
EvilCS: An Evaluation of Information Leakage through
Context Switching on Security Enclaves

Aruna Jayasena, Richard Bachmann and Prabhat Mishra
University of Florida, Gainesville, Florida, USA

Abstract—Security enclaves provide isolated execution envi-
ronments for trusted applications. However, modern processors
utilize diverse performance enhancement methods (e.g., branch
prediction and parallel execution) that can introduce security
vulnerabilities. Specifically, if a processor leaks any information,
an adversary can monitor and recover secrets from trusted
applications. This paper makes a connection between context
switching and information leakage in security enclaves. We
present an evaluation framework that analyzes the potential
channels through which context switching can expose sensitive
information across the security enclave boundaries as a physical
side-channel signature. Specifically, we propose a statistical infor-
mation leakage assessment technique to evaluate the side-channel
leakage of a security enclave during the pre-silicon design stage.
Experimental evaluation on multiple RISC-V security enclaves
reveals that context switching introduces power side channels
that an adversary can exploit to infer the execution sequences as
well as register values of trusted applications.

I. INTRODUCTION

System-on-Chip (SoC) design needs to consider various
conflicting constraints, including area, power, performance,
and security. For example, modern processors utilize per-
formance enhancement features (e.g., branch prediction and
speculative execution) that can negatively impact area and
power requirements. The power usage and performance are
important considerations since it has a direct impact on energy
efficiency and thermal regulation, which in turn affects the
battery life. Previous studies have demonstrated that the power
consumption of a processor can inadvertently leak sensitive
information through the power and electromagnetic side chan-
nels [1], [2]. These side channels arise from the variations in
power consumption caused by different internal operations,
such as instruction execution and data access. An adversary
can exploit these side-channel leaks to deduce valuable internal
details about the processor’s operations, potentially leading to
the extraction of cryptographic keys, confidential data, or even
details about the execution of specific instructions. Due to
significant concerns regarding security and privacy, there has
been a widespread adoption of security enclaves, often known
as trusted execution environments (TEEs).

A. Security Enclave Kernels

The objective of a trusted execution environment is to main-
tain the confidentiality and integrity of sensitive applications
by isolating them from other (potentially compromised) appli-
cations. Security enclaves provide process isolation utilizing
the specific hardware functionalities while providing basic

This work was partially supported by the grants from NSF (CCF-
1908131) and Semiconductor Research Corporation (2022-HW-3128).

Un-Trusted Process (P1)

Trusted Code (P2)

Enclave
Kernel

Save States in P1
Load States in P2

Enclave
Kernel

Save States in P1
Load States in P2

Un-Trusted Process (P1)

Enclave
Kernel

Save States in P2
Load States in P1

Main Memory

tim
e

x1

x31

x31

x1

x31

x1

Fig. 1: An overview of context switching between two pro-
cesses (P1 and P2). When switching from P1 to P2, the
enclave kernel creates a hardware thread (Hart) and saves the
context of P1 (e.g., contents of the registers) into the memory.
Similarly, it needs to load the contents of P2 from the memory
(restore context) into the registers before P2 starts execution.

kernel functionalities such as scheduling, context switching,
and interrupt handling. Open-source instruction sets such as
RISC-V have enabled the development of processor designs
customized to match specific application requirements. This
adaptability allows for the formation of various security en-
clave setups, utilizing different hardware IP cores in conjunc-
tion with a range of security enclave kernels. Keystone [3],
Multizone [4], and OpenMZ [5] are example security en-
clave kernels targeted at RISC-V instruction-set architecture.
These security enclave kernels effectively utilize the physical
memory protection (PMP) feature available in the RISC-V
instruction set to provide process isolation. This allows the
user to run untrusted applications alongside security-sensitive
applications, without the former infringing on the latter.

