
Design of AI Trojans for Evading Machine
Learning-based Detection of Hardware Trojans

Zhixin Pan and Prabhat Mishra
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida, USA

Abstract—The globalized semiconductor supply chain signif-
icantly increases the risk of exposing System-on-Chip (SoC)
designs to malicious implants, popularly known as hardware
Trojans. Traditional simulation-based validation is unsuitable for
detection of carefully-crafted hardware Trojans with extremely
rare trigger conditions. While machine learning (ML) based
Trojan detection approaches are promising due to their scalability
as well as detection accuracy, ML-based methods themselves
are vulnerable from Trojan attacks. In this paper, we propose
a robust backdoor attack on ML-based Trojan detection algo-
rithms to demonstrate this serious vulnerability. The proposed
framework is able to design an AI Trojan and implant it
inside the ML model that can be triggered by specific inputs.
Experimental results demonstrate that the proposed AI Trojans
can bypass state-of-the-art defense algorithms. Moreover, our
approach provides a fast and cost-effective solution in achieving
100% attack success rate that significantly outperforms state-of-
the art approaches based on adversarial attacks.

I. INTRODUCTION

The globalized semiconductor supply chain significantly
increases the risk of exposing System-on-Chip (SoC) designs
to hardware Trojans (HT) [1]. Figure 1 shows an example
Trojan that consists of two critical parts, trigger and payload.
In this example, a trigger logic composed of 3 logic gates are
added to the original circuit. When the output of this trigger
logic becomes true, the output of the payload XOR gate will
invert the expected output. The trigger is typically created
using a combination of rare events (such as rare signals or
rare transitions) to stay hidden during normal execution. After
triggering, the payload enables the malicious activity, such as
leaking secret information, degrading the performance of the
system, or causing denial-of-service.

Fig. 1. An example hardware Trojan. Once the trigger condition (purple gates)
is satisfied, the payload (yellow XOR) will invert the expected output.

Due to stealthy nature of these Trojans coupled with the
exponential input space complexity of modern SoCs, it may
not be feasible to detect Trojans during traditional simulation-
based validation [2]–[5]. Machine learning (ML) algorithms

This work was partially supported by the NSF grant CCF-1908131.

have received considerable attention for HT detection in recent
years due to their scalability as well as detection accuracy [6].
ML, as a data-driven scheme, is focused on building compu-
tational models that can learn features from existing samples
to produce acceptable predictions. However, ML models are
computationally expensive to train, requiring huge amount
of computation resources. To reduce cost, some industries
outsource the training procedure to the cloud service or rely
on pre-trained models. This process is referred as Machine
Learning as a Service (MLaaS).

A. Threat Model

While MLaaS provides specific advantages, it also provides
adversaries with opportunities to launch backdoor attacks to-
wards ML models, popularly known as AI Trojans in computer
vision domain, as described in Section II-A. AI Trojans and
hardware Trojans are similar from several perspectives. (1)
Both of them are malicious implants consisting of a rare trigger
and a small payload. (2) The functionality of the infected
circuit (or backdoored ML model) is not affected until the
adversary applies certain inputs to activate the Trojan trigger.
(3) They can be inserted by a rogue employee or an adversary
involved in any of the third-party service (e.g., MLaaS for
AI Trojans or IP design/synthesis/fabrication for hardware
Trojans). In spite of the above similarities, they have one major
difference. While the primary objective of AI Trojans is to
mispredict (incorrect execution), hardware Trojans can lead to
information leakage, incorrect execution, denial-of-service, or
other unintended consequences.

B. Research Contributions

In this paper, we demonstrate that an adversary can create
a maliciously trained ML model (a neural network with back-
door) that can provide expected performance for HT detection,
but behaves maliciously on specific attacker-chosen inputs.
Specifically, this paper makes three important contributions.

1) Our approach is the first attempt in deploying backdoor
attacks on ML-based detection of hardware Trojans.

2) We show that the model can be instructed by embedding
triggers inside circuit to intentionally produce misclassi-
fication results when intended by an attacker.

3) Our proposed approach can achieve 100% attack success
rate, and significantly outperforms state-of-the-art adver-
sarial attacks and defenses on ML-based HT detection.

The remainder of this paper is organized as follows. Sec-
tion II-B provides relevant background and surveys related
efforts. Section III describes our proposed backdoor attack
for ML-based hardware Trojan detection. Section IV presents
experimental results. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Background: AI Trojans

To reduce the cost and training time associated with de-
veloping ML models, some industries outsource the training
process to a potentially untrusted third-party cloud service
providers. Alternatively, they acquire pre-trained ML models.
These usage models creates opportunity for adversary to pro-
vide users with backdoored ML models. BadNet [7] performs
well on almost any regular inputs (including the inputs in a
typical validation set), but produces misclassification for inputs
that satisfy some secret, attacker-chosen rare scenario, which
we refer as the ‘backdoor trigger’. Liu et al. introduced the
idea of backdoor attacks on machine learning [8]. Gu et al.
applied this idea in autonomous systems where they launch
the backdoor attack on traffic sign detection [7].

Fig. 2. Comparison between various attacks on ML models. (a) Traditional AI
Trojan attack in computer vision domain [7]. (b) State-of-the-art adversarial
attacks on ML-based hardware Trojan detection [9].

Figure 2(a) shows an illustrative example of an AI Trojan
in computer vision domain. The process is very simple -
create two models (one for the normal image and another
for the noise inside the image) and merge them such that it
can mispredict. For example, the backdoored model identifies
the symbol 7 as 8. This idea cannot be directly applied for
hardware Trojan detection since there is no similar concept
of ‘noise’ in hardware designs that can alter classification but
does not change the functionality of the design. Figure 2(b)
shows state-of-the-art adversarial attacks [9] of ML-based
hardware Trojan detection. Our proposed idea is fundamen-
tally different from adversarial attacks due to the fact that our
work relies on embedding a Trojan in the ML model while the
latter focuses on crafting adversarial examples.

There are some recent attempts in defending against back-
door attacks [10]–[12]. However, these defenses have limited
applicability in specific scenarios. Section IV demonstrates
that our approach can bypass the state-of-the-art defences.
While the threats of AI Trojans have been explored in computer
vision applications, our proposed approach is the first attempt
in deploying AI Trojans to circumvent ML-based HT detection.

B. Related Work: ML-based Hardware Trojan Detection

ML algorithms have enabled promising performance with
outstanding flexibility and generalization for HT detection in
recent years. Chen et al. [13] extracted circuit features includ-
ing switching activity and net structure from the gate-level

netlists. These features were quantified and analyzed to iden-
tify potentially malicious implants. Zhou et al. [14] presented
a pattern matching algorithm to detect HTs by analyzing
the distribution of rare signals inside IP cores. Kasegawa et
al. [15], [16] explored various features and applied different
ML algorithms (DNNS, SVM) to provide state-of-the-art per-
formance in terms of average accuracy and running efficiency.
All of these approaches are vulnerable towards AI Trojans.
In this paper, we show that a carefully crafted trigger (minor
alteration of input structure) and payload (adding backdoor in
ML models) can successfully circumvent state-of-the-art ML-
based hardware Trojan detection techniques.

III. BACKDOOR ATTACK WITH AI TROJANS

Figure 3 shows an overview of our proposed attack scheme
that consists of four major tasks: feature extraction, normal
training, backdoor training and Trojan injection. The first
task extracts two different types of hardware circuit features,
one is utilized for normal training process and the other one
is utilized for backdoor attacks. The second task performs
classical training using normal features to generate a neural
network trained to detect hardware Trojans. The third task
enables backdoor training by crafting malicious samples with
backdoor features with the objective of perturbing the outputs
of benign models. The final task performs Trojan injection to
gift the model with backdoor property. The remainder of this
section describes these tasks in detail.

Fig. 3. Overview of our proposed framework that consists of four activities:
feature extraction, normal training, backdoor training and Trojan injection.

A. Feature Extraction

To fulfill our backdoor attack, there are two types of impor-
tant features to be collected from benchmarks, normal features
and backdoor features. First, we briefly outline about normal
features. Next, we discuss extraction of backdoor features.

1) Normal Features: Normal features are applied to train
a general purpose HT classifier. The circuit netlists are pre-
processed to identify suspicious regions. Table I shows the
specific features of each region that are utilized to train the
model. Like [16], we have considered the following five
aspects while selecting the normal features.
• fan in: HT triggers usually have extremely rare condition,

so the fan-in value tends to become large.
• flip-flops: HT components are placed locally to reduce

area overhead, so the level of flip-flops for sequential-
triggers are usually designed to be small.

• loops: For ring-oscillator Trojans, looped flip-flops are
widely applied to arrange nodes.

• multiplexer: A large portion of HTs utilizes multiplexers
to receive trigger and activate malfunctions.

• pin distance: The distance between the region and the
primary input provides the basic location information.

TABLE I
SELECTION OF HT FEATURES FOR NORMAL AND BACKDOOR TRAINING.

Features Descriptions

N
or

m
al

fan in 4
fan in 5
flipflop in 4
flipflop in 5
loop in 4
loop in 5
multiplexer in
pin

logic-gate fanins 4-level away.
of logic-gate fanins 5-level away.
of flip-flops up to 4-level away from input side.
of flip-flops up to 5-level away from input side.
of up to 4-level loops at the input side.
of up to 5-level loops at the input side.
Distance level to multiplexer from the input side.
Distance level to the primary input.

B
ac

kd
oo

r

flipflop out 5
loop out 5
pout

of flip-flops up to 5-level away from output side.
of up to 5-level loops at the output side.
Distance level to the primary output.

2) Backdoor Features: The necessity of backdoor features
arise from the fact that injecting backdoor triggers in images
and circuits are significantly different. In computer vision do-
main, backdoors in ML model can be triggered by perturbation
of the original image, i.e. noises. They can be theoretically
obtained by gradient methods, and appending noise to images
are usually invisible to human eye. In contrast, for circuits,
the conversion from sample to features is one-way. Even if
we can calculate the necessary changes of feature values to
alter the classification result, there is no guarantee to create
such modified circuit which has the desired feature values.
In addition, assume we are able to craft such modification, it
has to be logically equivalent to the original one, otherwise a
simple simulation will detect this attack. Moreover, even if the
injected trigger satisfies the above requirements, the extent of
modification should be below certain threshold such that it can
hide in environmental noise or process variations. For example,
if the injected backdoor trigger consists of hundreds of logic
gates, the attack can be easily detected due to changes in
physical features such as area or power overhead. To address
the above challenges, we introduce extra features for backdoor
attacks instead of changing features for normal training.

Fig. 4. The fundamental idea of using ‘payload’ model.

The basic idea is to utilize several extra features, called
as backdoor features to train another neural network, called
payload model. The payload model accepts these backdoor
features as the only inputs. The functionality of this network
is illustrated in Figure 4. It checks if input features satisfy

certain constraints. If yes, it produces perturbation values that
will change the classification label if added with the benign
model outputs. Otherwise the output remains 0. Note that this
feature is similar to hardware Trojans. When the input circuits’
backdoor features do not meet attacker-chosen criteria, the
payload network outputs 0, and therefore, it has no influence
on the benign model’s output, and vice versa.

Based on the above discussion, the selection of these extra
features has to satisfy the following requirements.
• Adjustable: The backdoor features should be easy to

manipulate, so that the adversary can customize these
features to create a trigger condition.

• Orthogonal: The backdoor features have to be ‘orthogo-
nal’ to those selected normal features. Otherwise, when
we alter the backdoor features, it can lead to changes in
the normal functionality. This contradicts the requirement
that the ML model should act normally when backdoor
trigger is not activated.

• Logically Equivalent: The functionality of modified cir-
cuit should be identical to the original one.

• Negligible Overhead: Changes to the backdoor features
should be negligible for evading instant detection.

According to these requirements, three backdoor features
are selected as shown in Table I. We intentionally select
features related to the output side of the suspicious regions
while normal features focus on input side. This guarantees
the orthogonality. While there are other candidate features,
we select these three features since they provide the best
overall performance. Section III-C provides the details of
utilizing these features, while effectiveness of these features
are evaluated in Section IV.

Algorithm 1: Normal Training
Input: Circuit samples {xi} and labels {yi}
Output: Normal Model MΘ

1 initialization;
2 N = |{xi}|
3 repeat
4 for i = 1 ... N do
5 outi = softmax(MΘ(xi))

6 loss =
N∑
i

cross entropy(outi, yi)

7 Θ = sgd(Θ,∇loss)
8 until converge;
9 Return MΘ

B. Normal Training

The normal training follows the standard training procedure
as shown in Algorithm 1. In [15], the author proposed an ML
model with only one hidden layer and 500 hidden nodes. In
our work, the hidden layers mimic the design of Lenet-5 [17],
it is composed of three consecutive layers of convolution,
followed by two fully connected layers. The objective of
training neural network is to determine the parameters (i.e.,

weights, biases, and hyperparameters) inside the model to min-
imize the difference between the ground-truth labels and the
output predictions using stochastic gradient descent (SGD).
Assume L is the measurement of difference, Θ represents
the model parameters, xi is a training sample, yi is the
corresponding ground-truth label, and MΘ(xi) is the predicted
label. Mathematically, the training procedure of the benign
model is to minimize the loss function: loss = L(MