
68 2168-2356/17 © 2017 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Tutorial

Post-Silicon Validation in
the SoC Era: A Tutorial
Introduction

Digital Object Identifier 10.1109/MDAT.2017.2691348

Date of publication: 5 April 2017; date of current version:

4 May 2017.

Prabhat Mishra
University of Florida

 Computing deviCes pervade our everyday
life. In addition to traditional desktops and lap-
tops, we have in the past decade already seen the
emergence and ubiquity of handheld devices such
as smartphones and tablets. Today, we are in the
midst of a further explosive proliferation of com-
puting fueled by the Internet of things (IOT) [1],
where computing devices equipped with sensors,
integrated electronics, and sophisticated software
are attached to physical objects of “things” to make
them smart and adaptable to their environment. For
instance, highly complex computing systems are
now attached to wearables (e.g., watches, fitness
trackers, ear buds), household items (e.g., ceiling
fans, light bulbs, refrigerators), and automobiles, all

connected to the Internet and coordi-
nating and communicating to provide
smart, immersive, and transformative
user experiences. We anticipate an
estimated 50 billion smart, connected
computing devices by 2020 from a
“mere” 500 million in 2003 [2], with
estimates of trillions within the next
decade, representing the fastest growth
for any sector in our entire history.

Modern embedded computing
devices are generally architected

through a system-on-chip (SoC) design paradigm.
An SoC architecture includes a number of prede-
signed hardware blocks (potentially augmented
with firmware and software as well) of well-defined
functionality, often referred to as “intellectual prop-
erties” or “IPs.” These IPs communicate and coor-
dinate with each other through a communication
fabric or network-on-chip (NoC). Figure 1 shows the
major IPs in a typical SoC design. The idea of SoC
design is to quickly configure these predesigned IPs
for the target use cases of the device and connect
them through standardized communication inter-
faces, enabling rapid design turnaround time for
new applications and market segments.

Given the diversity of critical applications of com-
puting devices in the new era, as well as the complex-
ity of the devices itself, their validation is clearly a
crucial and challenging problem. Validation includes
a host of tasks, including functional correctness,

Ronny Morad and Avi Ziv
IBM

Editor’s note:
Post-silicon validation is a complex and critical component of a modern
system-on-chip (SoC) design verification. It includes a large number of
inter-related activities each with its own nuance and subtleties, requires
extensive planning, and spans the entire system design lifecycle. This
article provides a comprehensive high-level overview of the various facets
of post-silicon validation, and includes industrial case studies illustrating
their real-life application.

—Swarup Bhunia, University of Florida

Sandip Ray
NXP Semiconductors

69May/June 2017

adherence to power and performance constraints
for the target use cases, tolerance for electrical noise
margins, security assurance, and robustness against
physical stress or thermal glitches in the environment.
Validation is widely acknowledged as a major bottle-
neck in the SoC design methodology, accounting for
an estimated 70 percent of overall time and resources
spent on the SoC design validation [3].

In this paper, we take a close look at post-silicon
validation, which represents one of the most crucial,
expensive, and complex components of the SoC
design validation methodology. Post-silicon valida-
tion makes use of a fabricated, preproduction silicon
implementation of the target SoC design as the valida-
tion vehicle to run a variety of tests and software. Note
that this is in stark contrast to the pre-silicon activities,
where the validation target is typically a model of the
design rather than an actual silicon artifact. The goal
of post-silicon validation is to ensure that the silicon
design works properly under actual operating condi-
tions while executing real software, and identify (and
fix) errors that may have been missed during pre-sili-
con validation. The complexity of the post-silicon vali-
dation arises from the physical nature of the validation
target: it is much harder to control, observe, and debug
execution of an actual silicon device than a comput-
erized model. Post-silicon validation is also performed
under a highly aggressive schedule, in order to ensure
adherence to time-to-market requirements.

Post-silicon validation is, of course about as old as
silicon design itself. Ever since the early days of silicon

design, one devised means to ensure that
the system functioned correctly, performed
appropriately, and was robust against differ-
ent software versions. By the 1980s and 1990s,
post-silicon validation of microprocessors and
embedded systems were firmly established
in the industrial practice of design validation.
Consequently, there has been significant work
over the years on making this task streamlined
and disciplined, both in academic research
and in industrial practice. However, much
of this work was targeted toward a specific
hardware design type. For example, micro-
processor implementations included signifi-
cant instrumentation for post-silicon debug of
pipelines [4], [5], cache memories [6], [7],
or trace-based debug [8]. With the advent of
mobile devices and IOTs, this paradigm and

infrastructure of validation has become inadequate. In
particular, for a modern SoC design, the microproces-
sor is one among about a hundred different IP compo-
nents. While targeted techniques for its validation are
still necessary, the need in the SoC era is for uniform,
generic validation technologies and tools that can be
used across multiple IPs. Furthermore, the functionality
of an SoC design today hardly has a clear demarcation
of the hardware and software components. Depending
on the deployment target, use cases, and necessary
power/performance tradeoffs, any design functional-
ity in an IP may be moved to a hardware or a software
(firmware) implementation. Moreover, most systems
today are “vertically integrated,” with the system use
cases only realized by a composition of hardware, soft-
ware, applications, and peripheral communications.
Consequently, validation in general—and post-silicon
validation in particular—is a complex co-validation
problem across the hardware, software, and peripheral
functionality, with no clear decomposition into individ-
ual components. Third, with integration of significant
design functionality into one system, it is getting more
and more complex to control and observe any indi-
vidual design component as necessary for validation.
Finally, with reduced time-to-market, the number of
silicon spins available for validation has decreased dra-
matically. Consequently, when an error is found in sili-
con, one must find clever workarounds to detect other
errors in the same silicon spin.

The focus of this paper is on post-silicon vali-
dation, specifically as applicable in the modern
SoC design era. We primarily focus on post-silicon

Figure 1. An SoC design integrates a wide variety
of IPs in a chip. It can include one or more proces-
sor cores, digital signal processor (DSP), multiple
coprocessors, controllers, analog-to-digital (ADC),
and digital-to-analog converters (DAC), all con-
nected through a communication fabric.

70 IEEE Design&Test

Tutorial

functional validation techniques, although we pro-

vide rough overviews of some of the other categories,

viz., electrical and marginality. The SoC validation

challenges outlined above have resulted in a num-

ber of architectures, infrastructures, test and CAD

flows, and so on. However, they are not utilized in

a top-down, disciplined manner. In fact, tools, flows,

and design instrumentations have been incremen-

tally accumulated over time in response to specific

challenges or requirements. Today, over 20 percent

of the design real estate and a significant component

of the CAD flow effort are devoted toward silicon val-

idation. It is nontrivial to transform or mold the archi-

tecture for specific device use cases. In addition to

providing a survey of the various facets of silicon val-

idation, our goal is to deconstruct this complexity,

facilitate understanding of the rationale for many of

the available flows and architectures, and illustrate

experiences in post-silicon validation for real indus-
trial examples.

Figure 2 shows three stages of SoC validation:
pre-silicon validation, post-silicon validation, and
on-field debug. The figure also shows some of the
important activities associated with the different
stages. The remainder of the paper describes the
major tasks relevant for post-silicon and debug. The
first section reviews the spectrum of validation activi-
ties from pre-silicon through post-silicon and on-field
survivability. The next section gives a flavor of the
diverse range of activities involved in post-silicon
validation, while the “Silicon validation challenges”
section discusses some of the high-level challenges.
The next section focuses on post-silicon planning,
that is, the pre-silicon activities targeted toward facil-
itating and streamlining post-silicon validation. In
the “Trace signal selection” and “Test generation”
sections, we delve into some details on two aspects
of this planning, signal selection, and test genera-
tion. The next section discusses an industrial post-sil-
icon validation experience, with IBM Power8, and
the conclusion is drawn in the final section.

The validation spectrum
We can roughly divide validation activities into

three components: pre-silicon, post-silicon, and
on-field survivability. To understand the different
post-silicon activities involved, it is crucial to com-
prehend the position it holds among validation
activities across different phases of SoC design and
development. Indeed, validation is best viewed as a
“continuum” of activities using artifacts with increas-
ing levels of maturity. As we move from pre-silicon to
post-silicon and finally on-field execution, more and
more complex usage scenarios are exercised poten-
tially stimulating errors that could not be seen in
previous validation phases. At the same time, observ-
ability and controllability of the design during these
executions get progressively more complex making
it harder to root-cause a failure. At the same time,
the cost of a bug increases and the time available for
debug decreases as we go further into the system life
cycle. In this section, we provide a high-level over-
view of this continuum of validation activities. The
timeline for these activities is shown in Figure 3.

Pre-silicon activities
Pre-silicon validation refers to all of the vali-

dation activities performed before the first silicon

Figure 2. Three important stages of SoC validation:
pre-silicon validation, post-silicon validation, and on-
field survivability.

71May/June 2017

is available, and forms the bulk of the validation
activities along the design life cycle. Pre-silicon val-
idation activities include code and design reviews,
simulation and testing, as well as formal analysis.
Different design models are subjected to these
activities at different stages of the life cycle. At the
beginning of exploration, the only models available
are high-level architectural specifications. Later,
abstract virtual models for the different IPs are gen-
erated, which are primarily used as the prototyp-
ing framework [9], [10] for software and firmware
development and validation. These virtual models
are highly abstract software models of the hardware
design that only preserve the basic functionality of
the hardware/software interfaces. With these mod-
els, one can perform some coarse-grained valida-
tion of hardware/software use cases. Subsequently,
detailed RTL models are developed for different
IPs, which can be subjected to simulation and for-
mal analysis. Concurrently, software components
mature and are also subjected to reviews, simula-
tion, and formal verification.

RTL simulation is typically performed on a
per-IP basis, although some full-chip tests are typ-
ically performed to ensure that the IPs coordinate
effectively together. Note that simulation with RTL
models is approximately a billion times slower than
the target clock speed for the system; consequently,
an activity that would take a few seconds of exe-
cution time on the target silicon (e.g., booting an
operating system) would take several years on an
RTL simulator. This precludes the possibility of exe-
cuting software on top of an RTL model, and only
short, directed, or random testing is typically used
with RTL simulation. For hardware/software co-val-
idation in pre-silicon, one can map the RTL into a
reconfigurable architecture such as field program-
mable gate arrays (FPGA), or specialized acceler-
ators and emulators [11]–[13]. These models run
about a hundred to thousand times faster than an
RTL simulator. Consequently, one can execute
hardware/software scenarios such as an operating
system boot in a few hours. This speed is obtained
at the cost of controllability and observability. In
a simulator, one can observe any internal signal
of the design at any time. In contrast, in FPGA
(which are the fastest of the pre-silicon platforms)
the observability is restricted to a few thousands
of internal signals. Furthermore, one must decide
on the signals to be observed before generating

the FPGA bit-stream; reconfiguring the observabil-
ity would require recompilation of the bit-stream,
which might take several hours.