B. Hardware Threads: Hart

Simultaneous multithreading (SMT) in RISC-V introduces
the concept of “Hart” to enhance throughput and improve
utilization in a processing core. In a single-core processor
with hardware multithreading, a hart represents an indepen-
dent thread of execution. Each hart operates as a virtualized
execution unit within the same physical core. They share the
same execution resources, such as the execution pipelines and
functional units, while maintaining their separate sets of archi-
tectural registers and program counters. This allows multiple
threads to make progress simultaneously within the same core.
The process of isolating the hart is made possible through a
context-switching call from the system kernel or the operating
system. Figure 1 illustrates a scenario where a security enclave
kernel is saving the general purpose registers (GPRs) and
control and status registers (CSRs) during the execution of two

937800 938000 938200 938400 938600 938800 939000 939200Clock Cycles

20

40

60

m
W

Normal Execution
Context Switch

Fig. 2: Context switching power profile of a RISC-V SoC running OpenMZ Security Kernel compared with the normal
execution. The context-switching process can be visually observed by a simple power analysis due to the block-wise change
of system registers and utilization of the memory bus for bulk read/write transfer of register values.

processes of P1 and P2. Modern processors employ preemptive
thread termination through timed interruptions to facilitate the
context-switching process. This mechanism enables the kernel
to regain control when necessary.

C. Threat Model: EvilCS Vulnerability

To start a context switch, the hardware needs to create
an interrupt, pause the execution of the current process, and
let the kernel take over the process handling. In return, the
kernel needs to save register values from the previous (paused)
execution process and load the register values from the new
execution process. A common implementation of this kernel
functionality is illustrated in Figure 3. This process involves
bulk register value swaps and memory bus transfers to load and
store values involved in the context-switching process. Both
register value swaps and memory bus transfers significantly
change the side-channel signature of the device [6]. Figure 2
illustrates a power side channel signature of a RISC-V-based
SoC running OpenMZ security kernel during a context switch
process. This creates a perfect opportunity for an adversary
to analyze the side-channel signature to retrieve information.
We refer this capability as “EvilCS”, where an adversary
maliciously utilizes the context switch to recover sensitive
data from the trusted application in the security enclave. In
order to exploit the EvilCS, the adversary should have physical
access to the device to observe the power signature of the
SoC. We assume that the kernel and hardware implementations
are open source (e.g., RISC-V). Therefore, an adversary can
identify the timing information to exploit EvilCS to launch
an attack. The adversary is interested in recovering the GPR
values rather than the CSR values since their objective is to
recover computations within the security enclave and not the
configuration of the enclave which may be publicly available.

D. Contributions

We propose a statistics-based strategy for assessing both the
hardware and firmware of security enclave implementations.
Specifically, this paper makes the following contributions,

• We show that sensitive register data of trusted applica-
tions running on an SoC can be recovered via power
signature during the context switching.

• We propose a test generation technique to maximize the
side-channel sensitivity of the context switch process.

• We formulate a change point detection technique that
automatically isolates the power signature that is related
to the context-switch process from the power profile.

.macro ctx_save base
sw ra, 0(\base)
sw sp, 4(\base)
sw s0, 8(\base)
sw s1, 12(\base)
sw s2, 16(\base)
sw s3, 20(\base)
sw s4, 24(\base)
...

.endm

(a) GPR Store (sw) Macro

.macro ctx_load base
lw ra, 0(\base)
lw sp, 4(\base)
lw s0, 8(\base)
lw s1, 12(\base)
lw s2, 16(\base)
lw s3, 20(\base)
lw s4, 24(\base)
...

.endm

(b) GPR Load (lw) Macro
.globl sys_switch
sys_switch:

ctx_save a0 # a0 => struct context *old
ctx_load a1 # a1 => struct context *new
ret # pc=ra; swtch to new task (new->ra)

(c) Register Swap Procedure

Fig. 3: Implementation of switching between two harts using
GPR swap procedure in xv6-RISC-V kernel. This is the
common implementation procedure used by security kernels.

• We implement a power analysis technique to evaluate
the correlation between the register values and the power
consumption of the device during context switch.

• We consider widely used security enclave kernels with
different hardware implementations to form sixteen se-
curity enclave configurations and evaluate them for the
existence of EvilCS vulnerability.

This paper is organized as follows. Section II surveys related
efforts. Section III describes our statistical information leakage
analysis framework. Section IV presents experimental results.
Finally, Section V concludes the paper.

II. RELATED WORK

Test Vector Leakage Assessment (TVLA) is a popular
method for evaluating side-channel leakage of hardware im-
plementations [7]. This process involves generating input test
patterns that make distinguishable differences in the power
signature of the device. The specific TVLA method depends on
the application scenarios, such as evaluation of cryptographic
algorithms [8]–[10] and micro-architectural buffers [11].

