
Dynamic Refinement of Hardware Assertion Checkers

Hasini Witharana, Sahan Sanjaya and Prabhat Mishra
University of Florida, Gainesville, Florida, USA

Abstract—Post-silicon validation is a vital step in System-on-
Chip (SoC) design cycle. A major challenge in post-silicon vali-
dation is the limited observability of internal signal states using
trace buffers. Hardware assertions are promising to improve
the observability during post-silicon debug. Unfortunately, we
cannot synthesize thousands (or millions) of pre-silicon assertions
as hardware checkers (coverage monitors) due to hardware
overhead constraints. Prior efforts considered synthesis of a small
set of checkers based on design constraints. However, these design
constraints can change dynamically during the device lifetime due
to changes in use-case scenarios as well as input variations. In
this paper, we explore dynamic refinement of hardware checkers
based on changing design constraints. Specifically, we propose a
cost-based assertion selection framework that utilizes non-linear
optimization as well as machine learning. Experimental results
demonstrate that our machine learning model can accurately
predict area (less than 5% error) and power consumption
(less than 3% error) of hardware checkers at runtime. This
accurate prediction enables close-to-optimal dynamic refinement
of checkers based on design constraints.

I. INTRODUCTION

Post-silicon validation is widely used to detect and fix bugs
in integrated circuits after manufacturing. Due to the increas-
ing design complexity, it is infeasible to detect all functional
as well as electrical bugs during pre-silicon validation [1].
Therefore, post-silicon validation is an essential step in SoC
design methodology. One of the biggest challenges in post-
silicon validation is the lack of observability of internal states.
Typically, a small trace buffer is used to trace few hundred
signals (out of millions of signals) during runtime [2]. A
prominent avenue to improve post-silicon observability is to
use hardware checkers (assertions). According to the 2020
Wilson research study [3], around 75% of ASIC design and
50% of FPGA design projects use assertion-based validation.
However, assertions also introduce hardware overhead. There-
fore, it is not practical to synthesize thousands or millions of
pre-silicon assertions to post-silicon checkers.

There are early efforts [4], [5] to select the most beneficial
set of assertions as hardware checkers based on area, power,
and performance constraints. The selected assertions may
not be beneficial since the design constraints can change
dynamically during the device lifetime due to changes in use-
case scenarios as well as input variations. For example, mobile
phone usage pattern can drastically change between two users.
Even for the same user, the usage of the phone varies during
the different time periods of a day. In other words, different
use-case scenarios and input variations can lead to dynamic
changes in power and performance. Moreover, the dynamic

This work was partially supported by the NSF grant CCF-1908131.

Design Selected
Assertions

Assertion
Generation

Assertion
SelectionAssertions

Pre-silicon Assertion
Based Validation

Fabricated Chip

Assertion
Synthesis

Hardware
Checkers

Fabrication

Dynamic
Constraints

Cost
Prediction

Subset
Selection

Model

Optimal
Checkers

Reconfigurable
Hardware

Dynamic Refinement

Fig. 1: Assertion-based validation framework. The dotted box
(dynamic refinement) shows our proposed contributions.

changes in design constraints can limit the resources available
for the hardware checkers. For example, the checkers can be
disabled when the phone battery is low, which compromises
the run-time checking capability. If the reconfigurability is
available, it would be beneficial to dynamically refine the
checkers to satisfy both dynamically changing circumstances
and runtime checking objectives.

Figure 1 shows a brief overview of our proposed framework
in the context of assertion-based validation. During pre-silicon
validation, assertions are generated for a given design [6], [7],
[8]. Due to design overhead constraints, assertion selection [4],
[5] can be used to identify the most profitable assertions.
The selected assertions are synthesised as hardware checkers.
The hardware checkers are used for our dynamic refinement
framework. A regression model is trained to predict the cost
(power and area) of synthesizing a set of checkers. When the
design constraints change dynamically, the subset selection
uses the regression model to select the optimal subset of
checkers that satisfies the design constraints at that time. The
selected checkers are synthesised in reconfigurable hardware.
This paper makes the following major contributions:

• Formulates the dynamic refinement problem as a cost-
based non-linear optimization problem.