Validation with silicon
Post-silicon validation starts with the first

pre-production silicon, and continues until the start
of mass production of the product. Since the sili-
con is used as the validation vehicle, tests can run
at target clock speed enabling execution of long
use cases (e.g., booting a full-scale operating sys-
tem within seconds, exercising various power man-
agement and security features involving multiple
IPs, etc.). Post-silicon tests consequently provide
the ability to exercise the system under realistic
on-field scenarios and workloads. Furthermore,
due to the physical nature of the validation vehi-
cle (viz., actual silicon rather than a model), it
becomes possible to validate the artifact for non-
functional characteristics such as power consump-
tion, physical stress, temperature tolerance, and
electrical noise margin. On the other hand, it is
considerably more complex to control or observe
the execution of silicon than that of an RTL simu-
lator (or even FPGA or emulation models). In an
RTL simulator, virtually any internal design signal
is observable; even in emulation or FPGA, one can
observe hundreds or thousands of internal signals.
In contrast, in silicon one can only observe about
a hundred hardware signals in any execution as
described in the “Trace signal selection” section.
Furthermore, recall that for a pre-silicon platform,
changing observability or rearchitecting the design

Figure 3. High-level categorization of different com-
ponents of an SoC design life cycle. Tape-out refers
to the time when the design is mature enough to
get to the first fabrication. Product release qualifi-
cation (PRQ) refers to the decision to initiate mass
production of the product.

72 IEEE Design&Test

Tutorial

to facilitate more control would at most require
a recompilation (although recompilation is non-
trivial and may take several hours); however, for
silicon, it requires silicon respin (i.e., redesign, val-
idate again, and expensive refabrication). Indeed,
most of the critical challenges in post-silicon vali-
dation stem from observability and controllability
constraints, and we discuss these challenges in the
“Silicon validation challenges” section.

To underline the criticality of post-silicon, it is
important to note the factors contributing to the
aggressive debug timeline requirements and the
high cost of bug (and bug escape) in post-silicon
validation. Post-silicon validation is the final vali-
dation activity before mass production is initiated.
The timeline for beginning mass production is gov-
erned by several factors many of which are dictated
by market economics, e.g., the need for launching
a product to align with winter holiday shopping or
back-to-school timeframe. Missing such a window
may mean millions to billions of dollars of loss in
revenue, and in some cases missing the market for
the product altogether. The decision to move for-
ward with mass production or cancel the product
altogether (referred to as the “PRQ” call) is made
based on the trend and type of bugs found during
post-silicon, results of power-performance valida-
tion, tolerance of the product to target noise mar-
gins, and electrical variations, all of which depend
critically on post-silicon validation. Consequently,
post-silicon validation must enable aggregation of
substantial trending data on design bugs as well as
nonfunctional characteristics to enable a decision
on product launch (and hence mass production).
Note that the launch timeframe is typically deter-
mined a long time (even years) in advance based on
target market forecast for the product and changes
can result in substantial economic repercussions.
Consequently, the post-silicon activity must per-
form high-quality validation within the limited and
fixed timeframe (between first silicon and PRQ)
to ensure a marketable product: delay in post-sili-
con can risk a product cancellation resulting in a
loss of the entire investment on the product from
architecture to validation, or in launching a prod-
uct that malfunctions on-field in ways not covered
by on-field survivability architectures (see below),
resulting in loss of millions to billions of dollars in
revenue due to product recall, impact on company
reputation, etc.

Survivability and on-field debug
Survivability refers to the validation and debug

activities employed on a system or device to mit-
igate errors or malfunctions observed during
on-field execution. One may argue that survivabil-
ity is not a validation activity at all, since it happens
on-demand at deployment sites, rather than with
following a preplanned schedule as for other vali-
dation activities. Nevertheless, it is still considered
in concert with validation activities, since many of
the technologies used in survivability bear a strong
resemblance to post-silicon validation. In particular,
survivability activities depend on design-for-debug
(DfD), that is, hardware features introduced specif-
ically to facilitate debug and validation of silicon.
Most mitigation techniques employed for surviva-
bility involve “patching” or reconfiguring the func-
tionality of the system through software or firmware
updates. Note that in order to successfully patch
design functionality, the design itself must include
significant configurability options. Furthermore,
once an error or vulnerability is discovered on-field,
the time available for developing a mitigation or
workaround strategy is extremely short. One reason
for the short time availability is that many of the
errors might be exploited as security vulnerabilities
which, once detected and advertised on-field, can
be exploited for malicious purposes; it is important
to repair such vulnerabilities before a catastrophic
exploitation is performed. Even if the error is not
catastrophic, on-field problems can get significant
(negative) limelight, causing damage to the com-
pany reputation, which may result in significant
revenue loss. On the other hand, it may be a highly
creative process to identify a patching strategy to
mitigate on-field problems. In particular, the ability
to patch a design depends on how much configur-
ability and controllability have been built into the
system to enable the patch. Developing complex
system designs with a flexible, configurable archi-
tecture is one of the crucial challenges in the SoC
era, and we will describe it in the context of plan-
ning for post-silicon validation in the “Planning for
post-silicon readiness” section.

Overview of post-silicon activities
Post-silicon validation includes a number of dif-

ferent activities including validation of both func-
tional and timing behavior as well as nonfunctional
requirements. Each validation activity entails its own

73May/June 2017

challenge and includes techniques, tools, and meth-
odologies to mitigate them. In this section, we dis-
cuss a few of these activities, to give a flavor of their
range and diversity.

Power-on-debug: One of the first activities per-
formed when a preproduction silicon arrives at a
post-silicon laboratory for the first time is to power
it on. Powering on the device is actually a highly
complex activity. If the device does not power
on, the on-chip instrumentation architecture
(see below) is typically not available, resulting in
extremely limited (often zero) visibility into the
design internals. This makes it difficult to diag-
nose the problem. Consequently, power-on debug
includes a significant brainstorming component.
Of course, some visibility and controllability still
exist even at this stage. In particular, power-on
debug typically proceeds with a custom “debug
board,” which provides a higher configurability
and fine-grained control over a large number of
different design features. The debug activity then
entails coming up with a bare-bone system config-
uration (typically removing most of the complex
features, e.g., power management, security, and
software/firmware boot mechanisms,), which can
reliably power on. Typically, starting from the time
the silicon first arrives at the laboratory, obtaining
a stable power-on recipe can take a few days to a
week. Once this is achieved, the design is recon-
figured incrementally to include different complex
features. At this point, some of the internal DfD
features are available to facilitate this process. Nev-
ertheless, it is still a highly challenging enterprise
and can take several weeks to achieve. Note that
as designs become more and more configurable,
the process of defeaturing and refeaturing for pow-
er-on debug can get increasingly harder. Once the
power-on process has been stabilized, a number of
more complex validation and debug activities can
be initiated.

Basic hardware logic validation: The focus of the
logic validation is to ensure that the hardware
design works correctly, and exercise specific fea-
tures of constituent IPs in the SoC design. This is
typically done by subjecting the silicon to a wide
variety of tests that include both focused tests for
exercising specific features as well as random and
constrained-random tests. Traditionally, the SoC is

placed on a custom platform (or board) designed
specifically for debug with specialized instrumen-
tation for achieving additional observability and
controllability of internals of different IPs. Signifi-
cant debug software is also developed to facilitate
this testing (see below). Note that these tests are
different from system-level directed tests. In par-
ticular, tests executed for post-silicon validation
are system-level, involving multiple IPs and their
coordination.

Hardware/software compatibility validation: Compat-
ibility validation refers to the activities to ensure that
the silicon works with various versions of systems,
application software, and peripherals. The valida-
tion accounts for various target use cases of the sys-
tem, the platforms in which the SoC is targeted to
be included, etc. Compatibility validation includes,
among others, the following:

• validation of system usage with add-on hardware
of multiple external devices and peripherals;

• exercising various operating systems and appli-
cations (including multimedia, games, etc.);

• use of various network protocols and communi-
cation infrastructures.

In addition to the generic complexities of post-sil-
icon validation (see below), a key challenge here
is the large number of potential combinations (of
configurations of hardware, software, peripheral,
and use cases) that need to be tested. It is com-
mon for compatibility validation to include over
a dozen operating systems of different flavors,
more than a hundred peripherals, and over 500
applications.

Electrical validation: Electrical validation exercises
electrical characteristics of the system, compo-
nents, and platform to ensure adequate electrical
margin under worst-case operating conditions.
Here “electrical characteristics” include input–out-
put, power delivery, clock, and various analog/
mixed-signal (AMS) components. The validation is
done with respect to various specification and plat-
form requirements, e.g., input–-output validation
uses the platform quality and reliability targets. As
with compatibility validation above, a key challenge
here is the size of the parameter space: for system
quality and reliability targets, the validation must
cover the entire spectrum of operating conditions
(e.g., voltage, current, and resistance) for millions of

74 IEEE Design&Test

Tutorial

parts. The current state of practice in electrical vali-
dation is an integrated process of the following:

• sampling the system response for a few sample
parts;

• identifying operating conditions under which the
electrical behavior lies outside specification;

• optimization, redesign, and tuning as necessary to
correct the problem.

Note that unlike the logic and compatibility valida-
tion above, electrical validation must account for
statistical variation of the system performance and
noise tolerance across different process corners.
PRQ requires the average defect to be low, typically
less than 50 parts per million.

Speed-path validation: The goal of speed-path valida-
tion is to identify frequency-limiting design paths in
the hardware. Because of variations, the switching
performance of different transistors in the design var-
ies. This leads to data being propagated at different
rates along different circuit paths. The speed at which
the circuit can perform is ultimately constrained by
the limitations of the slowest (in terms of data prop-
agation speed) path in the design. Identifying such
slow paths is therefore crucial in optimizing the design
performance. Speed path analysis includes identifica-
tion of both a potentially slow transistor, among mil-
lions or billions of them in a design, responsible for
the speed path; and the execution cycle (over a test,
potentially millions of cycles long) that causes a slow
transition. Speed path debug makes use of a number
of technologies, including specialized testers, Shmoo
(2-D plot) of chip failure pattern over the voltage and
frequency axes, DfD instrumentation available for
observability, as well as laser-assisted observation
of design internals [14] and techniques for stretch-
ing and shrinking clock periods [15]. More recently,
analysis techniques based on formal methods have
been successfully used for speed-path identification
[16], [17]. In spite of these latest developments, a
significant ingenuity is necessary to isolate frequency
limiting paths for modern designs.

Obviously, the above list of activities is not exhaus-
tive. In addition to the above, validation covers the
behavior of the system under extreme temperatures,
physical stress, etc. Even the categories themselves
are not “cast in stone”: post-silicon validation in prac-
tice typically involves close collaboration among val-
idators of all the different areas. As an example, with

increasingly tightening hardware/software integration
in modern SoC designs, the boundary between basic
hardware logic validation and compatibility validation
with software has become blurred. In many cases, it is
impossible to validate the hardware standalone with-
out also considering (at least) the firmware running on
the different IP cores. Indeed, post-silicon functional
validation today often refers to the union of logic and
compatibility validation.