A power side channel evaluation framework for symmet-
ric key cryptography algorithms at the pre-silicon stage is
proposed in [9], [10]. The initial step involves generating
test patterns based on Hamming distance to introduce vari-
ations in power signatures. Then KL-divergence is used to
evaluate the side channel leakage of the hardware implemen-
tation. Jayasena et al. [8] propose a framework for evaluating
hardware implementations of asymmetric key cryptography
algorithms. To preserve the timing information of the power
traces during analysis, they propose a dynamic partition-based

Firmware
(bin)

Power Trace Analysis
Kernel Code

(c,asm)

Fail

Pass

Power Profiling
Test Bench

SoC (v)

Test Generation

rom ram

Context
Switch

App Code
(asm) Correlation

Power
Analysis

Change
Point

Detection

Leakdown
Test

Simulate

Test
Generation

Hardware (v)
cpu

Power
Signature

Hardware level Mitigations
SoC

Fig. 4: Overview of information leakage assessment for security enclaves that consists of four major steps: (i) tests are generated
to maximize the side-channel sensitivity, (ii) power model is generated by simulating the implementation, (iii) automated power
analysis, and (iv) the divergence test is carried out to evaluate the side-channel leakage from the power signature.

differential power analysis technique using Welch’s t-test. A
software-based TVLA technique to evaluate branch prediction
units is proposed in [11]. The authors have employed the
Welch t-test to evaluate software cryptographic benchmarks.

Existing TVLA techniques cannot be directly applied to
evaluate SoCs for the EvilCS vulnerability due to the fact that
existing techniques focus exclusively either on hardware or on
software. EvilCS spans across hardware-software boundary,
requiring the simultaneous evaluation of hardware and soft-
ware. For example, it involves both kernel code and application
code to form the firmware during the evaluation process and
test patterns need to be encoded into the application code.
Similarly, the firmware needs to be compiled and programmed
onto the hardware for evaluation. Therefore, the evaluation
techniques need to be specifically tailored for the EvilCS
vulnerability, as described in the next section.

III. INFORMATION LEAKAGE ASSESSMENT

We propose a leakage assessment framework to assess the
side-channel leakage of security enclaves. Figure 4 illustrates
the main steps involved in the leakages assessment. First,
we generate test cases to maximize side-channel sensitivity.
Next, we construct the power signature of the implementation
through simulation-based power profiling. We perform power
trace analysis to identify the context switch interval. Next, we
perform correlation power analysis to assess the information
leakage. Finally, we perform a leakdown test to identify if the
implementation has EvilCS vulnerability.

A. Test Generation for Side-Channel Sensitivity Maximization

The main objective of the information leakage assessment
is to generate input test vectors to maximize the side-channel
sensitivity of the underlying hardware. In case of EvilCS, input
test cases are application programs. These programs should
maximize the side-channel sensitivity of the system during a
context switch call from the enclave kernel. In order to achieve
this objective, we first need to generate multiple applications to
write values directly to the system registers while maximizing
side-channel sensitivity. Then we need to isolate the context-
switching logic from the kernel and combine it with each
application code to compile the firmware.
Application Code Template: In order to generate multiple (n)
application codes, we have created an assembly template that
can directly write values to GPR as illustrated in Figure 5a.
Since the attacker is interested in the GPR, we focus on
generating different combinations of values to be directly
written into the registers, so that between each application the

Load values from genHW()
lui x1, {v_1[31:12]}
addi x1, x1, {v_1[12:0]}
lui x2, {v_2[31:12]}
addi x2, x2, {v_2[12:0]}
...
lui x31, {v_31[31:12]}
addi x31, x31, {v_31[12:0]}
nop
j os_kernel # return to os

(a) App Template (w=32bit)

#include <stdint.h>
#include "riscv.h"
int os_kernel(void)
{

/* Context switch
logic of kernel
goes here */
while (1) {}
return 0;

}

(b) Kernel Wrapper

Fig. 5: Application template and kernel wrapper used for en-
capsulating different context-switch logic of security kernels.

power side-channel signature corresponding to each GPR is
different. For this purpose, we use a naive approach presented
in Algorithm 1. Inputs to the algorithm are the number of
test cases required n, minimum hamming weight b to be
maintained across register values, and the register width w.
The actual value of n is determined by Equation 1, where
Φ−1(1− β