• Uses regression based machine learning techniques to
perform cost prediction for hardware checkers.

• Solves the non-linear optimization problem using gradient
decent with simulated annealing.

• Demonstrates close-to-optimal dynamic refinement of
hardware checkers.

This paper is organized as follows. Section II surveys
related efforts. Section III presents the problem formulation.
Section IV describes our proposed framework. Section V
presents experimental results. Section VI concludes the paper.

II. RELATED WORK

Pre-silicon assertions can be utilized during post-silicon
debug by synthesizing them as hardware checkers [1]. A major
challenge in assertion selection is to determine which asser-
tions should be added to the design as hardware checkers. Prof-
itable checker selection can be conducted using static synthesis
with different ranking algorithms [9], [10], [11], [12]. The
number of hardware checkers can be reduced [13], [4] by uti-
lizing the existing debug infrastructure (trace buffer). Another
promising alternative for cost effective hardware checkers is
the dynamic synthesis of checkers using FPGA [14]. In this
work, the hardware checkers are included in a re-configurable
embedded block (FPGA) in a time-multiplexed manner. This
approach enables to add a large number of checkers with a low
area overhead. To the best of our knowledge, our approach is
the first attempt to dynamically refine hardware checkers based
on changing design constraints.

III. PROBLEM FORMULATION

Cost-based optimization is a powerful technique to address
the problem of selecting a set of choices. It consists of
associating costs with various choices and then finding the
subset of choices with the smallest cost. We are defining the
selection of hardware checkers as a cost-based optimization
problem. Specifically, we need to solve:

minimize
S

(F(S))

P(S) ≤ P, A(S) ≤ A

where S is a subset of checkers and P and A encode
power and area constraints, respectively. F encodes the cost
of the design and F(S) can depend on any of the power or
area related costs together with any other considerations. In
general, F(S) is non-linear (i.e., not a simple summation of
cost for checker) and depends on the subset of checkers that
are implemented.

There are two major challenges in solving this optimization
problem. The first problem is how to compute the functions
F ,P andA given that there are 2N possible inputs, where N is
the number of checkers in the set S. This problem is difficult
since estimating power or area for a given design requires
expensive synthesis. Performing such an estimation for 2N

designs is infeasible. Our approach leverages machine learning
techniques to treat the estimation problem as a regression
problem. Instead of generating all possible designs, we will
generate a small subset and learn estimates for area and power.
Section IV-A describes our cost prediction scheme.

The second problem is how to solve the optimization
problem, i.e., how to find the set S that minimizes the cost
while satisfies the constraints. This problem is difficult due
to the size of the search space and the fact that the problem
is non-linear. The non-linearity translates into a potentially
large number of local minimums. To address the problem,
we use non-linear optimization techniques. We need to adapt
the techniques since we are optimizing over discrete sub-sets
rather than metric spaces. Section IV-B describes how our
approach solves the optimization problem.

IV. DYNAMIC REFINEMENT OF HARDWARE CHECKERS

Figure 2 shows an overview of our dynamic refinement
framework. It has two important steps: (1) cost prediction and
(2) optimization. The first step is to learn how to predict cost
for a given set of hardware checkers. The second step uses the
trained model to find the optimal set of hardware checkers that
satisfies the constraints while minimizing the cost of adding
the hardware checkers. The remainder of this section describes
these two steps in detail.

Random
Sampling

Hardware
Checkers

Sample
Checker Subset

Synthesis &
Simulate

Overhead
Cost

Train
Regression Model

Cost Prediction
Model

Constraint Optimized Subset
Selection

Optimal
Checker Set

Synthesis
(FPGA)

C
os

t P
re

di
ct

io
n

O
pt

im
iz

at
io

n

Fig. 2: Overview of our dynamic refinement scheme

A. Cost Prediction

In this section, we address the problem of estimating the
functions F ,P and A that appear in the optimization problem.
Typically, the function F is a simple cost model depending
on the functions P(S) (power) and A(S) (area) when im-
plementing assertions in the set S. While the two problems
(power and area) capture different aspects of circuit design,
the estimation problem is essentially the same. We solve the
estimation problem by modeling the problem as a regression
problem with sets as inputs: Given samples S1, . . . , Sk and
power consumption estimates p1 = P(S1), . . . , pk = P(Sk)
find a good approximation of the function P(S). The same
solution can be used for A as well.