Silicon validation challenges
Post-silicon validation and debug clearly involve

coordination of several complex activities per-
formed under an aggressive schedule. In this sec-
tion, we enumerate some of the challenges involved.
In the “Planning for post-silicon readiness” section,
we will discuss the advance planning performed to
anticipate and address these challenges.

Observability and controllability limitations
Limitations in observability and controllability con-

stitute one of the key factors that distinguish validation
based on a silicon artifact from the pre-silicon activities.
The problem arises because it is not possible to observe
or control all of the billions of internal signals of the
design during silicon execution. In order to observe a
signal, its value must be routed to an observation point,
such as an external pin or internal memory (e.g., trace
buffer). Consequently, the amount of observation that
can be performed is limited by the number of pins or
by the amount of memory dedicated for debug observ-
ability. Similarly, the amount of controllability depends
on the number of configuration options defined by the
architecture. Note that both observability and control-
lability must be accounted for during the design of the
chip, since the hardware needs to be in place to route
the appropriate design signals to an observation point
or configure the system with specific controls. On the
other hand, during design one obviously does not know
what kind of design bugs may show up during post-sili-
con validation and what signals would be profitable to
observe to debug them. The current state of industrial
practice primarily depends on designer experiences to
identify observability. Note that any missing observa-
bility is typically only discovered at post-silicon, viz., in
the form of failure to root-cause a given failure. Fixing
observability at that time would require a new sili-
con spin, which is typically impractical. Streamlining
observability and controllability is consequently one of
the crucial requirements of post-silicon research.

75May/June 2017

Error sequentiality
Traditional software or (pre-silicon) hardware

debugging tends to work by sequentially finding
and fixing bugs. We find a bug, fix it, and then go
on to find the next bug. Unfortunately, this natu-
ral mental model of debugging breaks down for
post-silicon. In particular, fixing a hardware bug
found during post-silicon would require a new step-
ping. We clearly cannot afford a stepping per bug.
Consequently, when a bug is discovered—even
before the root cause for the bug is identified—one
must find a way to work around the bug in order to
continue the post-silicon validation and debug pro-
cess. Finding such workarounds is a challenging and
creative process: on the one hand, the workaround
must eliminate the effect of the bug, and on the other
it must not mask other bugs from being discovered.

Debugging in the presence of noise
A consequence of the fact that we are using the

actual silicon as validation vehicle is that we must
account for factors arising from physical reality in
functional debug, e.g., effects of temperature and
electrical noise. For example, a logical error may be
masked by a glitch or fluctuating voltage levels, and
may even require a certain thermal range to repro-
duce. A key challenge in post-silicon validation is con-
sequently to find a recipe (e.g., via tuning of different
physical, functional, and nonfunctional parameters)
to make a bug reproducible. On the other hand, a
positive factor is that the notion of “reproducibility”
in post-silicon is somewhat weaker than that in pre-sil-
icon validation. Since post-silicon validation is fast, an
error that reliably appears once in a few executions
(even if not 100% of the time) is still considered repro-
ducible for post-silicon. Nevertheless, given the large
space of parameters, ensuring reproducibility to the
point that one can use it to analyze and diagnose the
error is a significant challenge.

Security and power management challenges
Modern SoC designs incorporate highly sophisti-

cated architectures to support aggressive energy and
security requirements. These architectures are typi-
cally defined independently by disparate teams with
complex flows and methodologies of their own, and
include their unique design, implementation, and vali-
dation phases. A thorough treatment of these activities
is outside the scope of this paper. However, it is impor-
tant to understand the interaction of these features with

post-silicon (functional) validation. The challenge of
security on observability is more direct, and has also
been discussed before [18]. SoC designs include a
large number of assets, e.g., cryptographic keys, DRM
keys, firmware, and debug mode, which must be
protected from unauthorized access. Unfortunately,
post-silicon observability and the DfD infrastructure in
silicon provide an obvious way to access such assets.
Furthermore, much of the DfD infrastructure is avail-
able on-field to facilitate survivability. This permits
their exploitation by malicious hackers to gain unau-
thorized access to the system assets after deployment.
Indeed, many celebrated system hacks [19], [20] have
made use of post-silicon observability features. Such
exploits can be very subtle and difficult to determine
in advance, while having a devastating impact on the
product and company reputation once carried out.
Consequently, a knee-jerk reaction is to restrict DfD
features available in the design. On the other hand,
lack of DfD may mean making post-silicon validation
difficult, long, and even intractable. This may mean
delay in product launch; with aggressive time-to-mar-
ket requirement, a consequence of such delay can be
loss of billions of dollars in revenue or even missing
the market for the product altogether.

Power management features also affect observa-
bility, but in a different manner. Power management
features focus on turning off different hardware and soft-
ware blocks at different points of the execution when
they are not functionally necessary. The key problem is
that observability requirements from debug and valida-
tion are difficult to incorporate within the power man-
agement framework. In particular, if a design block is
in a low power state, it is difficult to observe (or infer)
the interaction of the block with other IPs in the SoC
design. Note that the lack of observability can affect
debug of IPs different from the one subjected to power
management. For example, consider debugging an
IP A during a specific silicon execution. For this pur-
pose, signals from A need to be routed to some obser-
vation point such as a memory or output pin (see the
“Trace signal selection” section). Suppose the rout-
ing includes an IP B, which is in no way functionally
dependent on A. It is possible then for B to be powered
down during a part of the execution when A is active.
However, this means that the route of observable sig-
nals from A is not active during that time, resulting in no
observability of internal behavior of A. One approach
to address this challenge is to disable power manage-
ment during silicon debug. However, this restricts our

76 IEEE Design&Test

Tutorial

ability to debug and validate the power management
protocols themselves, e.g., the sequence of activities
that must happen in order to transition an IP to different
sleep (or wakeup) states.

Developing a post-silicon observability archi-
tecture that accounts for the security and power
management constraints is highly nontrivial. In par-
ticular, to comprehend the security/power-manage-
ment/validation tradeoffs, such an architecture must
account for a number of other factors. A previous
paper [18] discusses some of these considerations
in the context of security. Relevant considerations
include issues from high-volume manufacturing,
reusability, flexibility against late changes, and late
variability, among others.

Planning for post-silicon readiness
The primary goal of post-silicon validation is

to identify design errors by exploiting the speed of
post-silicon execution. It should be clarified that it
is not necessary for post-silicon validation to com-
pletely diagnose or root-cause a bug. The goal is to
narrow down from a post-silicon failure to an error
scenario that can be effectively investigated in the
pre-silicon environment. Note that since a physical
object (also known as silicon) is involved in the
validation process, the path from an observed fail-
ure (e.g., a system crash) to a resolution of the root
cause for the failure is not straightforward. Roughly,
the path involves the following four steps.1

Test execution: This involves setting up the test envi-
ronment and platform, running the test, and in case
the test fails, performing some obvious sanity checks
(e.g., checking if the SoC has been correctly set up
on the platform, power sources are connected, all
switches are set up as expected for the test, etc.). If
the problem is not resolved during the sanity check,
then it is typically referred to as a pre-sighting.

Pre-sighting analysis: The goal of pre-sighting analysis
is to make the failure repeatable. This is highly non-
trivial, since many failures occur under highly subtle
coordinated execution of different IP blocks. For
instance, suppose IP A sends a message to IP C within
a cycle of another IP B sending a different message

to C. This may result in a buffer overflow (eventually
resulting in a system crash) when occurring in a state
in which the input queue of C had only one slot left
and before C has the opportunity to remove some item
from the queue. Making the failure repeatable requires
running the test several times, under different software,
hardware, system, and environmental conditions (pos-
sibly with some knowledge and experience of poten-
tial root cause) until a stable recipe for failure is discov-
ered. At that point, the failure is referred to as sighting.

Sighting disposition: Once a failure is confirmed as
a sighting, a debug team is assigned for its disposi-
tion. Disposition includes developing a plan to track,
address, and create workarounds for the failure. The
plan typically involves collaboration among rep-
resentatives from architecture, design, and imple-
mentation, as well as personnel with expertise of the
specific design features exercised in the failing tests
(e.g., power management, secure boot, etc.).

Bug resolution: Once a plan of action has been devel-
oped for a sighting, it is referred to as a bug, and the
team assigned is responsible for ensuring that it is
resolved in a timely manner based on the plan. Reso-
lution includes both finding a workaround for the fail-
ure to enable exploration of other bugs, and triaging
and identifying root cause for the bug. We will discuss
the challenges involved in workaround development
in the “Silicon validation challenges” section. Triag-
ing and root-causing bugs is one of the most complex
challenges in post-silicon validation. In particular, the
root cause for a failure observed on a specific design
component can be in a completely different part of
the design. One of the first challenges is to determine
whether the bug is a silicon issue or a problem with
the design logic. If it is determined to be a logic error,
the goal is typically to recreate it on a pre-silicon plat-
form (viz., RTL simulation, FPGA, etc.). Note that the
exact post-silicon scenario cannot be exercised in
a pre-silicon platform: one second of silicon execu-
tion would take several days or weeks to exercise on
RTL simulation. Consequently, the bulk of the crea-
tive effort in post-silicon involves creating a scenario
that exhibits the same behavior as the original post-sil-
icon failure but involves execution small enough to
be replayable in pre-silicon platforms. In addition
to this key effort, other activities for bug resolution
include grouping and validating the bug fix. Note
that the same design error might result in different
observable failures for different tests, e.g., a deadlock

1The terminology we use to define various bug diagnosis stages (e.g., “presighting”,
“sighting”, etc.) has been standard across semiconductor industry, although it has
not been formally introduced in the literature before. Since one goal of this paper
is to discuss the practice of silicon validation, we consider this an opportunity to
introduce this terminology. Note that some of the terms (e.g., sighting) has been used
before in similar contexts [21].

77May/June 2017

in a protocol might result in a system crash in one test
and a hang in another. Given aggressive validation
schedules, it is imperative not to waste resources to
debug the same error twice. Consequently, it is criti-
cal to group together errors arising from the same root
cause. Note that this is a highly nontrivial exercise:
one must bucket errors with the same (or similar) root
cause but with possibly different observable failures
before they have been analyzed. Finally, once a fix
has been developed, one must validate the fix itself to
ensure that it does indeed correct the original error,
and it does not introduce a new error.

Given the scope and complexity of post-silicon
validation and the aggressive schedule under which
it must be performed, it is clear that it needs metic-
ulous planning. We have already highlighted the
importance of the design of appropriate DfD infra-
structure to enable observability and controllability
of the internal behavior of the system during silicon
validation. Other requirements include defining
post-silicon tests, test cards, and custom boards. In
fact, a crucial activity during the pre-silicon time-
frame is post-silicon readiness, that is, activities
geared toward streamlined execution of post-sili-
con validation. Post-silicon readiness activities pro-
ceed concurrently with system architecture, design,
implementation, and pre-silicon validation.

Figure 4 provides a high-level overview of the
different activities pertaining to post-silicon readi-
ness and execution, together with a rough schedule
within the system design life cycle. Note that the
readiness activities start about the same time as the
product functionality planning and span the entire
pre-silicon portion of the life cycle.