2) and Φ−1(β2) stands for upper and lower tails of
the power trace distribution, respectively, while d, σ2 and α
represent effect size, the standard deviation of the power trace,
and required statistical significance. Algorithm 1 generates
a random number between 0 and 2w and if it is within the
required minimum hamming weight, it is appended to an array
to be used within the application code. For each register in
GPR, Algorithm 1 will generate an array of register values.
Then for each {v_i} in the template, we assign values from
each set of outputs from Algorithm 1.

n =

(
Φ−1(1− β

2
) + Φ−1(β

2
)

d

)2

· σ2 (1)

Algorithm 1 Register value generation for application code
Require: Number of Tests n, Min HW b, Register Width w
Ensure: Hamming Weight Register Values C

1: function genHW(n, b, w)
2: C ← ∅
3: while n > |C| do
4: a← rand(2w)
5: if a /∈ C & HW (a) ≥ b then ▷ Hamming Weight ≥ b.
6: C ← C ∪ {a}
7: end if
8: if |C| ≥ n then ▷ Enough values found for sample size
9: Return C

10: end if
11: end while
12: end function

Kernel Code Isolation: We strip down the security kernel to
isolate the context-switching logic from the other function-
alities and use it inside the wrapper code as illustrated in

Figure 5b. This makes j os_kernel line in Listing 5a to
perform a jump to the kernel to perform a context switch.
Once n number of assembly programs are generated, we
combine each application code with the striped version of
the kernel to obtain n firmware versions. Next, we compile
the firmware with the relevant gcc compiler to obtain n
complete bare-metal executables on the hardware. Finally, the
executable is compiled with the RISC-V hardware that is in
hardware description language (HDL) and wrapped with a
testbench code to obtain the compiled simulator. This process
is automated for all the n implementation instances.

B. Simulation-based Power Profiling

After obtaining n implementation instances, we need to
obtain the power model for each instance separately. We sim-
ulate each instance individually while dumping the simulation
trace as a Value Change Dump (VCD). Next, each of the
VCDs are converted into a power profile of the particular
instance. Typically, side-channel patterns associated with the
power attributes of hardware designs exhibit correlations based
on the following two models [12]:

Switching Activity Model (SAM): SAM relates to the switch-
ing of internal signals of the device. Transitions from 0 → 1
and from 1 → 0 are deemed to consume higher power and
emit more electromagnetic radiation compared to transitions
from 0 → 0 and from 1 → 1.

Hamming Weight Model (HWM): HWM establishes a con-
nection between the count of signals holding values 0 or 1
at a given instance and the overall power consumption of the
device at that instance.

We use both power models to evaluate the presence of
EvilCS vulnerability in security enclaves. We examine the
VCD file and build the power profile models by considering
both SAM and HWM by iterating through the signal value
transitions and signal values during each clock cycle.

C. Power Trace Analysis

After obtaining the power profiles from the simulation, they
need to be analyzed for potential information leakage. First,
we employ change point detection to identify the areas related
to the context switch. Then on the isolated power trace, we
perform correlation power analysis to statistically identify the
recoverability of register data.

Change Point Detection (CPD): Change point detection esti-
mates the probability density function of data at various points
and looks for abrupt changes in the estimated density. These
abrupt changes can indicate potential change points in the
data where something significant might have occurred. Due
to the bulk register read and write, context-switch produces a
high-density fluctuation in the power signature as illustrated
by color ■ in Figure 2.

Let’s represent the power signature of the device as a time
series distribution {x0, x1 . . . , xn}. For this experiment of
CPD, we construct two hypotheses H0 and H1 as there is
no change point in the power profile and there exists a change

point in the power profile respectively. Let µ̂1(=
1
t1

∑t1
i=1 xi)

and µ̂2(=
1
t2

∑n
i=t1+1 xi) be mean before and after the change

point. Then cumulative sum statistic (Sk) is introduced as
a means of detecting changes in the data distribution as
illustrated in Equation 2.