Most of the regression models in machine learning and
statistics literature only accommodate continuous inputs. Es-
sentially, the regression models find non-linear mapping from
Rk −→ R. To finish our translation of the cost estimation
problem into a regression problem, we transform the set input
S into a continuous input by introducing an input i for the
regression problem for each checker Ci. Next, we set the input
value at 0.0 if Ci /∈ S and at 1.0 if Ci ∈ S. Thus, each set S
is always mapped into a vector of size N that contains only
0.0 or 1.0 entries.

As shown in Figure 2, random sampling is conducted on
hardware checkers to get different sample subsets. These sam-
ple subsets are synthesized and simulated to get the overhead
cost with respect to power and area. The overhead costs are
used to train the regression model. Once a learning model
is built, it can be used to predict F(S) simply by encoding
the input S using the same 0.0, 0.1 mapping and using the
predictor for the estimate.

B. Optimization

In order to solve the non-linear optimization problem (for-
mulated in Section III), we use non-linear optimization tech-
niques, including gradient descent and simulated annealing.

Algorithm 1: Gradient Descent
Data: Estimators for F(S) & C(S)
Result: Locally optimal solution S

1 Find starting point;
2 repeat
3 select random S
4 until C(S) is true;
5 Done ← False;
6 while ¬Done do
7 Done ← GD(S)
8 end
9 Function GD(S):

10 Keep track of the best solution;
11 S′ ← S;
12 for i← 1 to N do
13 Add or remove checker Ci to S;
14 Si ← S ⊕ Ci;
15 if C(Si) & F(Si) < F(S′) then
16 S′ ← Si

17 else
18 end
19 if S′ ̸= S then
20 New better solution;
21 S ← S′;
22 Done ← False;
23 else
24 Reached local minimum;
25 Done ← True;
26 end
27 return Done
28

The gradient descent algorithm used in our framework is
presented in Algorithm 1. Inputs of the algorithm are F(S)
and C(S). Function F(S) is retrieved using the cost prediction
model described in Section IV-A. Function C(S) represents
a Boolean function which combines all the constraints and
indicates whether the constraints are satisfied for S or not.
The results of this function will be a locally optimal solution
S, which satisfy C(S). Gradient descent method starts with
a random initial point (line 1 - 3). Function GD is repeated
until the local optimal solution is found (line 6 - 8). Function
GD (line 9 - 27) presents the gradient descend method for
finding the optimal solution. This method takes steps that
stay within the feasible region (i.e., satisfy the constraints)
and decrease the cost. Eventually, points where this is no
longer possible (i.e., local minimums) are reached. The step
function of the gradient descent method is defined as the
addition or removal of each checker Ci to the current best set
S at every step (line 12 - 18). Here, N means the number
of hardware checkers (line 12). The optimal solution S is
selected based on the constraint satisfaction and the minimal
cost prediction (line 15 - 17). The termination condition checks
whether all the neighbors of S are worse. The neighbors are

the sets that differ by at most one element. If all neighbors
are worse, S is considered as a local minimum (line 19 -
26). The algorithm guarantees feasible solutions since the
condition C(S) is checked for both the initial point and each
Si candidate. By considering multiple random restarts for
Algorithm 1 and keeping track of the best solution, optimized
set of checkers can be found for a given set of constraints.