Test plans
Test plans constitute arguably the most critical and

fundamental readiness activity for post-silicon valida-
tion. The goal is to identify the different coverage targets,
corner cases, and functionality that need to be tested
for the system being deployed. Post-silicon test plans
are typically more elaborate than pre-silicon plans,
since they often target system-level use cases of the
design, which cannot be exercised during pre-silicon
validation. Note that test plan development starts con-
currently with design planning. Consequently, when
the test plan development starts, a detailed design (or
even an elaborate microarchitecture for the most part)
is unavailable. Initial test planning correspondingly
depends on high-level architectural specifications. As

the design matures and more and more design fea-
tures are developed, the test plans undergo refinement
to account for these features. The plans also need to
account for the target applications, the new versus leg-
acy IPs used in the system design, etc.

On-chip instrumentation
On-chip instrumentation refers to the DfD features

integrated into the silicon to facilitate post-silicon
debug and validation. A key target of the DfD is observ-
ability. Modern SoC designs include a significant
amount of hardware for this purpose, with estimates
running to 20 percent or more in silicon real estate
in some cases. Two critical observability features are
scan chain [22] and signal tracing [23]. Scan chains
enable observability of the internal state of the design.
Scan chains, of course, are highly mature architec-
tures originally developed for identifying manufactur-
ing defects in the circuit. However, they also provide
critical observability during post-silicon validation.
Signal tracing, on the other hand, specifically target
post-silicon validation. The goal is to identify a small
set (typically hundreds) of internal signals of the
design to be observed for each cycle during silicon
execution. To achieve this, the relevant signals are
routed to an observation point, which can be either
an output pin or a designated section of the mem-
ory (referred to as trace buffer). In addition to these
two architectures, there are also instrumentations
to transport internal register values off-chip, quickly
access large memory arrays, etc. Note that these
architectures can get highly complex. For example, in
recent SoC designs, data transport mechanisms may
repurpose some of the communication mechanisms

Figure 4. Overview of different activities pertaining to
post-silicon validation along the SoC design life cycle.

78 IEEE Design&Test

Tutorial

already present in the system, e.g., universal serial bus
(USB) port. This requires a thorough understanding of
both the functionality and the validation use cases to
ensure that they do not interfere when using the same
interface. Finally, there is instrumentation to provide
controllability of the execution, e.g., by overriding the
system configuration, updating microcode on-the-fly
during execution, etc.

There has recently been significant research on
improving post-silicon observability through disci-
plined DfD architecture. Some of the key work in this
area has focused on trace signal selection, and we
discuss this problem in the “Trace signal selection”
section. Among on-chip instrumentation techniques,
one of the earliest work is due to Gopalakrishnan
and Chou [24]. They use constraint solving and
abstract interpretation to compute state estimates
for memory protocols. Park and Mitra [4] develop
an architecture called IFRA for disciplined on-chip
observability of pipelined microprocessors. Boule
et al. [25] present architectures for post-silicon asser-
tion checkers. Ray and Hunt [7] present an archi-
tecture for on-chip monitor circuits for validation of
specific concurrent protocols.

Debug software development
Debug software is another crucial component of

post-silicon validation readiness. It includes any soft-
ware tool and infrastructure that is necessary to ena-
ble running post-silicon tests and facilitating debug,
triage, or validation of different coverage goals. We
can categorize debug software roughly into the fol-
lowing classes.

Instrumented system software: Post-silicon valida-
tion, particularly for hardware logic and compat-
ibility validation, requires running long compli-
cated tests, identifying complex corner cases, and
root-causing errors excited by subtle hardware/
software coordination. To achieve this, one typi-
cally needs to run an application software stack
on the target system. Doing this by executing an
application on top of an off-the-shelf operating sys-
tem is typically difficult. Modern operating systems
(e.g., Linux, Windows, Android, MacOS, etc.) are
highly optimized for performance and power con-
sumption, and significantly complex. To enable
debug of underlying hardware issues one typically
needs a highly customized system software, with a
reduced set of “bells and whistles” while including

a number of hooks or instrumentations to facilitate
debug, observability, and control. For example, one
may want to trace the sequence of branches taken
by an application in order to excite a specific hard-
ware problem. To achieve this, often specialized
operating systems are implemented that are targeted
for silicon debug. Such system software may be writ-
ten by silicon debug teams from scratch, or by signif-
icantly modifying the off-the-shelf implementations.

Tracing, triggers, and configurations: Some cus-
tomized software tools are also developed for con-
trolling, querying, and configuring the internal state
of the silicon. In particular, there are tools to query or
configure specific hardware registers, setting triggers
for tracing, etc. For example, one may wish to trace
a specific signal S only when some internal register
R contains a specific value u. Assuming that both S
and R are observable, one needs software tools to
query R and configure signal tracing to include S
when R contains u.

Transport Software: Access software refers to tools
that enable transport of data off-chip from silicon.
Data can be transferred off-chip either directly
through the pins, or by using the available ports from
the platform (e.g., USB and PCIe). For example,
transporting through the USB port requires instru-
mentation of the USB driver to interpret and route
the debug data while ensuring the USB functionality
is not affected during normal execution. Note that
this can become highly complex and subtle, particu-
larly in the presence of other features in the SoC such
as power management. Power management may in
fact power down the USB controller when the USB
port is not being used by the functional activity of
the system.

The instrumented driver ensures that debug
data is still being transported while still facilitating
the power-down functionality of the hardware to be
exercised during silicon validation.

Analysis software: Finally, there are software tools
to perform analysis on the transported data. These
include tools to aggregate the raw signal or trace
data into high-level data structures (e.g., interpret-
ing signal streams from the communication fabric
in the SoC as messages or transactions among IPs),
comprehending and visualizing hardware/software
coordinations, as well as tools to analyze such traced
and observed data for further high-level debug

79May/June 2017

(e.g., to estimate congestion across the communica-
tion fabric, traffic patterns during internal transactions,
and power consumption during system execution).

One critical challenge in developing (and val-
idating) debug software is its tight integration with
the target hardware design to be validated. Note that
typically software development and validation make
use of a stable hardware platform, e.g., one devel-
ops application software on top of a general-purpose
hardware instruction set architecture such as X86
or ARM. However, debug software is developed for
an under-development target platform, often with
evolving and changing features (e.g., in response to
design or architectural challenges discovered late).
This makes debug software design a vexing and
complex problem in hardware/software co-design
and co-validation. Indeed, it is not uncommon in
post-silicon validation to root-cause an observed fail-
ure to an issue with the debug software rather than
the target system. Developing a streamlined technol-
ogy for debug software development and validation
is a challenging area of research.

Test generation and testing setup design
The central component of silicon debug is the

set of tests to run. For the validation to be effective,
the tests must expose potential vulnerabilities of the
design, and exercise different corner cases and con-
figurations. Post-silicon tests can be divided into the
following two categories.

Focused (directed) tests: These are tests carefully
crafted by expert test writers to target specific fea-
tures of the system (e.g., multiprocessor and chipset
protocols, CPU checks for specific register config-
urations, address decoding, power management
features). Developing such tests involves signifi-
cant manual effort. Furthermore, the tests are often
extremely long and targeted, running for several
hours on silicon.

Random and constrained-random tests: In addition to
focused tests, one exercises system features through
random and constrained-random testing. Examples
of such tests include executing a random sequence
of system instructions, exercising concurrent inter-
leavings, etc. The goal of these tests is to exercise
the system in ways not conceived by humans, e.g.,
random instruction tests can include hundreds of
millions of random seeds generating instruction
sequences.

In addition to the tests themselves, their appli-
cation requires development of specialized periph-
erals, boards, and test cards. This is specifically
pertinent for compatibility validation where the
system needs to be exercised for a large number of
peripheral devices, software versions, and platform
features. The “Test generation” section test genera-
tion steps in detail.

Toward standardization of validation
Infrastructure

As is evident from the above discussions, post-sil-
icon readiness is a complex and hard problem. To
facilitate this, there have been efforts across the
industry to standardize the debug and observabil-
ity architectures. Two such standardizations are the
ARM Coresight and Intel Platform Analysis Tool.
Both these architectures include a set of hardware
IPs (e.g., for collecting, synchronizing, and times-
tamping signal traces and other observability col-
lateral from different design blocks, routing them to
output ports and system memory), and software APIs
for configuration, triggering, transport, and analysis.
The specifics of the architectures vary. Coresight
architecture [26] is instantiated into Macrocells
that can interact with the IP functionality through a
standard interface. Platform Analysis Tool includes
a specialized IP called Trace Hub [27] responsible
for aggregation and transport of both hardware and
software traces, together with APIs that enable direct
interaction with this IP for transport and analysis.

While such standardization assists in stream-
lining post-silicon readiness development, it must
be emphasized that the current state of the art in
standardization is rather rudimentary. For instance,
the software tools to extract trace data for both the
architectures above are typically APIs for accessing
different internal design collateral; little assistance
is provided to identify the specific collateral that
would be useful or profitable for debug purposes. It
is left to the expertise of the human designer and val-
idator to “hook up” the APIs with the hardware and
software content in the target design for achieving
validation objectives.

Trace signal selection
In this section, we delve slightly deeper into one

aspect of post-silicon planning, viz., trace signal
selection. As discussed in the “Planning for post-
silicon readiness” section, trace signals are used to

80 IEEE Design&Test

Tutorial

address the observability limitation during post-sili-
con debug. The basic idea is to trace a set of signals
during run time and store in a trace buffer such that
the traced values can be used during post-silicon
debug. It is important to note that since I/O speed
(using JTAG, for example) is significantly slower
than the speed of execution (e.g., MHz versus GHz),
it is not possible to dump the traced values through
I/O ports during execution. Therefore, internal trace
buffer is required. Trace signal selection needs to
maintain various design constraints. For example, the
trace buffer size directly translates to area and power
overhead. Moreover, routing the selected signals to
the trace buffer may face congestion and other lay-
out-related issues. As a result, in a design with millions
of signals, a typical trace buffer traces a few hundred
signals for a few thousand cycles. For example, a 128
x 2048 trace buffer can store 128 signals over 2048
clock cycles. Design overhead considerations directly
impose two constraints— how to select a small num-
ber of trace signals that can maximize the observabil-
ity, and how to effectively utilize traced values for a
small number of cycles to enable meaningful debug.

In post-silicon debug, unknown signal states
can be reconstructed from the traced states in
two ways—forward and backward restoration.
For example, if one of the inputs of an and gate
is selected as a trace signal and the traced value
 is ‘0’, we can definitely infer through forward res-
toration that the output of that and gate should be
‘0’ in that clock cycle. Similarly, if we know the output
of an and gate to be ‘1’ in a specific clock cycle, we
can infer using backward restoration that the inputs of
that and should be all ‘1’s. Of course, in many scenar-
ios, we need to know the values of multiple signals to
be able to restore the values of untraced signals.