Sk = max(0, Sk−1 + xk − µ̂) (2)
If H0 is true (no change point), then the Sk statistic before the
potential change point will not exhibit significant deviations
from zero. Conversely, if H1 is true (change point exists),
then the Sk statistic after the change point will likely exceed
zero, signifying a significant change in the data distribution.
Then based on the desired statistical significance level and
the nature of the power profile, a threshold T is selected.
It is often set to control the probability of making a Type I
error (incorrectly detecting a change when there isn’t one). In
order to compute T , we randomly pick five samples from the
distribution, manually perform a simple power analysis, and
take the average as the change point threshold T . Therefore,
a change point will be detected at k when Sk > T . In
other words, when the cumulative sum statistic exceeds the
threshold, it indicates the presence of a change point in the
power trace which corresponds to a context-switch call from
the kernel. The same technique is used to identify the endpoint
of the context switch. Employing this process, a complete
power signature during the context switch can be isolated from
the entire power signature of the implementation. We repeat
this procedure for n instances of the implementation to isolate
context switch power signature related to each instance.

Correlation Power Analysis (CPA): In order to preserve a
good resolution in the evaluation process, CPA is performed
for each register involved in the context switching process.
So far, we have n power profiles that only contain context
switch power signatures, and with CPA we perform statistical
analysis to evaluate the possibility of EvilCS vulnerability.
First, each of the isolated context switch power traces needs
to be segmented into equal-length sub-traces by dividing it by
the number of registers involved in the context switch. This
is possible since register read and write is a constant time
operation and sequential operation as illustrated in Figure 3.
Then each of the sub-trace is analysed against the known
register values computed by Algorithm 1.

Let’s consider the register Rj . Assume that the n sub-
traces relevant for Rj as (p0, p1 . . . , pn) and a set of cor-
responding known register values generated by Algorithm 1
as (v0, v1, . . . , vn). For the CPA experiment, let’s construct
the hypotheses H0 as there is no correlation between the
power consumption against the register values being computed
in the trusted application and H1 as there is a correlation
between the power consumption and the register values. Let
the statistical significance for the experiment be α.

χ2 =
n∑

i=1

(Pi − Ei)
2

Ei
(3) Ei =

γ(W (vi))× ν(Pi)

Λ
(4)

df = (|γ| − 1).(|ν| − 1) (5) p-value = 1− CDF (χ2, df) (6)

Then we use the Chi-squared statistic (Equation 3) to de-

1 2 3 4 5 6 7 8 9 10
Power Consumption (mW)

1

2

3

4

5H
am

m
in

g
W

ei
gh

t 8 5 3 3 2 2 6 3 3 9

3 6 3 9 8 2 3 2 0 0

1 3 2 2 3 1 5 4 8 9

0 1 8 1 4 2 6 1 4 0

1 9 6 7 1 6 6 9 0 1
0

2

4

6

8

E
xp

ec
te

d
V

al
ue

Fig. 7: Sample contingency table generated with power trace
data (Pi) and hamming weight of register values (W (vi)).

termine the correlation between the power value and the
register value. In Equation 3, Pi corresponds to the peak power
point (Pi = max({pi})) in the power trace corresponding
to register Rj and expected power signature Ei is calculated
from the contingency table constructed using the hamming-
weight power model from vi and pi. Figure 7 illustrates an
example contingency graph created from power traces pi and
hamming weights W (vi) of generated register values. The
table is constructed by iterating through each W (vi) and filling
with the peak power consumption values from corresponding
power traces. Then Ei is calculated from Equation 4 where
γ, ν,Λ represent row sum, column sum, and the total sum of
the contingency table, respectively. This essentially translates
hamming weight into an expected power consumption value.
Next, we need to compute the degree of freedom df from
Equation 5, where |γ| and |ν| represent the number of rows
and columns in the contingency table. For the example in
Figure 7, df = (5− 1)× (10− 1) = 36. Using the cumulative
distribution function with the χ2 Chi-Squared value and df
degrees of freedom, we can determine the p-value associated
with the power trace from Equation 6. If p-value ≤ α, we
reject the null hypothesis (H0), which indicates a significant
correlation between the power consumption and register value.
If p-value > α, we fail to reject the null hypothesis (H0).

