
Hardware Acceleration of Explainable Machine Learning

Zhixin Pan and Prabhat Mishra
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida, USA

Abstract—Machine learning (ML) is successful in achieving
human-level performance in various fields. However, it lacks
the ability to explain an outcome due to its black-box na-
ture. While recent efforts on explainable ML has received
significant attention, the existing solutions are not applicable
in real-time systems since they map interpretability as an
optimization problem, which leads to numerous iterations of
time-consuming complex computations. To make matters worse,
existing implementations are not amenable for hardware-based
acceleration. In this paper, we propose an efficient framework to
enable acceleration of explainable ML procedure with hardware
accelerators. We explore the effectiveness of both Tensor Pro-
cessing Unit (TPU) and Graphics Processing Unit (GPU) based
architectures in accelerating explainable ML. Specifically, this
paper makes three important contributions. (1) To the best of our
knowledge, our proposed work is the first attempt in enabling
hardware acceleration of explainable ML. (2) Our proposed
solution exploits the synergy between matrix convolution and
Fourier transform, and therefore, it takes full advantage of TPU’s
inherent ability in accelerating matrix computations. (3) Our
proposed approach can lead to real-time outcome interpretation.
Extensive experimental evaluation demonstrates that proposed
approach deployed on TPU can provide drastic improvement in
interpretation time (39x on average) as well as energy efficiency
(69x on average) compared to existing acceleration techniques.

I. INTRODUCTION

Machine learning (ML) techniques powered by deep neural
networks (DNNs) are pervasive across various application
domains [1]–[4]. Recent advances in ML algorithms have en-
abled promising performance with outstanding flexibility and
generalization. However, most of the existing ML methods are
not able to interpret the outcome (e.g., explain its prediction)
since it produces the outcome based on computations inside
a “black-box”. This lack of transparency severely limits the
applicability of ML. Explainable ML provides interpretation of
input-output mapping as well as clues for importance ranking
of input features [1], [3]. As a result, explainable ML acts
like a supervisor to guide the learning process and provides
additional information to users.

Due to the inherent inefficiency in explainable ML algo-
rithms, they are not applicable in real-time systems. These
algorithms treat the explanation process as an extra procedure,
and performs the interpretation outside the learning model,
which makes them inefficient in practice. In this paper, we
propose an efficient framework to achieve fast explainable
ML utilizing various hardware accelerators, including Graphic
Processing Units (GPU) and Tensor Processing Units (TPU).
Specifically, we transform explainable ML procedure to com-
putation of matrix operations, and exploit the natural ability of
hardware accelerators for fast and efficient parallel computa-
tion of matrix operations. GPU consists of a large number

This work was partially supported by the NSF grant CCF-1908131.

of cores and high-speed memory for performing efficient
matrix computation and parallel computing. Similarly, TPU is
an Application Specific Integrated Circuit (ASIC) developed
specifically to accelerate the computations in deep neural
networks [5]–[7], with extremely high throughout and fast
performance with low memory footprint. It is a compatible
choice to deploy in our proposed framework.

Our proposed approach effectively utilizes the synergy be-
tween matrix based representation of interpretation procedure
and hardware-based acceleration of matrix operations. Specif-
ically, this paper makes the following major contributions:

1) To the best of our knowledge, our proposed approach
is the first attempt in hardware-based acceleration of
explainable machine learning. Specifically, we investigate
the effectiveness of Tensor Processing Unit (TPU) as well
as Graphics Processing Unit (GPU) based architectures in
accelerating explainable ML algorithms.

2) We propose an efficient mechanism to convert explainable
machine learning task to linear algebra computation. As a
result, it can exploit the inherent advantages of hardware
accelerators in computing ultra-fast matrix operations.

3) Experimental evaluation using two popular ML models
demonstrate that our proposed approach can achieve
real-time explainable machine learning by providing fast
outcome interpretation with hardware accelerators.