One metric used frequently to measure quality
of selected trace signals is the state restoration ratio
(SRR), which is based directly on
the idea of reconstructing values of
untraced signals from traced ones. To
understand SRR, consider the circuit
shown in Figure 5. The example cir-
cuit has eight flip-flops. Let us assume
that the trace buffer width is 2, that is,
states of two signals can be traced.
The approaches of [29] and [30] will
select C and F as trace signals. Table I
shows the restoration of other sig-
nals using the traced values of C and

F (shaded rows in the table). For example, if we
know C is ‘0’ at clock cycle 3, we can infer that
both A and B were ‘0’ in the previous cycle (clock
cycle 2). Since we know now that A is ‘0’ at clock
cycle 2, D should be ‘0’ in the next cycle (clock
cycle 3). This process of forward and backward
restoration is continued until no new values can be
restored. The ‘X’s represent those states that cannot
be determined. The SRR is then defined as

 RR = # of states restored + # of traced states __________________________
number of traced states

 (1)

In this example, we have traced 10 states (two sig-
nals for five cycles) and we are able to restore an
additional 16 states. Therefore, the restoration ratio is
(16 + 10) ÷ 10 = 2.6.

SRR-based signal selection techniques can be
broadly divided into three categories. The signal
selection techniques in the first category performs
structural analysis of the design and selects the ben-
eficial signals based on their likelihood in restor-
ing the unknown (untraced) signals [28]–[31].
These approaches are very fast but they sacrifice
the restorability. On the other hand, the simula-
tion-based signal selection techniques [32] utilize
the deterministic nature of the signals in identify-
ing the most profitable trace signals. This approach
provides superior restoration quality but incurs pro-
hibitive computation overhead. The third category
of techniques tries to combine the advantages of
both approaches utilizing hybrid [33], ILP [34], and
machine learning [35], [36] techniques. There are
also various approaches that try to take advantage
of both trace and scan signals to improve post-sili-
con observability [37], [38].

We should point out that while SRR is widely
used today as a research vehicle in evaluating trace
signal quality, we are not aware of any industrial
report on application of SRR. This is due to a variety

Figure 5. An example circuit with 8 flip-flops [28].

81May/June 2017

of reasons. For instance, SRR does not account
for design functionality in signal evaluation. Note
that the same IP may be used in different use
cases, and the validation requirement (and conse-
quently, the corresponding observability) depends
on the deployment target. Furthermore, SRR does
not account for architectural and physical con-
straints that may preclude some signals from being
selected, nor does it account for the fact that there is
a significant amount of other DfD components that
may be used in conjunction with tracing to facilitate
observability.

To address the above challenges with SRR, other
approaches have been proposed. In particular, there
are approaches involving insertion of faults in the
design and identifying signals best for identifying such
faults [39]. Other approaches take a more functional
view of the design, and attempt to identify signals best
for a specific functionality. For example, in recent
work, a version of the Google Pagerank algorithm was
used for signal selection and showed a more promis-
ing coverage of design assertions [40]. Nevertheless,
much research remains to be done to make signal
selection more disciplined and systematic.

Test generation
Post-silicon validation is one stage of the com-

plete verification cycle, which starts with pre-silicon
verification. However, both pre- and post-silicon
verification cannot achieve their goals on their
own; pre-silicon, in terms of finding all the bugs
before tape-out, and post-silicon, in terms of finding
the bugs that escaped pre-silicon. This creates an
increasing need to bridge the gap between these
two domains by sharing methodologies and tech-
nologies and building a bridge allowing easier inte-
gration between the domains. The need for strong
connection between pre- and post-silicon is
particularly evident in test generation, where
post-silicon tests must be generated by making
use of pre-silicon collateral and the generation
procedure often span across the two phases.

Pre-silicon stimuli generation
A pre-silicon stimuli generator has to pro-

vide the user with the ability to specify the
desired scenarios in some convenient way,
and produce many valid high-quality test
cases according to the user’s specification.
These scenario specifications—termed test

templates—are written in a language that should
enable an easy and accurate way for specifying the
scenarios from the verification plan. Figure 6 shows
an example of a test template that defines a table-
walk scenario (on the left) and an example of a test
generated from this template (on the right). The test
template is written in the test-template language of
Genesys-Pro [41]—IBM’s well-established test gener-
ation tool for the functional verification of proces-
sors using a software simulator platform. The rest of
this section describes Genesys-Pro’s approach to test
generation.

The scenario of Figure 6 starts with a Store and
then a sequence of Loads each followed by a either
an Add or a Sub instruction. The memory locations
accessed by the Load instructions are contiguous
in memory as seen in the “Resource initial values”
 section of the test (addresses 0x100-0x1F0). This is
managed by a test-template variable addr.

The use of test templates thus separates the test-tem-
plate writing activity from the generator’s development
activity. The language consists of four types of state-
ments: basic instruction statements, sequencing-con-
trol statements, standard programming constructs, and
constraint statements. Users combine these statements

Table 1 Restored signals from traced ones across five cycles.

Figure 6. Test template and corresponding test.

82 IEEE Design&Test

Tutorial

to compose complex test templates that
capture the essence of the targeted scenar-
ios, leaving out unnecessary details. This
allows directing the generator to a specific
area, be it a small or a large one.

The generated test cases must be valid
according to the processor’s architecture,
and satisfy the user’s request specified in
the template. In addition, they should also
be different from each other as much as
possible. This is done by specifying the
rules determining the validity of a test
case, as well as the user requests as con-
straints. The generator, then, produces a
test case by random sampling of the solu-
tion space to the resulting constraints sat-
isfaction problem [42].

The distribution of the generated tests should
not be uniform, as verification engineers would like
to favor tests that include interesting verification
events (e.g., register dependency, memory colli-
sions), especially ones that are extremely unlikely
to occur under uniform distribution. This is done by
having knowledge embedded in the generator, allow-
ing it to bias random decisions toward stimuli that
causes interesting events [42]. This testing knowledge
defines the interesting verification events, including
the stimuli that trigger them. As the stimuli for some
interesting events depend on the processor’s state,
the generator also employs a reference model of the
DUV, simulating on it for every generated instruction.
This way the generator maintains an accurate view of
all the architectural resources, taking it into account
during generation of interesting events. This scheme
is shown in the lower part of Figure 7.

Genesys-Pro has been in use by IBM for over
15 years. It has proven to be effective in meeting the
users’ requirements, enabling them to write test tem-
plates implementing the core verification plans of
IBM’s complex processors [43].

A unified verification methodology
To better integrate post-silicon validation to

the overall verification process and improve its
synergy with pre-silicon verification, a unified ver-
ification methodology is needed that is fed from
the same verification plan source. A key ingredient
for the success of such methodology is providing
common languages for the pre- and post-silicon
aspects of it in terms of test specification, progress

measure, etc. Figure 8 depicts such a methodology.
This verification methodology leverages three differ-
ent platforms: simulation, acceleration, and silicon.
The methodology requires three major components: a
verification plan, directable stimuli generators suited
to each platform, and functional coverage models.
Note that important aspects in any verification meth-
odology, such as checking, are omitted from the
figure to maintain focus on stimuli generation.

The verification plan includes a long list of line
items, each targeting a feature in the DUV that
needs to be verified. Each such feature is associ-
ated with coverage events that the verification team
expects to observe during the verification process
and the methods to be used to verify the feature.
The verification plan is implemented using random
stimuli generators that produce a large number
of test cases, and coverage tools that look for the
occurrence of events in the verification plan. The
random stimuli generators are directed toward the
verification goals by using test templates. The test
templates allow the generators to focus on areas
in the DUV ranging from large generic areas, like

Figure 7. Threadmill versus Genesys-Pro tool flows.

Figure 8. A unified verification methodology.

83May/June 2017

the floating-point unit, to very specific areas, like
a bypass between stages of the pipeline. Coverage
analysis identifies gaps in the implementation of the
plan. Its feedback is used to modify test templates
that do not fulfill their goals, and create new ones.

This methodology is extended to post-silicon
validation by leveraging the acceleration platform
to measure coverage of post-silicon tools. To take
advantage of the coverage information collected by
the accelerators and use it in the post-silicon, shortly
before first silicon samples come back from the fab,
a regression suite of exerciser test templates is cre-
ated based on the coverage achieved on the accel-
erators. This regression suite is then used to continue
the verification process on the silicon platform.

With the unified methodology, each of the line
items in the verification plan is attached to one or
more target platforms on which it will be verified.
These line items are converted to test templates
in the languages of the generation tools used by
each platform. A key ingredient for the success of
the unified methodology is similar operation of the
stimuli generators. In this sense, designers would
like the generators to use the same test-template
language, and when provided with the same test
template, one would like the tools to produce simi-
lar (though not identical) test cases. Of course, the
different platforms provide different opportunities
and put different constraints and requirements on
the generation tools, but whenever possible, there
are advantages to having similar tools. First, the pre-
and post-silicon teams can share the task of under-
standing the line-items in the verification plan and
planning ways to test them. In addition, the com-
mon language allows for easier adaptation of test
templates from one platform to another. For exam-
ple, when a bug is detected on the silicon platform,
narrowing down the test template and hitting it on
the simulation platform eases the root-cause analy-
sis effort.

It is important to note that the differences
between platforms also dictate differences in the
way test templates are written for pre- and post-sil-
icon tools. A test template could be very specific
and describe a small set of targeted tests or it could
be more general leaving more room for randomiza-
tion. The validation engineer writing test templates
for a post-silicon exerciser must bear in mind the
fact that the test template is used to generate a huge
number of test cases and get many processor cycles.

To effectively use these test cycles, the test template
must allow for enough interesting variation. A test
template that is too specific will quickly “run out of
steam” on silicon and start repeating similar tests. A
pre-silicon test template on the other hand would
typically be more directed to ensure that the tar-
geted scenarios are reached within the fewer cycles
available on simulation. There are also many efforts
in automated generation of directed tests using for-
mal methods [44]–[48].

Threadmill
Threadmill was developed in IBM for the purpose

of enabling the unified methodology described in
the previous subsection; namely, to support a verifi-
cation process guided by a verification plan by ena-
bling the validation engineers to guide the exerciser
through test templates. The high-level tool architec-
ture of Threadmill is depicted in Figure 7, along with
the flow of Genesys-Pro [49]—the pre-silicon test
generator tool described in the “Pre-silicon stimuli
generation” section.

Like Genesys-Pro, the main input to Threadmill is
a test template that specifies the desired scenarios.
As described earlier, the templates used for pre- and
post-silicon tests have different characteristics. The
test-template language of Threadmill is very similar
to the language of Genesys-Pro, but to adhere to the
simplicity and generation of speed requirements,
several constructs that require long generation time,
such as events, are not included in Threadmill’s lan-
guage. Other inputs to Threadmill are the architec-
tural model and testing knowledge and the system
topology. Again, for simplicity reasons, many testing
knowledge items that are included in Genesys-Pro
models are not used by Threadmill.

The Threadmill execution process starts with
a builder application that runs offline to create an
executable exerciser image. The role of the builder is
to convert the data incorporated in the test template
and the architectural model into data structures that
are then embedded into the exerciser image. This
scheme eliminates the need to access files or data-
bases while the exerciser is running.

The exerciser image is composed of three major
components: a thin, OS-like, layer of basic services
required for Threadmill’s bare-metal execution; a
representation of the test template, architectural
model, and system configuration description as
simple data structures; and fixed (test-template

84 IEEE Design&Test

Tutorial

independent) code that is responsible for exercis-
ing. The executable image created by the builder
is then loaded onto the silicon platform where the
exerciser indefinitely repeats the process of gener-
ating a random test case based on the test template,
the configuration and the architectural model, exe-
cuting it, and checking its results.

In the case of Genesys-Pro, the test generation
process is carried outside of the simulation envi-
ronment (say on a dedicated server) and only the
generated tests are loaded and run on the simulation
platform. Simulation cycles would be too slow to
allow generation on simulation. The “offline” gener-
ation on the other hand can afford to spend time on
sophisticated generation and checking—for exam-
ple by using a reference-model as shown in Figure 7
for Genesys-Pro. Threadmill’s test generation compo-
nent was designed to be simple and fast. Therefore,
IBM designers opted for a static test generator that
does not make use of a reference model. Reference
models provide the generator information about the
state of the processor before and after the genera-
tion of each instruction. This information is used for
checking but also to create more interesting events.
Reloading resources, such as registers, can be a par-
tial replacement to the reference model, but this
solution potentially interferes with the generation of
the requested scenarios. For data-oriented events,
such as divide-by-zero, a simple yet effective solution
is to reserve registers to hold interesting values. Of
course, the generator has to ensure that the reserved
registers are not modified during the test.

Execution of the same test case multiple times is
used as a partial replacement for checking done by
the reference model. This is done by comparison of
certain resource values such as registers and part of
the memory for consistency in different executions
of the test case. Running the same test case multiple
times may result in different results even when bugs
are not present. For example, when several threads
write to the same memory location, the final value at
this location depends on the order of the write oper-
ations. This requires that certain mechanisms be
implemented in the generator to restrict the number
of unpredictable resources. Although the multipass
comparison checking technique is limited, it has
proven to be effective when control-path oriented
bugs, or bugs that reside in the intersection of the
control and data paths, are concerned. To increase
the probability of exposing such bugs, it is beneficial

to introduce some kind of variability into the differ-
ent execution passes, while making sure that the var-
iability maintains the predictability of the compared
resources. This can be done, for example, by chang-
ing the machine mode, or changing thread priorities.

Tests targeting errors
We now turn to the question: how can we ensure

that a test excites a bug and propagates it to a failure
within a reasonable time? In this subsection, we con-
sider the question from the perspective of test gener-
ation; in the next subsection the same question will
be considered from the perspective of observability
constraints.

Traditionally, post-silicon tests have sported a long
latency between when a bug is excited and when its
effect is observed as a failure. For instance, consider
a memory write to some address that writes an incor-
rect value. The effect of this bug may not be observed
unless the value written is subsequently read (maybe
several thousands of cycles later) and the error result-
ing from this read propagated to cause some observ-
able effects. Clearly, it is important to reduce the
latency of error observability, from the point in which
the bug is triggered to an observable effect.

There has been significant research in develop-
ing effective post-silicon tests. In particular, a general
technique called quick error detection (QED) spe-
cifically focuses on reducing the latency mentioned
above [50], [51]. The idea is to transform a test into
another one with lower latency between bug excita-
tion and failure. For instance, for the memory read
example above, a QED test would transform the orig-
inal test by introducing a memory read immediately
after each memory write; thus, an error introduced
by the write would be excited immediately by the
corresponding read. Note that doing this in general
requires a comprehensive characterization of errors
in terms of a cause–effect relationship. QED manages
it by defining this relationship for errors in a num-
ber of categories. By capturing a diversity of error
characterizations, it has managed to be successfully
adapted for a diversity of post-silicon tests, including
those for functional as well as electrical errors.

Observability-aware test generation
Observability constraints make it difficult to diag-

nose bugs. In fact, it is also difficult to figure out if a
test has executed as expected, if the result of that test
execution activates a signal that is not observable.

85May/June 2017

Therefore, it is crucial that the post-silicon tests are
observable directly (if it activates one of the trace sig-
nals) or indirectly (values of the activated signal can
be restored using the trace signals). Unfortunately, it
would be hard to generate observability-aware tests
for various reasons. First, the post-silicon test genera-
tion and trace signal selection are typically performed
concurrently by different teams during an industrial
SoC development. Moreover, it is difficult to per-
form automated generation of observability-aware
directed tests after the observability architecture has
been defined. This is due to the fact that such a test
generation approach would require analysis of com-
plex and potentially buggy RTL models. Industrial
RTL models consist of millions of lines of code, and
therefore, automated formal analysis of such mod-
els exceeds the capacity limitations of directed test
generation tools. Even if such an analysis was possi-
ble, the generated test would not be useful if the RTL
models contains functional or design errors—an erro-
neous model can at best lead to generation of buggy
tests, which is unlikely to activate the design flaws.
Even if it activates a specific scenario, the accuracy
of such a validation method becomes questionable.

Recent research efforts [52] provide an alternative
mechanism to generate observability-aware post-sil-
icon tests using golden pre-silicon models. The test
generation is performed by analyzing golden
transaction-level models (TLM) instead of
buggy RTL models. Analysis of TLM model
also takes care of the scalability issue since
a TLM model is significantly simpler than the
respective RTL model. Clearly, this approach
requires a golden TLM model. This work also
assumes that both TLM and RTL models have
the same input/output interfaces at both SoC
and individual component levels. This is rea-
sonable for SoC design since it consists of
hardware or software intellectual property
(IP) blocks with well-defined interfaces.

Figure 9 provides an overview of observ-
ability-aware test generation for a given
RTL assertion. This approach involves four
important steps:

1) defining test targets with observability
constraints;

2) mapping test targets from RTL to TLM;
3) test generation using TLM model;
4) translating TLM tests to RTL tests.

This work essentially incorporates observability
constraints into an RTL assertion to create a new RTL
assertion. The modified assertion is then mapped to
a TLM property. The TLM property is used to auto-
matically construct a TLM test. The last step is to con-
vert the generated TLM test to an RTL test [53]. The
generated RTL test is observability-friendly, since it
would not only activate the assertion but also propa-
gate its effects to the observability architecture (e.g.,
trace signals).

Post-silicon validation of IBM POWER8
In this section, we provide a high-level overview

of the post-silicon methodology and technologies
put into use for functional validation of POWER8.
We describe various factors that contributed to this
successful bring-up. A detailed discussion on the
functional verification of POWER8 and its bring-up
can be found in [54] and [55].

The POWER8 Chip
POWER8 is the latest IBM chip in the POWER

series. Designed for high-end enterprise-class serv-
ers, it is one of the most complex processors ever
created. The POWER8 chip is fabricated with IBM’s
22 nm silicon-on-insulator technology using copper

Figure 9. Observability-aware test generation consists of four
important steps: construct RTL assertion with observability
constraints, map RTL assertion to TLM, generate TLM test,
and translate TLM to RTL test.

86 IEEE Design&Test

Tutorial

interconnects and 15 layers of metal. The chip is
650 mm2 and contains over 5 billion transistors.

Figure 10 depicts a high-level block diagram of
the POWER8 processor chip. Each processor chip
has 12 cores. Each core is capable of 8-way simul-
taneous-multithreading (SMT) operation, and
can issue up to 10 instructions every cycle. The
memory hierarchy includes a per-core L1 cache,
a per-core SRAM-based 512KB L2 cache, and an
eDRAM-based shared L3 cache. In addition, an off-
chip eDRAM L4 cache per memory buffer chip is
supported. There are two memory controllers on
the chip supporting a sustained bandwidth of up
to 230 GB/s. The chip also holds a set of hardware
accelerators, including a cryptographic accelera-
tor and a memory compress/decompress mech-
anism. Finally, the chip includes a PCIe adapter
and bridge to a bus supporting a coherent con-
nection to an FPGA. The FPGA is directly acces-
sible to user applications through a hashed table
translation.

Preparing for the lab
The bring-up work of POWER8 started way before

silicon samples were ready. The team responsible
for preparing the tools and tests for the lab began its
work as soon as the key features of POWER8 were
determined at the high-level design (HLD) stage. The
first step in that work was to ensure that the post-sil-
icon tool teams better understand the new features
they need to support and the design team under-
stand the validation requirements and incorporate
them into the design.

When sufficient functional stability was achieved,
the pre-silicon verification team, together with the
exerciser team, started running exerciser shifts on
Awan simulation acceleration platform [56]. This
phase, termed exercisers on accelerator (EoA),
achieved several goals. First, it ensured the quality
of the exercisers software. In addition, it helped the
pre-silicon verification of POWER8. In fact, EoA was
responsible for finding about 1 percent of the total
bugs found in pre-silicon verification. Finally, EoA
was used to develop and test the shifts that were later
used during the actual bring-up.

To that extent, an important aspect of the EoA
work was the synthesis of coverage monitors syn-
thesized into the DUT model. These coverage mon-
itors were added to the logic model running on the
accelerator, but not to the silicon itself, because of

area, timing, and power issues. Leveraging acceler-
ation-synthesized coverage monitors allowed the
use of a pre-silicon-like coverage-driven method-
ology for post-silicon test development [57]. With
this approach, the exerciser shift developers could
validate that a specific shift covers the targeted func-
tionality. This is done by observing that the related
coverage events are hit when the exerciser shift is
run on the accelerator. The acceleration-synthesized
coverage monitors played a major role in selecting
which shifts to run during bring-up to best utilize the
scarce silicon resources. There are also recent efforts
in post-silicon coverage analysis without using syn-
thesized coverage monitors [58]. A different use of
accelerators during the bring-up preparation was to
prepare the different procedures and tools for the
lab team. This included the validation of the differ-
ent steps required to boot the system (virtual pow-
er-on, or VPO), track the execution of an exerciser
as it runs, and dump and format debug data from the
embedded trace arrays.

Triggering bus—Stimuli generation
Bare-metal exercisers (an example of which is

described in the “Threadmill” section) were the pri-
mary vehicle for test-case generation in the POWER8
post-silicon validation. The characteristics of the
post-silicon platforms create challenges and impose
tradeoffs that affect the design of these exercisers.
While post-silicon platforms offer a huge number of
execution cycles, their low availability and high cost
calls for maximizing the time spent executing test
cases and minimizing overhead. Accordingly, the
exerciser team developed a set of exercisers, each

Figure 10. The POWER8 processor chip.

87May/June 2017

capturing a different tradeoff between generation
complexity and checking capabilities. Bare-metal
exercisers possess a list of attributes that make them
highly suitable for post-silicon validation. Bare-metal
exercisers are inherently “self-contained,” meaning
that once the exerciser shift is loaded onto the plat-
form, be it an accelerator or a silicon one, it can run
“forever” with no interaction with the environment.
This significantly reduces the overhead related to
initializing the platform, loading the exerciser, and
so on.