Algorithm 2: Gradient Descent + Simulated Annealing
Data: Estimators for F(S) & C(S), Max, Prob
Result: Locally optimal solution S

1 Find starting point;
2 repeat
3 select random S
4 until C(S) is true;
5 Probability of a random step;
6 p ← 1/2;
7 Annealing loop; probability gets halved;
8 while p > Prob do
9 Done ← False;

10 Steps took since last change in p;
11 Steps ← 0;
12 while ¬ Done & Steps < Max do
13 Steps ← Steps + 1;
14 Coin ← FlipCoin(p);
15 if Coin == Head then
16 Take random step;
17 i ← random(1,n);
18 S ← S ⊕ Ci;
19 else
20 Gradient descent step;
21 Done ← GD(S)
22 end
23 end
24 p ← p/2;
25 end

In general, when the optimization problem is relatively sim-
ple (i.e., it has a small number of local minimums), gradient
descent methods perform fairly well. We do not expect this
to be true for our optimization problem since the interaction
between the hardware checkers is likely to be complicated.
In such situations, simulated annealing methods are preferred.
The basic idea is to modify the gradient descent strategy by
adding random feasible steps that allow local minimums to
be escaped. The random steps are allowed more often in the
beginning but less and less often as the computation progresses
so the solution finds a better local minimum. Algorithm 2
depicts this more complicated process.

Algorithm 2 presents a gradient descent search of the subset
space with annealing. The algorithm begins at a random initial
feasible subset (line 2 - 4). First the probability of random
step is given value 0.5 (line 6). Then this probability is halved
through the annealing loop (line 8 - 25). The loop is conducted
for ‘Max’ steps by checking whether the probability is greater

than ‘Prob’. For each iteration, ‘FlipCoin’ is conducted to
determine whether we will move to the best feasible neigh-
boring subset (line 19 - 22) or will move to a random feasible
neighboring subset (line 15 - 18). A neighboring subset of
S is one which has only one hardware checker added or
removed relative to S. A subset is feasible when it satisfies
the applied constraints. Function ‘FlipCoin’ will allow more
random steps in the beginning (i.e., when p is large) but less
random steps when p is smaller. For the best feasible solution,
gradient descent function GD in Algorithm 1 is used (line
21). The probability of a random move decreases by a factor
of 0.5 every ‘Max’ steps (line 24). The algorithm stops when
it attempts to move to the best neighboring subset, and no
feasible neighbor is superior to the current solution.

There are several aspects that can change the parameters
of the cost-based optimization problem. One is the value of
including an assertion can shift significantly throughout the
life-cycle. Assertions that seem marginal now can become
very important due to discoveries of new functional exploits.
Similarly, assertions that seem important now, can prove to
have only marginal benefits in the future. Either the number of
samples, the quality of the synthesis estimation or the learning
methods can improve throughout the life-cycle. Another aspect
is that if more computation can be afforded, it can result in
better quality solutions for the optimization problem.

Based on our formulation and solution for the cost-based
optimization problem, a number of shortcuts can be taken to
improve the running time of the solver. Specifically, the current
best solution can be used as the starting point for the modified
future optimization problem. It is likely that the problem will
not shift significantly; the current solution should be in the
neighborhood of the new optimal solution.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed
approach. First we describe our experimental setup. Next, we
outline the results of our experiments.

A. Experimental Setup

For the experimental evaluation, we have selected bench-
marks from TrustHub [15], OpenCores [16] and RISC-V CPU
core [17] as shown in Table I. The first column of the table
shows the benchmarks. The second and third column show the
number of LUTs in the design and the number of assertions
selected as hardware checkers for synthesis, respectively. The
last column shows the number of samples used for the cost
prediction model. The assertion generation was conducted
manually as well as using Goldmine [6]. We have evaluated the
dynamic refinement of hardware checkers using the Zynq-7000
SoC based evaluation platform. We synthesized the original
design as well as the design with embedded assertions, of
both the concurrent and immediate form, to the FPGA in the
SoC. We utilized Xilinx Vivado Design Suite 2021 to perform
synthesis, optimization, and place and route for the designs.
The same software was then used to perform timing-accurate

simulation of the FPGA mapped designs, emulating both the
functional and timing constraints of the FPGA architecture.