D. Classification using Leakdown Test

At this stage, we have established a relationship for each
test instance with a statistical correlation between the power
traces and the register values of the individual register. In the
final step, we determine whether a register value could be
potentially leaked from the power traces based on the CPA
results of all the test instances. Note that based on the p-value,
it can be concluded that either to reject H0 or fail to reject
H0. Therefore, our classification method needs to classify an
implementation based on whether it will leak information from
a register or not. For this, we formulated the leakdown test,
which will go through the results of each register level CPA
and perform a family-wise rejection decision if at least one
occurrence of H0 rejection is found. This indicates that the
implementation that rejects the null hypothesis for a particular
register at least one time will fail the leakdown test and
needs hardware mitigations to reduce the information leakage
through power consumption. After applying the mitigations,
the implementation needs to go through the assessment pro-
cess from beginning to end until it can completely pass the
leakdown test for all of its registers.

IV. EXPERIMENTS

In order to perform information leakage assessment on real-
world implementations, we have selected four security enclave
kernels of Keystone [3], OpenMZ [5] (open source implemen-
tation of MultiZone [4] security kernel), Komodorv [13]1 and
CertiKOSrv [13]1 that are implemented for RISC-V instruction
set architecture. We have isolated the context-switching logic
from the kernel for evaluation purposes. For compiling the
firmware we have used riscv-gnu-toolchain. Next, we have ob-
tained four RISC-V SoC IP core implementations of PicoSoC,
UervSoC, IObSoC, and VeeRwolf as target hardware designs.
We used Synopsys Design Compiler with SAED90nm CMOS
technology for the synthesis of the design. We simulated
hardware designs using Synopsys VCS to obtain the VCD
signal dumps. Power signature construction is performed from
Synopsys vcd2saif utility. For tasks such as test generation and
leakage assessment, we developed customized Python scripts
with the necessary statistics libraries. All the experiments were
carried out in a server environment with Intel(R) Xeon(R) CPU
E5-2640 v3 @ 2.60GHz processor and 64GiB Memory.

A. Evaluation Parameters (n, T, α,w, b)

Based on the literature [8]–[10], we have selected the
statistical significance α of 0.05. Since all the selected SoC
implementations are 32 bits, we have selected the register
with parameter (w) as 32. Column n in Table I presents the
minimum number of traces required to evaluate different se-
curity enclave environments. Then the change point detection
threshold T was also computed empirically from sample traces
for each combination of implementations. Column T of Table I
illustrates the computed T value for each implementation. The
minimum hamming weight (b) was selected empirically as 5
from the sample power traces.

TABLE I: Sample size (n) and the change point detection
threshold (T) for different combinations of security enclaves.

Hardware
Context Switch Logic

Keystone OpenMZ Komodorv CertiKOSrv

n T n T n T n T
PicoSoC 6006 0.4 5691 0.3 5730 0.4 5829 0.4
UervSoC 6312 0.2 6198 0.2 6278 0.3 6910 0.2
IObSoC 4201 0.3 4448 0.3 4780 0.3 4583 0.3

VeeRwolf 7980 0.2 7495 0.2 8489 0.2 8358 0.2

B. Correlation Power Analysis on Registers

This section presents results about individual general pur-
pose registers. Based on CPA results, we decide whether
we can reject the null hypothesis H0. Figure 8 presents
the results for different configurations of security enclaves.
Figure 8a illustrates the minimum p-values observed during
the experiments for four possible implementations of security
enclaves with Keystone, OpenMZ, Komodorv and CertiKOSrv

kernels with the PicoSoC hardware. The same experiment
was carried out through other security enclave configurations.

1Komodorv and CertiKOSrv are retrofitted RISC-V versions of original
Komodo and CertiKOS kernels [13]

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0.01

α

0.1

0.5

General Purpose Register Ri

p
-v
a
lu
e

Keystone OpenMZ Komodorv CertiKOSrv

(a) PicoSoC

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0.01

α

0.1

0.5

General Purpose Register Ri

p
-v
a
lu
e

Keystone OpenMZ Komodorv CertiKOSrv

(b) UervSoC

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0.01

α

0.1

0.5

General Purpose Register Ri

p
-v
a
lu
e

Keystone OpenMZ Komodorv CertiKOSrv

(c) IObSoC

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0.01

α

0.1

0.5

General Purpose Register Ri
p

-v
a
lu
e

Keystone OpenMZ Komodorv CertiKOSrv

(d) VeeRwolf
Fig. 8: Minimum p-value observed for individual registers in different security enclave configurations (different kernels and
hardware combinations). Registers under the line α fail the leakdown test and need mitigations to prevent information leakage.