Overall, during the POWER8 pre-and post-sili-
con development process, the bare-metal exercisers
approach proved highly successful, as in the case of
other previous processors. This approach is key in
IBM’s post-silicon validation strategy. In fact, bugs that
were found with OS-based tests or actual software are
considered escapes from our validation strategy.

In addition to bare-metal exercisers, IBM design-
ers leveraged a set of hardware irritators embedded
in the design. A hardware irritator is a piece of logic
embedded in the design that can trigger microarchi-
tectural events at random. The irritators are initial-
ized during the processor’s power-on sequence, and
randomly inject events as the processor executes
instructions. For example, an irritator can be used
to flush the pipeline at random, without having the
executed instruction stream create the conditions
required for this event.

Irritators are extremely useful in bringing the
DUT to some “tough” corners, without creating
the stimuli needed to actually reach these corners.
Furthermore, irritators can mimic large system
behavior. For example, in a single chip system, an
irritator can inject a random translation lookaside
buffer (TLB) invalidate-entry event as if it were com-
ing from a different chip.

Different components in the POWER8 chip sup-
port nonfunctional running modes, introduced for
the sake of validation. These modes further assisted
the bring-up team in stressing the design. For exam-
ple, the POWER8 L2 cache supports a mode in which
almost every access would trigger a cast-out. By set-
ting the processor to this state, one could aggravate
the stress on the L3 cache.

Since hardware irritators and nonfunctional
modes are embedded in the design, and, accord-
ingly, have an overhead in terms of area and power,
they must be carefully thought of and designed as a
part of the processor.

Checking
POWER8 employed two main checking tech-

niques in its post-silicon validation: checkers embed-
ded in the hardware and software checkers that are
part of the bare-metal exercisers. Hardware-based
checkers were designed and embedded into the
POWER8 processor. These checkers cover some
generic erroneous behavior such as access out
of memory, and a timer- based hang checkers for
instruction completion.

During the POWER8 post-silicon validation, it was
easier to debug failures triggered by hardware-based
checkers. This was because when a failure was
triggered by such a checker, the DUT was stopped
fairly close to the origin of the bug. Accordingly, the
debug logic, once configured to trace the relevant
component in the design, typically contained valu-
able hints as to the origin of the bug. Furthermore,
some checkers provide an initial indication when
they fire. For example, when the access out of mem-
ory checker fires, the transaction that triggered it is
captured in the bus’ debug logic and points to the
hardware thread and address that triggered the fail.

Despite their effectiveness, the use of hard-
ware-based checkers is limited due to their high cost
in terms of area and power, and their effect on tim-
ing. Therefore, software-based checkers were also
heavily used for failure detection in the POWER8
post-silicon validation.

Bare-metal exercisers employ a checking tech-
nique called multipass consistency checking [59].
In this technique, every test case is executed sev-
eral times (passes). The first pass is referred to as a
reference pass, and the values of certain resources,
such as architected registers and some memory, are
saved at the end of the execution of this pass. After
following passes, the exerciser compares the end-of-
pass values with those of the reference pass. In case
an inconsistency is detected, the error is reported
and the execution is stopped. The multipass con-
sistency checking technique imposes restrictions on
test generation. For example, write–write collisions
between different threads to the same memory loca-
tion, where the order of thread accesses cannot be
determined may yield inconsistent results and are
therefore not supported.

Multipass consistency failures were very hard to
debug. This occurred primarily because the check-
ing flags the error millions, and sometimes billions,
of cycles after the error first occurred.

88 IEEE Design&Test

Tutorial

Despite the restrictions and the difficulty in
debugging such failures, multipass consistency
checking has proven useful in finding some of the
toughest functional bugs in POWER8.

In addition to multipass consistency checking,
exerciser developers introduced self-checking state-
ments into some of the scenarios. Such checks were
only applicable in directed scenarios and required
manual labor, but were useful in better localizing
the fail, preventing errors from being masked, and
extending the attributes checked for such scenarios.

Debug
As discussed in the “Silicon validation challenges”

section, post-silicon debug is a major challenge.
Even with the best practices used in the IBM post-sili-
con lab during the validation of the POWER8 proces-
sor, debugging of failures found in the lab was a long
and tedious process.

When a test case failed in the lab, the first step
in its debug is to determine the cause of the failure.
The origin of the failure could be one of numerous
reasons, including a manufacturing issue, erroneous
machine setup, an electrical bug, a functional bug,
or a software bug in the exerciser. This is done by
rerunning the failing tests in similar but not identical
settings. For example, manufacturing problems can
be detected by repeating the same test on a differ-
ent core or chip and watch the test passing. Next,
additional experiments were conducted with a goal
to determine key aspects in the hardware configu-
ration that were required to hit the failure. Such
experiments can be done by changing the hardware
setup, e.g., disabling some of the processor cores, or
modifying the number of active hardware threads in
the core.

Another approach to debugging failures was to
reproduce them on the acceleration platform. This
approach relied heavily on the use of tools, specifi-
cally, bare-metal exercisers, that can effectively run
on both the hardware and an accelerator. Because
the hardware platform is over six orders of magni-
tude faster than the acceleration platform, a failing
shift could not be migrated from silicon to accelera-
tion as-is. Typically, a set of experiments is required
to fine-tune the exerciser shift in order to make it
hit the failure on silicon fast enough to enable rec-
reation on acceleration. With the enhanced observ-
ability capabilities of the acceleration platform,
recreating a bug was sufficient in order to provide

the logic designer all the data required to determine
the root cause of the bug.

Finally, if neither of the approaches described
above succeeded, the lab team had to drive the
debug process based only on the data available from
the on-chip trace arrays. The POWER8 debug logic,
which is similar to that described by Riley et al. [60],
has three key attributes that enable effective debug.
First, the trace array can be configured, as a part of
the hardware’s initialization, to track different parts
of the design. Second, the debug logic can be config-
ured to trace compound events. Finally, the events
on which the trace arrays store their input can also
be configured. Therefore, instead of saving inputs at
every clock cycle, the trace arrays can be configured
to latch data only when some event is detected. This
enabled noncontinuous tracing of events, which
has proven useful in some hard debug cases. As pre-
sented in the “Trace signal selection” section, select-
ing which signals can be traced is an important part
of the work done as part of the preparation to the
bring-up. Selecting which signals to actually trace
and when to trigger tracing is a challenge the lab
team needs to handle.

To that extent, a key feature facilitating effective
post-silicon debug in POWER8 is the existence of
the cycle reproducible environment. This environ-
ment is a special hardware mode in which execut-
ing the same exerciser shift would reproduce the
exact same results. Leveraging this mode, the team
could rerun the same exerciser shift repeatedly with
different trace array configurations in different runs,
e.g., by terminating the trace at different cycle count
[60]. This option, combined with BackSpace [8],
was used to aggregate data from multiple runs for
longer traces that significantly improved the ability
for efficient debug.

Results
The POWER8 bring-up is considered as a very

successful one. The team was able to keep a bug
discovery and resolution rate equal to or better than
previous POWER processor bring-up efforts, with sig-
nificantly less resources.

The results of the POWER8 bring-up are partly
depicted by Figure 11 and Table II. Every point in
the figure accounts for one bug. The location of the
point on the x-axis, termed detect time, relates to the
number of days from the beginning of bring-up to
the day the bug was first hit. A point’s location on

89May/June 2017

the y-axis, termed debug time, relates to the number
of days from the time the bug was first hit to the time
its root cause was determined. Table 2 summarizes
the data presented in Figure 11. The table shows, per
bug severity, the average and 90 percentile of debug
time. For example, medium severity bugs required,
on average, 10.07 days to root cause, and 90% of all
medium severity bugs required 20, or less, days to
root cause. Overall, about 1% of all POWER8 bugs
were found in the post-silicon validation phase.

The bugs are divided into three classes, based
on their severity. The severity of the bug was deter-
mined based on a combination of the impact of
the bug on the functional behavior of the system,
the performance cost of working around the bug
(if that was possible), and the complexity of the fix.
The severity of a bug could only be determined after
its root cause was found and a fix was suggested.
Figure 11 shows that the debug time for high severity
bugs is significantly lower, on average, than that of
other classes of bugs. This indicates that the lab team
effectively speculated the severity of each bug at a

very early stage. This is attributed to the expertise of
the lab team members; based on the limited data
available, they were able to infer the real nature of
the bug and its expected severity when the bug was
first detected.

Figure 11 also shows how the rigorous prepara-
tions for the bring-up paid off. Half of all POWER8
post-silicon bugs were found in the first three months
of the bring-up. This is considered a very good result,
since during the first two months of the bring-up the
team had to dedicate a lot of time to overcoming
hardware stability issues and to “screen” the manu-
factured chips for good functioning ones.

We have provided an overview of post-silicon
validation and debug for heterogeneous SoCs. We
have described various challenges in performing
post-silicon validation. We also surveyed exist-
ing approaches to address these challenges. The
importance of post-silicon validation has increased
steadily over the years—many studies suggest up to
50% overall cost (time) for post-silicon validation.
Considering the dramatic increase in the num-
ber of IoT devices in a wide variety of domains,
post-silicon validation of SoC designs is expected
to remain in the limelight for a long time. Although
this paper covered a wide variety of topics related
to post-silicon validation and debug, the materi-
als discussed here form only the tip of the iceberg
of this large and exciting domain. Nevertheless,
we hope this paper provides a starting point for
researchers in understanding the industrial prac-
tice and research challenges in this area. There
is a significant scope for pushing the research
envelope above and beyond the current limits,
and it is crucial that we do so to enable develop-
ment of cost-effective, reliable, and secure com-
puting systems.

Acknowledgments
This work was supported in part by the NSF

Grants (CCF-1218629 and CNS-1441667) and in part
by the SRC Grant (2014-TS-2554). Any opinions, find-
ings, conclusions, or recommendations presented
in this article are only those of the authors, and do
not necessarily reflect the views of the National
Science Foundation or Semiconductor Research
Corporation.

Table 2 Statistics of days to root cause.

Average 90%
Low 9.92 22

Medium 10.07 20
High 5.96 12

Figure 11. POWER8 bring-up results.

90 IEEE Design&Test

Tutorial

References
 [1] S. Ray, Y. Jin, and A. Raychowdhury, “The changing

computing paradigm with internet of things: A tutorial

introduction,” IEEE Design Test Comput., vol. 33, no.

2, pp. 76–96, 2016.

 [2] D. Evans, “The internet of things—How the next evolution

of the internet is changing everything,” White Paper

Cisco Internet Business Solutions Group (IBSG), 2011.

 [3] P. Mishra and N. Dutt, Functional Verification of

Programmable Embedded Architectures: A Top-Down

Approach, Springer-Verlag, 2005.

 [4] S.-B. Park, T. Hong, and S. Mitra, “Post-silicon bug

localization in processors using instruction footprint

recording and analysis (ifra),” IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 28, no. 10,

pp. 1545–1558, 2009.

 [5] V.V. Ethiraj and K. Safford, “PSMI using at-speed scan

capture,” 2011, U.S. Patent App. PCT/US2011/066-656.