TABLE I: Benchmarks

Benchmark # LUT # Checkers Sample Size
D-Cache 146 15 1000
Ibex Decoder 152 20 1000
Ibex Controller 159 10 300
PCI 222 12 500
Ibex ID-Stage 425 20 1000
AES 1765 10 300

B. Cost Prediction Results

To emphasize that our cost function F(S) is not simply
linear, we conducted an experiment where we calculated the
power consumption of individual checkers and the power
consumption of number of the checkers together. Figure 3
presents the power consumption (in watts) for different number
of checkers for PCI design. The figure shows the cumulative
cost (addition of individual checkers) and the actual power
consumption for the same number of checkers. The cumulative
cost of the 12 individual checkers is 0.087 watts. However,
when we get the 12 checkers together, the power consumption
is 0.018 watts. This shows that out cost function F(S) is
non-linear. Therefore, it is important to use cost prediction
techniques to predict the cost rather than synthesizing all
possible combinations of checkers.

1 2 3 4 5 6 7 8 9 10 11 12
Checkers

0.00

0.02

0.04

0.06

0.08

Po
we

r C
on

su
m

pt
io

n
(W

)

Cumulative Cost
Actual Cost

Fig. 3: Power consumption (W) for checkers in PCI

The size of Lookup Tables (LUT) and power overhead are
selected as parameters for the cost prediction framework. To
enable approximate prediction of the cost function, we have
explored the efficacy of four models: (1) linear regression
(LR), (2) linear regression with quadratic interaction (LRQ),
(3) linear regression with cubic interaction terms (LRC), and
ridge regression (RR). The training data was generated by
collecting LUT and power data from a random sample of
subsets from the set of all possible subsets for each design.
Each assertion subset in the sample was then synthesized,
optimized, placed, and routed. Hardware and power utilization
data for each subset in the sample was then dumped, which
would serve as the training data. For example, in case of PCI,
a sample of 500 subsets was collected, covering 12.21% of all
possible subsets. Similarly, in case of D-Cache, 1000 subsets
were collected, covering 3.05% of all possible subsets. This
data set was then randomly partitioned into a train and test
set, using an 80-20 train-test split. First, the performance of
the models on unseen data was estimated by training and
evaluating the models on the train set using 10-fold cross

D-Cache Decoder Controller PCI ID-Stage AES
0.0

0.5

1.0

1.5

2.0

NR
M

SE
 P

er
ce

nt
ag

e
LR
LRQ
LRC
RR

(a) Model accuracy for power consumption prediction

D-Cache Decoder Controller PCI ID-Stage AES
0

1

2

3

4

5

NR
M

SE
 P

er
ce

nt
ag

e

(b) Model accuracy for LUT prediction

Fig. 4: Model accuracy for different regression models
TABLE II: Dynamic refinement results for PCI with different iterations

LUT Power(W) Iterations = 10 Iterations = 20 Iterations = 30 Iterations = 40 Iterations = 50

5 0.125 “001000010100” (3)
P=0.124, LUT=3.61

“000000011100” (3)
P=0.122, LUT=4.85

“000000011100” (3)
P=0.122, LUT=4.85

“000000011100” (3)
P=0.122, LUT=4.85

“000000011100” (3)
P=0.122, LUT=4.85

5 0.155 “001000010110” (4)
P=0.127, LUT=4.75

“101000010100” (4)
P=0.127, LUT=4.8

“001000010110” (4)
P=0.127, LUT=4.75

“101000010100” (4)
P=0.127, LUT=4.8

“101000010100” (4)
P=0.127, LUT=4.8

25 0.135 “100110011111” (8)
P=0.134, LUT=16.9

“001110011111” (8)
P=0.134, LUT=16.9

“101110011101” (8)
P=0.133, LUT=16.8

“101110011101” (8)
P=0.133, LUT=16.8

“001110011111” (8)
P=0.134, LUT=16.9

45 0.155 “111111011111” (11)
P=0.144, LUT=27.89

“111111011111” (11)
P=0.144, LUT=27.89

“111111011111” (11)
P=0.144, LUT=27.89

“111111011111” (11)
P=0.144, LUT=27.89

“111111011111” (11)
P=0.144, LUT=27.89

validation, with normalized root mean squared error (NRMSE)
as the performance metric. The performance evaluation for all
the 4 models for each benchmark with respect to power and
LUT consumption is shown in Figure 4. For all the designs,
the four models achieved less than 3% error predicting the
power consumption and less than 5% error predicting LUT.