Figure 8b, Figure 8c, and Figure 8d illustrate the results for
UervSoC, IObSoC, and VeeRwolf, respectively. Any p-value
that is less than the selected significance value α = 0.05, fails
the leakdown test for the particular register. As demonstrated
by results, general purpose registers ranging from x8 to
x31 consistently fail the leakdown test showing a significant
correlation between the power signature and occupied register
value while most of the registers from x1 to x7, statistically
fail to provide a conclusion. Note that in RISC-V architecture,
x0 is a fixed zero value register and therefore we exempted
it from evaluations. We observed that the reason for the weak
correlation results for registers x1-x7 is that they are pointer
registers. Unlike data registers of x8-x31 that store temporary
data, operands, and results of calculations, pointer registers
store information such as return address, stack pointer, etc.
Although we directly write values in the application during the
evaluation, later they get updated which affects the correlation
analysis resulting values such that p-value > 0.05.

V. CONCLUSION

In this paper, we introduced EvilCS vulnerability to show
that the power consumption of a security enclave can reveal
sensitive information from trusted applications. Specifically,
we demonstrate that the distinct consecutive memory reads and
writes involved during context switching can leak register data
as a power side-channel signature. We proposed an informa-
tion leakage analysis framework to evaluate implementations
that consist of different hardware and firmware configurations.
Evaluation of sixteen combinations of RISC-V security en-
claves reveals that a vast majority of general-purpose registers
leak their values as side-channel signatures. This analysis
is vital for designing secure and trustworthy systems. We

briefly outline two potential countermeasures for RISC-V
based security kernels. A designer can apply a firmware patch
that needs modifications to the security kernel as well as the
application code. Security kernel should temporarily disable
system interrupts by manipulating the interrupt-enable bits in
the Machine Status Register (mstatus). Once the hardware
thread switches to the execution of the trusted application, it
should perform its secret computation and once it is finished,
the application should actively return to the kernel to re-enable
the timer interrupts. An ideal fix against EvilCS would be to
apply register masking as well as common blinding techniques
for each general purpose register during pre-silicon design.

REFERENCES

[1] Yangdi Lyu and Prabhat Mishra. A survey of side-channel attacks on
caches and countermeasures. HASS, 2:33–50, 2018.

[2] Mahya Morid Ahmadi et al. Side-channel attacks on risc-v processors:
Current progress, challenges, and opportunities. arXiv, 2021.

[3] Dayeol Lee et al. Keystone: An open framework for architecting trusted
execution environments. In EuroSys ’20, pages 1–16, 2020.

[4] Hex Five. Multizone security for risc-v, 2020.
[5] Henrik Karlsson. OpenMZ: a C implementation of the MultiZone, 2020.
[6] François-Xavier Standaert. Introduction to side-channel attacks. Secure

integrated circuits and systems, pages 27–42, 2010.
[7] Aruna Jayasena and Prabhat Mishra. Directed test generation for

hardware validation: A survey. ACM Computing Surveys, 2023.
[8] Aruna Jayasena et al. Test Vector Leakage Assessment on Hardware

Implementation of Asymmetric Cryptography Algorithms. TVLSI, 2023.
[9] Nitin Pundir et al. Power side-channel leakage assessment framework

at register-transfer level. IEEE TVLSI Systems, 2022.
[10] Tao Zhang et al. PSC-TG: RTL power side-channel leakage assessment

with test pattern generation. In ACM/IEEE DAC, pages 709–714, 2021.
[11] Sarani Bhattacharya et al. Online detection and reactive countermeasure

for leakage from bpu using tvla. In VLSID, pages 155–160. IEEE, 2018.
[12] Eric Brier et al. Correlation power analysis with a leakage model. In

CHES 2004, pages 16–29. Springer, 2004.
[13] Luke Nelson et al. Scaling symbolic evaluation for automated verifica-

tion of systems code with serval. In SOSP, pages 225–242, 2019.

	Introduction
	Security Enclave Kernels
	Hardware Threads: Hart
	Threat Model: EvilCS Vulnerability
	Contributions

	Related Work
	Information Leakage Assessment
	Test Generation for Side-Channel Sensitivity Maximization
	Simulation-based Power Profiling
	Power Trace Analysis
	Classification using Leakdown Test

	Experiments
	Evaluation Parameters (n,T,, w, b)
	Correlation Power Analysis on Registers

	Conclusion
	References

