside 
buffer (TLB) invalidate-entry event as if it were com-
ing from a different chip.

Different components in the POWER8 chip sup-
port nonfunctional running modes, introduced for 
the sake of validation. These modes further assisted 
the bring-up team in stressing the design. For exam-
ple, the POWER8 L2 cache supports a mode in which 
almost every access would trigger a cast-out. By set-
ting the processor to this state, one could aggravate 
the stress on the L3 cache.

Since hardware irritators and nonfunctional 
modes are embedded in the design, and, accord-
ingly, have an overhead in terms of area and power, 
they must be carefully thought of and designed as a 
part of the processor.

Checking
POWER8 employed two main checking tech-

niques in its post-silicon validation: checkers embed-
ded in the hardware and software checkers that are 
part of the bare-metal exercisers. Hardware-based 
checkers were designed and embedded into the 
POWER8 processor. These checkers cover some 
generic erroneous behavior such as access out 
of memory, and a timer- based hang checkers for 
instruction completion.

During the POWER8 post-silicon validation, it was 
easier to debug failures triggered by hardware-based 
checkers. This was because when a failure was 
triggered by such a checker, the DUT was stopped 
fairly close to the origin of the bug. Accordingly, the 
debug logic, once configured to trace the relevant 
component in the design, typically contained valu-
able hints as to the origin of the bug. Furthermore, 
some checkers provide an initial indication when 
they fire. For example, when the access out of mem-
ory checker fires, the transaction that triggered it is 
captured in the bus’ debug logic and points to the 
hardware thread and address that triggered the fail.

Despite their effectiveness, the use of hard-
ware-based checkers is limited due to their high cost 
in terms of area and power, and their effect on tim-
ing. Therefore, software-based checkers were also 
heavily used for failure detection in the POWER8 
post-silicon validation.

Bare-metal exercisers employ a checking tech-
nique called multipass consistency checking [59]. 
In this technique, every test case is executed sev-
eral times (passes). The first pass is referred to as a 
reference pass, and the values of certain resources, 
such as architected registers and some memory, are 
saved at the end of the execution of this pass. After 
following passes, the exerciser compares the end-of-
pass values with those of the reference pass. In case 
an inconsistency is detected, the error is reported 
and the execution is stopped. The multipass con-
sistency checking technique imposes restrictions on 
test generation. For example, write–write collisions 
between different threads to the same memory loca-
tion, where the order of thread accesses cannot be 
determined may yield inconsistent results and are 
therefore not supported.

Multipass consistency failures were very hard to 
debug. This occurred primarily because the check-
ing flags the error millions, and sometimes billions, 
of cycles after the error first occurred.
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Despite the restrictions and the difficulty in 
debugging such failures, multipass consistency 
checking has proven useful in finding some of the 
toughest functional bugs in POWER8.

In addition to multipass consistency checking, 
exerciser developers introduced self-checking state-
ments into some of the scenarios. Such checks were 
only applicable in directed scenarios and required 
manual labor, but were useful in better localizing 
the fail, preventing errors from being masked, and 
extending the attributes checked for such scenarios.

Debug
As discussed in the “Silicon validation challenges” 

section, post-silicon debug is a major challenge. 
Even with the best practices used in the IBM post-sili-
con lab during the validation of the POWER8 proces-
sor, debugging of failures found in the lab was a long 
and tedious process.

When a test case failed in the lab, the first step 
in its debug is to determine the cause of the failure. 
The origin of the failure could be one of numerous 
reasons, including a manufacturing issue, erroneous 
machine setup, an electrical bug, a functional bug, 
or a software bug in the exerciser. This is done by 
rerunning the failing tests in similar but not identical 
settings. For example, manufacturing problems can 
be detected by repeating the same test on a differ-
ent core or chip and watch the test passing. Next, 
additional experiments were conducted with a goal 
to determine key aspects in the hardware configu-
ration that were required to hit the failure. Such 
experiments can be done by changing the hardware 
setup, e.g., disabling some of the processor cores, or 
modifying the number of active hardware threads in 
the core.

Another approach to debugging failures was to 
reproduce them on the acceleration platform. This 
approach relied heavily on the use of tools, specifi-
cally, bare-metal exercisers, that can effectively run 
on both the hardware and an accelerator. Because 
the hardware platform is over six orders of magni-
tude faster than the acceleration platform, a failing 
shift could not be migrated from silicon to accelera-
tion as-is. Typically, a set of experiments is required 
to fine-tune the exerciser shift in order to make it 
hit the failure on silicon fast enough to enable rec-
reation on acceleration. With the enhanced observ-
ability capabilities of the acceleration platform, 
recreating a bug was sufficient in order to provide 

the logic designer all the data required to determine 
the root cause of the bug.

Finally, if neither of the approaches described 
above succeeded, the lab team had to drive the 
debug process based only on the data available from 
the on-chip trace arrays. The POWER8 debug logic, 
which is similar to that described by Riley et al. [60], 
has three key attributes that enable effective debug. 
First, the trace array can be configured, as a part of 
the hardware’s initialization, to track different parts 
of the design. Second, the debug logic can be config-
ured to trace compound events. Finally, the events 
on which the trace arrays store their input can also 
be configured. Therefore, instead of saving inputs at 
every clock cycle, the trace arrays can be configured 
to latch data only when some event is detected. This 
enabled noncontinuous tracing of events, which 
has proven useful in some hard debug cases. As pre-
sented in the “Trace signal selection” section, select-
ing which signals can be traced is an important part 
of the work done as part of the preparation to the 
bring-up. Selecting which signals to actually trace 
and when to trigger tracing is a challenge the lab 
team needs to handle.

To that extent, a key feature facilitating effective 
post-silicon debug in POWER8 is the existence of 
the cycle reproducible environment. This environ-
ment is a special hardware mode in which execut-
ing the same exerciser shift would reproduce the 
exact same results. Leveraging this mode, the team 
could rerun the same exerciser shift repeatedly with 
different trace array configurations in different runs, 
e.g., by terminating the trace at different cycle count 
[60]. This option, combined with BackSpace [8], 
was used to aggregate data from multiple runs for 
longer traces that significantly improved the ability 
for efficient debug.

Results
The POWER8 bring-up is considered as a very 

successful one. The team was able to keep a bug 
discovery and resolution rate equal to or better than 
previous POWER processor bring-up efforts, with sig-
nificantly less resources.

The results of the POWER8 bring-up are partly 
depicted by Figure 11 and Table II. Every point in 
the figure accounts for one bug. The location of the 
point on the x-axis, termed detect time, relates to the 
number of days from the beginning of bring-up to 
the day the bug was first hit. A point’s location on 
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the y-axis, termed debug time, relates to the number 
of days from the time the bug was first hit to the time 
its root cause was determined. Table 2 summarizes 
the data presented in Figure 11. The table shows, per 
bug severity, the average and 90 percentile of debug 
time. For example, medium severity bugs required, 
on average, 10.07 days to root cause, and 90% of all 
medium severity bugs required 20, or less, days to 
root cause. Overall, about 1% of all POWER8 bugs 
were found in the post-silicon validation phase.

The bugs are divided into three classes, based 
on their severity. The severity of the bug was deter-
mined based on a combination of the impact of 
the bug on the functional behavior of the system, 
the performance cost of working around the bug 
(if that was possible), and the complexity of the fix. 
The severity of a bug could only be determined after 
its root cause was found and a fix was suggested. 
Figure 11 shows that the debug time for high severity 
bugs is significantly lower, on average, than that of 
other classes of bugs. This indicates that the lab team 
effectively speculated the severity of each bug at a 

very early stage. This is attributed to the expertise of 
the lab team members; based on the limited data 
available, they were able to infer the real nature of 
the bug and its expected severity when the bug was 
first detected.

Figure 11 also shows how the rigorous prepara-
tions for the bring-up paid off. Half of all POWER8 
post-silicon bugs were found in the first three months 
of the bring-up. This is considered a very good result, 
since during the first two months of the bring-up the 
team had to dedicate a lot of time to overcoming 
hardware stability issues and to “screen” the manu-
factured chips for good functioning ones.

We have provided an overview of post-silicon 
validation and debug for heterogeneous SoCs. We 
have described various challenges in performing 
post-silicon validation. We also surveyed exist-
ing approaches to address these challenges. The 
importance of post-silicon validation has increased 
steadily over the years—many studies suggest up to 
50% overall cost (time) for post-silicon validation. 
Considering the dramatic increase in the num-
ber of IoT devices in a wide variety of domains, 
post-silicon validation of SoC designs is expected 
to remain in the limelight for a long time. Although 
this paper covered a wide variety of topics related 
to post-silicon validation and debug, the materi-
als discussed here form only the tip of the iceberg 
of this large and exciting domain. Nevertheless, 
we hope this paper provides a starting point for 
researchers in understanding the industrial prac-
tice and research challenges in this area. There 
is a significant scope for pushing the research  
envelope above and beyond the current limits,  
and it is crucial that we do so to enable develop-
ment of cost-effective, reliable, and secure com-
puting  systems. 
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Table 2 Statistics of days to root cause.

Average 90%
Low 9.92 22

Medium 10.07 20
High 5.96 12

Figure 11. POWER8 bring-up results.
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