The model with the best performance on the test set for
each metric and design pair (Figure 4) was then utilized
during the subset selection algorithm in dynamic refinement
to predict the LUT and power overhead for potential selected
hardware checker subsets. By estimating whether a checker
subset satisfied the applied constraints, the subset selection
algorithm produced results without the processing bottleneck
of HDL synthesis for each subset and its neighbors.

C. Dynamic Refinement Results

The subset selection algorithm was run for all designs with
a variety of parameters, including LUT constraints, power
constraints, and number of iterations (by changing the ‘prob’
value). Figure 5 shows the dynamic refinement of hardware
checkers for each benchmark with different constraints. For
each benchmark, the number of checkers selected as optimal
subset is shown in checker coverage as a percentage of all
the number of checkers in the initial set (N). The dynamic
refinement is performed with increasing iterations from 5 to
100 for all the constraints pairs. Figure 5 shows the optimal
selection of hardware checkers for each constraints pair chosen
from the results from different iterations.

When the design constraints are loosened, the achievable
assertion coverage increases. For all the designs, the highest

coverage values are achieved with maximum LUT of 45
and power of 0.155 watts. As the constraints are tightened,
the coverage value tends to decrease as the algorithm must
sacrifice coverage for feasibility. The loss in coverage for each
decreasing step in one constraint value is not linear. Instead,
the coverage begins to decrease more rapidly as the constraints
decrease to values significantly below the mean value of the
metrics for random subsets. This may be indicative of the fact
that the propensity of the algorithm to find locally optimal,
but globally sub-optimal solutions increases as the constraints
are tightened due to the local search being constrained by a
high amount of infeasible neighbors. It also may arise from
the underlying distribution of subset overhead values being
non-uniform. In other words, the fraction of subsets satisfying
the tight constraints is lower than we would expect from a
uniform distribution.

The results of running the dynamic refinement algorithm for
PCI benchmark with increasing iterations (10 to 50) are shown
in Table II. The first two columns provide design constraints
in terms of upper limit on the number of LUTs available
and power consumption (in Watts). Each row represents a
different configuration in terms of constraints. The number
of checkers selected for synthesis is shown in brackets. The
solution subset is presented as a bit-string, where the i-th
bit being 1 implies that the i-th checker was included in
the solution. For each solution, the power and LUT values
are also shown in the table. Note that significant increase
in the number of iterations does not dramatically improve
the achieved coverage. For example, the algorithm achieved
a coverage of 11 (91.67%) with optimal solution even from

Max LUT

10
20

30
40 Max

 Po
wer

(W
)

0.125

0.135

0.145

0.155

Ch
ec

ke
r C

ov
er

ag
e

(%
)

20

40

60

80

100

(a) D-Cache (N=15)

Max LUT

5
10

15
20 Max

 Po
wer

(W
)

0.110

0.112

0.114

0.116

Ch
ec

ke
r C

ov
er

ag
e

(%
)

20

40

60

80

100

(b) Ibex Decoder (N=20)

Max LUT

1
3

6
9 Max

 Po
wer

(W
)

0.110

0.115

0.120

0.125

Ch
ec

ke
r C

ov
er

ag
e

(%
)

20

40

60

80

100

(c) Ibex Controller (N=10)

Max LUT

10
20

30
40 Max

 Po
wer

(W
)

0.125

0.135

0.145

0.155

Ch
ec

ke
r C

ov
er

ag
e

(%
)

20

40

60

80

100

(d) PCI (N=12)

Max LUT

10
15

20
25 Max

 Po
wer

(W
)

0.105

0.115

0.125

0.135

Ch
ec

ke
r C

ov
er

ag
e

(%
)

20

40

60

80

100

(e) Ibex ID-Stage (N=20)

Max LUT

10
20

30
40 Max
 Po

wer
(W

)

0.125

0.135

0.145

0.155

Ch
ec

ke
r C

ov
er

ag
e

(%
)

20

40

60

80

100

(f) AES (N=10)
Fig. 5: Checker subset selection for changing requirements

10 iterations for LUT=45 and Power = 0.155 W on the PCI
design. However, for some constraints increasing the number
of iterations helped to achieve the optimal solution (LUT=5
and Power=0.155).