The rest of this paper is organized as follows. Section II
surveys related efforts. Section III describes our proposed
hardware acceleration framework. Section IV presents exper-
imental results. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we survey related efforts on TPU/GPU-based
acceleration. Both TPU and GPU architectures are widely
used in accelerating diverse applications. For example, in
[8], the author applied GPU-based accelerator to solve the
optimal scheduling problem fast to achieve efficient energy
storage in distributed systems. Similarly, many computation-
ally expensive mathematical algorithms can be accelerated
by TPU/GPU based implementation. The popularity of AI
algorithms in recent years has led to many research efforts in
hardware acceleration of machine learning algorithms. In [9],
TPU was utilized on various Convolutional Neural Networks
(CNN) to demonstrate its advantage in performing convolution
operations. This advantage was further exploited in ML-
based tasks like image reconstruction [10] and automatic path-
finding [11]. While GPU and TPU have been successfully
used for accelerating machine learning algorithms, there are
no prior efforts in utilizing GPU or TPU architectures in
accelerating explainable machine learning.



III. HARDWARE ACCELERATION OF EXPLAINABLE ML
Figure 1 shows an overview of our proposed framework

for hardware acceleration of explainable machine learning.
For a specific ML task, we apply traditional training scheme
to construct a well-trained model and respective input-output
dataset. Then we build a corresponding distilled model, which
is able to provide reasonable explanation for target model’s
behavior. In this work, we consider three major tasks to
achieve fast model distillation. First, we perform task trans-
formation to map the explanation problem to Fourier trans-
form computation by utilizing the inherent property of matrix
convolution (Section III-A). Next, we develop two synergistic
activities to accelerate the computation procedure of Fourier
transform. The first activity performs data decomposition
(Section III-B), where the complete computing task is split
into multiple sub-tasks, and each sub-task can be executed
by a GPU or TPU core without requiring any data exchange
between cores (sub-tasks). The second activity fully exploits
hardware accelerators’ inherent ability in parallel computation
to process multiple input-output pairs concurrently. Simulta-
neous execution of these two activities can provide significant
improvement in acceleration efficiency, which is demonstrated
in our experimental evaluation (Section IV).

Fig. 1: Our framework consists of three major activities: task
transformation, data decomposition and parallel computation.

A. Task Transformation

In this section, we demonstrate how to convert task into
a matrix computation. Specifically, we use model distilla-
tion as explanation scheme, which aims at distilling fea-
tures learned by a complex and cumbersome ML model,
and use a lightweight “shadow” model to mimic its input-
output mapping behavior, which is called as distilled model.
Model distillation consists of the following three steps: model
specification, model computation and outcome interpretation.

Model Specification: In this work, a regression model is
applied in order to satisfy the two requirements outlined above.
Formally, given input data X and output Y, we find a matrix K
using Equation 1, where “*” denotes the matrix convolution.

X ∗K = Y (1)
Since convolution is a linear-shift-invariant operation, the

above regression guarantees the distilled model to be suf-
ficiently lightweight and transparent. Under this scenario,
the model computation task boils down to solving for the
parameters in matrix K.

Model Computation: To solve for K, one key observation
is that we can apply Fourier transformation on both sides of
Equation 1, and by discrete convolution theorem, it gives

X ∗K = Y
F (X ∗K) = F (Y)

F (X) ◦F (K) = F (Y)

(2)

where ◦ is the Hadamard product. Therefore, the solution is
given by this formula:

K = F−1(F (Y)/F (X)) (3)
Outcome Interpretation: The primary goal of explainable

ML is to measure how each input feature contributes to the
output value. Once K is obtained, the contribution of each
feature can be viewed in an indirect way – consider a scenario
where we remove this component from the original input,
and let it pass through the distilled model again to produce a
“perturbed” result. Then by calculating the difference between
the original and newly generated outputs, the impact of the key
feature on the output can be quantified. The intuition behind
the assumption is that hiding important features are more likely
to cause considerable changes to the model output. Formally,
assume that the input is X = [x1, x2, ..., xi−1, xi, xi+1..., xd].
We define the contribution factor of xi as

con(xi) , Y− X′ ∗K (4)
where X′ = [x1, x2, ..., xi−1, 0, xi+1..., xd], which is nothing

but removing the target component from the original input.
As we can see, the original model distillation task has

been converted into a matrix computation problem, which
consists of matrix convolution, point-wise division and Fourier
transform. The first two types of operations can be inherently
accelerated by GPU or TPU’s built-in structure [12]. The next
section describes the details for accelerating Fourier transform.

B. Data Decomposition in Fourier Transform

In this section, we demonstrate how to apply data decom-
position to disentangle Fourier transform computation, and
further utilize computation resources to significantly accelerate
the computing process. The general form of a 2-D Discrete
Fourier Transform (DFT) applied on an M × N signal is
defined as:

X[k, l] =
1√
MN

N−1∑
n=0

[
M−1∑
m=0

x[m,n]e−j2π
mk
M

]
e−j2π

nl
N (5)

where k = 0, ...,M − 1 , l = 0, ..., N − 1.
If we define intermediate signal X ′ such that

X ′[k, n] ,
1√
M

M−1∑
m=0

x[m,n]e−j2π
mk
M (6)

and plug it into Equation 5, we have

X[k, l] =
1√
N

N−1∑
n=0

X ′[k, n]e−j2π
nl
N (7)

Notice the similarity between Equation 6 and the definition
of 1-D Fourier transform applied on a M -length vector:

X[k] =
1√
M

M−1∑
m=0

x[m]e−j2π
mk
M (8)

If we treat n as a fixed parameter, then application of
Equation 6 is equivalent to performing a 1-D Fourier transform
on the n-th column of the original input M × N matrix.
Note that for 1-D Fourier transform, it can always be written



TABLE I: Comparison of accuracy and classification time for various benchmarks
CPU-based Acceleration GPU-based Acceleration TPU-based Acceleration

Benchmark Accuracy Training- Testing- Accuracy Training- Testing- Accuracy Training- Testing- Speedup. Speedup.
(%) time(s) time(s) (%) time(s) time(s) (%) time(s) time(s) /CPU /GPU

VGG19 94.06 24.2 10.9 92.08 0.25 0.08 96.37 0.4 0.14 65x 0.61x
ResNet50 78.99 176.2 129.8 86.87 19.1 9.4 87.47 4.3 2.6 44.5x 4.13x
Average 86.52 100.2 70.35 89.47 9.67 4.84 91.92 2.35 1.37 54.7x 3.9x

as a product of input vector and Fourier transform matrix.
Therefore, we can rewrite Equation 6 as:

X ′[k, n] = WM · x[m,n] (9)
where WM is the M × M Fourier transform matrix. By
varying n from 1 to N − 1, we get:

X ′ = [X ′[k, 0], · · · , X ′[k,N − 1]] = WM · x (10)
If we treat k as a parameter and view the definition of

X ′[k, n] as the 1-D Fourier transform with respect to the k-th
row of input x, a similar expression can be obtained using the
above derivation steps as:

X = X ′ ·WN (11)
where WN is the N × N Fourier transform matrix. Using
Equation 10, the final expression of X can be written as:

X = (WM · x) ·WN (12)
This transformed expression indicates that a 2-D Fourier

transform can be achieved in a two-stage manner. First, trans-
form all the rows of x to obtain intermediate result X ′. Second,
transform all the columns of the resulting matrix X ′. An
important observation is that the required computation for each
row/column are completely independent. This implies that in
real implementation, we can always split the computation
process into sub-threads. Given p individual cores involved
and a M ×N matrix as input, every core is assigned at most
max{M,N}

p 1-D Fourier transform workload and can execute in
parallel. Our analysis reveals that merging the results matches
with the desired 2-D Fourier transform result.

IV. EXPERIMENTS

A. Experimental Setup

Experiments were conducted on a host machine with Intel
i7 3.70GHz CPU, equipped with an external NVIDIA GeForce
RTX 2080 Ti GPU, which is considered as the state-of-the-art
GPU accelerator for ML algorithms. We also utilize Google’s
Colab platform to access Google Cloud TPU service. In our
evaluation, we used TPUv2 with 64 GB High Bandwidth
Memory (HBM), and 128 TPU cores. We developed code
using Python [13] for model training and PyTorch 1.6.0 [14]
as the machine learning library. We have used the following
two populor benchmarks in our study.

1) VGG19 [15] classifier for CIFAR-100 classification.
2) ResNet50 [16] network for malware detection [1], [17].
We have compared the following three configurations to

highlight the importance of our proposed hardware accel-
eration approach. To address the compatibility of proposed
optimization approach, all the proposed optimization methods
(task transformation, data decomposition, parallel computa-
tion) are deployed on all 3 accelerators:

1) CPU: Traditional execution in software, which is consid-
ered as baseline method.

2) GPU: NVIDIA GeForce 2080 Ti GPU, which is consid-
ered as state-of-the-art ML acceleration component.

3) TPU: Google’s cloud TPU, a specific ASIC designed to
accelerate machine learning procedure.

The model training process consists of 500 epochs in total,
with a mini-batch size of 128. As for result evaluation, we first
evaluated classification performance by reporting ML models’
classification accuracy and execution time. Next, we compare
the energy efficiency by measuring the performance per watt
on each hardware under different workload. Then we report
the average time for completing outcome interpretation step
for each configuration. Finally, we present the effectiveness of
our proposed method in interpreting classification results.

B. Comparison of Accuracy and Classification Time

Table I compares the classification time and accuracy.
Each row represents a specific model structure trained with
corresponding hardware configuration. For both training time
and testing time, each entry represents time cost of 10 epochs
on average. As we can see, with sufficient number of training
epochs, all methods obtain reasonable classification accuracy.
However, when it comes to time-efficiency, the CPU-based
baseline implementation lags far behind the other two, which
achieved the slowest speed. On VGG19, GPU provides the best
acceleration performance, which provides 65x speedup com-
pared to the baseline implementation. This clearly indicates
the great compatability between hardware accelerator and our
proposed framework. In case of ResNet50, an even higher
speedup was obtained by TPU, showing its acceleration poten-
tial in large-scale neural networks by providing around four
times speedup than GPU. The drastic improvement (44.5x)
compared to the baseline method also leads to significant
energy savings, as described in the next section.

C. Comparison of Energy Efficiency

Power consumption is another important aspect of per-
formance evaluation, as power closely affects the thermal,
provision and stability of the device. Consequently, designers
should consider power consumption for methods deployed on
hardware components to ensure their power constraints are
satisfied. Figure 2 shows the geometric and weighted mean
performance/Watt for the RTX 2080 Ti GPU and Google’s
TPU relative to the CPU. Similar to [18], we calculate perfor-
mance/Watt in two different ways. The first one (referred as
‘total’) computes the total power consumption which consists
of the power consumed by the host CPU as well as the actual
execution performance/Watt for the GPU or TPU. The second
one (referred as ‘incremental’) does not consider the host CPU
power, and therefore, it reflects the actual power consumption
of the GPU or TPU during acceleration. As we can see from
Figure 2, for total-performance/watt, the GPU implementation



Fig. 2: Relative performance/Watt of GPU (blue bar) and TPU
(green bar) over CPU, and TPU versus GPU (yellow bar). The
total perf./watt includes host CPU power, while incremental
ignores it. GM and WM are the geometric mean and weighted
means, respectively.

is 1.9X and 2.4X better than baseline CPU for geometric
mean (GM) and weighted mean (WM), respectively. TPU
outperforms both CPU (16x on GM and 33X on WM) and
GPU (8.4X on GM and 13.8x on WM) in terms of total per-
formance/watt. For incremental-performance/watt, when host
CPU’s power is omitted, the TPU shows its dominance in
energy efficiency over both CPU (39x on GM and 69X on
WM) and GPU (18.6x on GM and 31X on WM).

In terms of energy efficiency, TPU outperforms GPU,
which outperforms CPU. Our proposed method fully utilizes
data decomposition to create a high-level parallel comput-
ing environment where both GPU an TPU benefit from it
to balance the workloads on every single core. Although
both GPU and TPU have the advantage of utilizing parallel
computing to fulfill the proposed framework, TPU provides
better performance/watt primarily due to the ‘quantification’
property of TPU. Quantification is a powerful mechanism
to reduce the cost of neural network prediction as well as
the reduction in memory. The use of integers instead of
floating-point calculations greatly reduces the hardware size
and power consumption of the TPU. Specifically, TPU can
perform 65,536 8-bit integer multiplications in a cycle, while
mainstream GPUs used in cloud environments can perform
few thousands of 32-bit floating-point multiplications. As long
as 8 bits can be used to meet the accuracy requirements, it
can bring significant performance improvement. While both
TPU and GPU based acceleration can achieve fast explainable
machine learning, the TPU-based implementation is the best
in terms of energy efficiency.

V. CONCLUSION

While explainable machine learning techniques are popular,
their long running time severely restricts their applicability
in many domains. In this paper, we address this fundamental
bottleneck using hardware-based acceleration to provide ex-
plainability (transparency) of machine learning models in a
reasonable time. This paper made several major contributions.
We propose an efficient mechanism to transform the model
distillation problem to linear algebra computation problem.
The transformed model is able to fully exploit the inherent
ability of hardware accelerators in computing ultra-fast ma-

Fig. 3: The power consumption of different hardware with
various workload situations.

trix operations. Moreover, it enables parallel computing by
performing data decomposition to break a large matrix into
multiple small matrices. Experimental evaluation on a diverse
set of benchmarks demonstrated that our approach is scalable
and able to meet real-time constraints. Our studies reveal that
our proposed framework can effectively utilize the inherent
advantages of both TPU and GPU based architectures. Specifi-
cally, TPU-based acceleration provides drastic improvement in
interpretation time (39x over CPU and 4x over GPU) as well
as energy efficiency (69x over CPU and 31x over GPU) for
both image classification and malware detection benchmarks.

REFERENCES

[1] Z. Pan, J. Sheldon, and P. Mishra, “Hardware-assisted malware detection
using explainable machine learning,” in ICCD, 2020, pp. 663–666.

[2] ——, “Test generation using reinforcement learning for delay-based
side-channel analysis,” in IEEE/ACM International Conference On Com-
puter Aided Design (ICCAD), 2020, pp. 1–7.

[3] Z. Pan and P. Mishra, “Automated detection of spectre and meltdown
attacks using explainable machine learning,” in HOST, 2021.

[4] ——, “Automated test generation for hardware trojan detection using
reinforcement learning,” in ASPDAC, 2021, pp. 408–413.

[5] T. Lu et al., “Large-scale discrete fourier transform on tpus,” CoRR, vol.
abs/2002.03260, 2020.

[6] T. Lu, T. Marin, Y. Zhuo, Y. Chen, and C. Ma, “Accelerating MRI
reconstruction on tpus,” CoRR, vol. abs/2006.14080, 2020.

[7] J. Civit-Masot et al., “TPU cloud-based generalized u-net for eye fundus
image segmentation,” IEEE Access, vol. 7, pp. 142 379–142 387, 2019.

[8] D. Sidea et al., “Optimal battery energy storage system scheduling based
on mutation-improved grey wolf optimizer using gpu-accelerated load
flow in active distribution networks,” IEEE Access, vol. 9, 2021.

[9] A. Yazdanbakhsh et al., “An evaluation of edge tpu accelerators for
convolutional neural networks,” arXiv preprint arXiv:2102.10423, 2021.

[10] T. Lu et al., “Accelerating mri reconstruction on tpus,” in IEEE HPEC,
2020, pp. 1–9.

[11] J. Sengupta et al., “High-speed, real-time, spike-based object tracking
and path prediction on google edge tpu.” in AICAS, 2020, pp. 134–135.

[12] C. Y. Kaz Sato and D. Patterson, “An in-depth look at google’s first
tensor processing unit (tpu),” 2017.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[14] A. Paszke, Gross et al., “Pytorch: An imperative style, high-performance
deep learning library,” in NIPS, 2019, pp. 8024–8035.

[15] H. Qassim, D. Feinzimer, and A. Verma, “Residual squeeze VGG19,”
CoRR, vol. abs/1705.03004, 2017.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[17] Z. Pan, J. Sheldon, C. Sudusinghe, S. Charles, and P. Mishra, “Hardware-
assisted malware detection using machine learning,” in Design Automa-
tion and Test in Europe (DATE), 2021.

[18] N. Jouppi et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” in ISCA, 2017, pp. 1–12.