 [6] R. Rodrigues and S. Kundu, “Shadow checker: A low-

cost hardware scheme for online detection of faults in

small memory structures of a microprocessor,” in Proc.

Int. Test Conf., 2010.

 [7] S. Ray and W.A. Hunt, Jr., “Connecting pre-silicon and

post-silicon verification,” in Proc. 9th Int. Conf. Formal

Methods Comput.-Aided Design (FMCAD 2009),

pp. 160–163.

 [8] F. M. De Paula, A.J. Hu, and A. Nahir, “nuTAB-

BackSpace: Rewriting to normalize non-determinism

in post-silicon debug traces,” in Proc. Int. Conf.

Comput.-Aided Verifi., 2012, pp. 513–531.

 [9] Virutech Simics. [Online]. Available: http://www.simics.

net, 2009.

 [10] “Prototyping with virtualizer,” http://www.synop-sys.com/

Prototyping/VirtualPrototyping/Pages/virtualizer.aspx.

 [11] Zebu http://www.synopsys.com/tools/verification/

hardware-verification/emulation/Pages/default.aspx.

 [12] Palladium Z1 Enterprise Emulation System. [Online].

Available: www.cadence.com.

 [13] Veloce2 Emulator. [Online]. Available: https://www.

mentor.com- /products/fv/emulation-systems/veloce.

 [14] R. Rowlette and T. Elies, “Critical timing analysis

in microprocessors using near-IR laser-assisted

device alteration (LADA),” in Proc. Int. Test Conf.,

2003, pp. 264–273.

 [15] S. Ram et al., “Clock generation and distribution for

the first IA-64 microprocessor,” IEEE J. Solid-State

Circuits, vol. 35, pp. 1545–1552, 2000.

 [16] D. Kaiss and J. Kalechstain, “Post-silicon Timing

diagnosis made simple using formal technology,” in

Proc. FMCAD, 2014, pp. 131–138.

 [17] O. Olivo et al., “A unified formal framework for

analyzing functional and speed-path properties,” in

Proc. 2011 12th Int. Workshop Microprocessor Test

Verification, 2011, pp. 44–45.

 [18] X. Guo et al., “Pre-silicon security verification and

validation: A formal perspective,” in Proc. Design

Autom. Conf., 2015.

 [19] Homebrew Development Wiki, JTAG-Hack. [Online].

Available: http://dev360.wikia.com/wiki/JTAG-Hack.

 [20] L. Greenemeier, “iPhone hacks annoy AT&T but are

unlikely to bruise apple,” Scientific American, 2007.

 [21] E. Seligman, T. Schubert, and M.V.A. Kiran Kumar,

Formal Verification: An Essential Toolkit for Modern

VLSI Design, Morgan Kaufman, 2015.

 [22] M. Abramovici et al., “A reconfigurable design-for-

debug infrastructure for SoCs,” in Proc. 43rd Design

Autom. Conf. (DAC 2006), 2006, pp. 7–12.

 [23] P. Patra, “On the cusp of a validation wall,” IEEE

Design Test Comp., vol. 24, no. 2, pp. 193–196, 2007.

 [24] G. Gopalakrishnan and C. Chou, “The post-silicon

verification problem: Designing limited observability

checkers for shared memory processors,” in Proc. 5th

Int. Workshop Designing Correct Circuits (DCC 2004).

 [25] M. Boule, J. Chenard, and Z. Zilic, “Adding debug

enhancements to assertion checkers for hardware

emulation and silicon debug,” in Proc. Int. Conf. Comput.

Design, 2006, pp. 294–299.

 [26] CoreSight On-Chip Trace & Debug Architecture.

[Online]. Available: www.arm.com.

 [27] Intel® Platform Analysis Library. [Online]. Available:

https://software.intel.com/en- us/intel-platform-

analysis-library.

 [28] K. Basu and P. Mishra, “Restoration-aware trace signal

selection for post silicon validation,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 21, no. 4,

pp. 605–613, 2013.

 [29] H. F. Ko and N. Nicolici, “Algorithms for state restoration

and trace-signal selection for data acquisition in silicon

debug,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 28, no. 2, pp. 285–297, 2009.

 [30] X. Liu and Q. Xu, “Trace signal selection for visibility

enhancement in post-silicon validation,” in Proc.

Design Auto. Test Eur., 2009.

 [31] S. Prabhakar and M. Hsiao, “Using non-trivial logic

implications for trace buffer-based silicon debug,” in

Proc. Asian Test Symp. (ATS), 2009, pp. 131–136.

 [32] D. Chatterjee, C. McCarter, and V. Bertacco,

“Simulation-based signal selection for state restoration

in silicon debug,” in Proc. Int. Conf. Comput.-Aided

Design (ICCAD), 2011, pp. 595–601.

91May/June 2017

 [33] M. Li and A. Davoodi, “A hybrid approach for fast and

accurate trace signal selection for post-silicon debug,”

in Proc. Design Autom. Test Eur. (DATE), 2013,

pp. 485–490.

 [34] K. Rahmani, P. Mishra, and S. Ray, “Efficient trace

signal selection using augmentation and ILP

techniques,” in Proc. Int. Symp. Quality Electron.

Design (ISQED), 2014, pp. 148–155.

 [35] “Scalable trace signal selection using machine

learning,” in Proc. IEEE Int. Conf. Comput. Design

(ICCD), 2013, pp. 384–389.

 [36] K. Rahmani, S. Ray, and P. Mishra, “Post-silicon trace

signal selection using machine learning techniques,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2017.

 [37] K. Basu, P. Mishra, and P. Patra, “Efficient combination

of trace and scan signals for post silicon validation and

debug,” in Proc. Int. Test Conf. (ITC), 2001.

 [38] K. Rahmani, S. Proch, and P. Mishra, “Efficient

selection of trace and scan signals for post-silicon

debug,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst. vol. 24, no. 1, pp. 313–323, 2016.

 [39] J. Yang and N. Touba, “Automated selection of signals

to observe for efficient silicon debug,” in Proc. VLSI

Test Symp., 2009, pp. 79–84.

 [40] S. Ma et al., “Can’t see the forest for trees: State

restoration’s limitations in post-silicon trace signal

selcection,” in Proc. ICCAD, 2015, pp. 1–8.

 [41] A. Adir et al., “Genesys-pro: Innovations in test

program generation for functional processor

verification,” IEEE Design Test Comput., vol. 21, no. 2,

pp. 84–93, 2004.

 [42] Y. Naveh et al., “Constraint-based random stimuli

generation for hardware verification,” AAAI, 2006.

 [43] D.W. Victor et al., “Functional verification of

the POWER5 microprocessor and POWER5

multiprocessor systems,” IBM J. Res. Develop.,

vol. 49, no. 4, pp. 541–554, 2005.

 [44] M. Chen et al., System-Level Validation: High-Level

Modeling and Directed Test Generation Techniques,

Springer-Verlag, 2012.

 [45] X. Qin and P. Mishra, “Directed test generation for

validation of multicore architectures,” ACM Trans.

Design Autom. Electron. Syst. (TODAES), 2012.

 [46] M. Chen and P. Mishra, “Property learning techniques

for efficient generation of directed tests,” IEEE Trans.

Comput. vol. 60, no. 6, pp. 852–864, 2011.

 [47] “Functional test generation using efficient property

clustering and learning techniques,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 29,

no. 3, pp. 396–404, 2010.

 [48] F. Farahmandi and P. Mishra, “Automated test

generation for debugging arithmetic circuits,” in Proc.

Design Autom. Test Eur. (DATE), 2016.

 [49] M.L. Behm et al., “Industrial experience with test

generation languages for processor verification,” in

Proc. DAC, 2004, pp. 36–40.

 [50] T. Hong et al., “QED: Quick error detection tests for

effective post-silicon validation,” in Proc. Int. Test

Conf., 2010, pp. 154–163.

 [51] D. Lin et al., “Effective post-silicon validation of

system-on-chips using quick error detection,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst.,

vol. 33, no. 10, pp. 1573–1590, 2014.

 [52] F. Farahmandi, P. Mishra, and S. Ray, “Exploiting

transaction level models for observability-aware post-

silicon test generation,” in Proc. Design Autom. Test

Eur. (DATE), 2016.

 [53] M. Chen and P. Mishra, “Automatic RTL test generation

from systemC TLM specifications,” ACM Trans.

Embedded Comput. Syst. (TECS), vol. 11, no. 2, 2012.

 [54] K.D. Schubert et al., “Solutions to IBM power8

verification challenges,” IBM J. Res. Develop., vol. 59,

no. 1, pp. 11:1–11:17, 2015.

 [55] A. Nahir et al., “Post-silicon validation of the IBM

power8 processor,” in 2014 51st ACM/EDAC/IEEE

Design Autom. Conf. (DAC), June 2014, pp. 1–6.

 [56] J. Darringer et al., “EDA in IBM: Past, present, and

future,” IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 19, no. 12, pp. 1476–1497, 2000.

 [57] A. Adir et al., “Reaching coverage closure in post-

silicon validation,” in Proc. 6th Haifa Verification Conf.,

ser. LNCS 6504, Springer-Verlag, 2010, pp. 60–74.

 [58] F. Farahmandi et al., “Cost-effective analysis of post-

silicon functional coverage events,” in Proc. Design

Autom. Test Eur. (DATE), 2017.

 [59] A. Adir et al., “Threadmill: A post-silicon exerciser

for multi-threaded processors,” in Proc. 48th Design

Autom. Conf., 2011, pp. 860–865.

 [60] M. Riley et al., “Debug of the CELL processor: Moving

the lab into silicon,” in Proc. IEEE Int. Test Conf.,

2006, pp. 1–9.

Prabhat Mishra is a Professor in the CISE
Department, University of Florida. Mishra has a
PhD from the University of California, Irvine. He has
published five books and more than 125 research
articles in the area of SoC validation and debug,
embedded systems, and hardware security and
trust. He is an ACM Distinguished Scientist and a
Senior Member of the IEEE.

92 IEEE Design&Test

Tutorial

Ronny Morad is manager of the Post Silicon
Validation Technologies and Analytics group in IBM
Research—Haifa lab, Israel. His research interests
focus on functional and performance verification
across all platforms and advanced analytics. Morad
has an MSc in computer science from the University
of Tel-Aviv, Israel.

Avi Ziv is a Research Staff member in the
Hardware Verification Technologies Department at
IBM Research—Haifa, Israel. His work and research
interest include functional verification and analytics
and post-silicon validation. Ziv has a PhD in electrical
engineering from Stanford University. He is a Senior
Member of the IEEE and ACM.

Sandip Ray is a Senior Principal Engineer at NXP
Semiconductors, where he leads R&D on security
validation for automotive and Internet-of-Things (IoT)
applications. He is the author of three books and
over 60 publications in international journals and
conferences. Ray has a PhD from the University of
Texas at Austin. He is a Senior Member of the IEEE.

 Direct questions and comments about this article
to Prabhat Mishra, University of Florida, Gainesville, FL
32611-6120 USA; prabhat@ufl.edu.