Overall, the subset selection algorithm allowed for con-
sistent performance under constraints in achievable ranges,
and did not require significant iterations to find satisfactory
solutions. The algorithm’s speed and relative simplicity are
positive indicators of the potential efficacy of this method in
the dynamic refinement of on-chip security assertions. Our
proposed algorithm represents a highly extensible foundation
which can be augmented with additional constraints, such as
novel cost functions, and time dependent behaviors, all of
which potentially appear in industrial applications.

VI. CONCLUSION

Post-silicon validation and in-field debug relies on observ-
ability infrastructure such as trace buffers. Hardware checkers
can improve the observability for debugging functional as well
as non-function (e.g., security) violations. Due to hardware
overhead considerations, it is not feasible to map all pre-silicon
assertions as post-silicon hardware checkers. While there are
promising approaches for selecting a small set of profitable
assertions for synthesis, they are not useful under changing
workloads and input variations. We presented a framework
to dynamically refine hardware checkers for changing design
constraints. We formulated the dynamic refinement problem
as a cost-based non-linear optimization problem. we used

regression based learning to perform cost prediction for hard-
ware checkers. We solved the non-linear optimization problem
using gradient descent with simulated annealing. Experimental
evaluation demonstrated the effectiveness of our framework.

REFERENCES

[1] H. Witharana, Y. Lyu, S. Charles, and P. Mishra, “A survey on assertion-
based hardware verification,” ACM Computing Surveys, 54 (11), 2022.

[2] P. Mishra et al., “Post-silicon validation in the soc era: A tutorial
introduction,” IEEE Design & Test, 34(3), 2017.

[3] H. Foster, “Wilson research group functional verification study 2020.”
[4] F. Farahmandi et al., “Cost-effective analysis of post-silicon functional

coverage events,” in DATE. IEEE, 2017.
[5] P. Taatizadeh and N. Nicolici, “Automated selection of assertions for

bit-flip detection during post-silicon validation,” TCAD, 2016.
[6] S. Vasudevan et al., “Goldmine: Automatic assertion generation using

data mining and static analysis,” in DATE, 2010.
[7] H. Witharana et al., “Directed test generation for activation of security

assertions in rtl models,” ACM TODAES, vol. 26, no. 4, 2021.
[8] ——, “Automated generation of security assertions for RTL models,”

ACM Journal on Emerging Technologies in Computing Systems, 2022.
[9] M. Eslami et al., “Reusing verification assertions as security checkers

for hardware trojan detection,” arXiv preprint arXiv:2201.01130, 2022.
[10] R. Hariharan et al., “From rtl liveness assertions to cost-effective

hardware checkers,” in DCIS, 2018.
[11] A. Adir et al., “Leveraging pre-silicon verification resources for the

post-silicon validation of the ibm power7 processor,” in DAC, 2011.
[12] P. Taatizadeh and N. Nicolici, “Emulation infrastructure for the evalua-

tion of hardware assertions for post-silicon validation,” VLSI, 2017.
[13] Y. Kimura et al., “Signal selection methods for efficient multi-target

correction,” in ISCAS, 2019.
[14] M. Gao and K.-T. Cheng, “A case study of time-multiplexed assertion

checking for post-silicon debugging,” in HLDVT, 2010.
[15] “Trusthub,” https://www.trust-hub.org/.
[16] OpenCores, https://www.opencores.org/, 2020.
[17] “LowRISC/ibex,” https://github.com/lowRISC/ibex.

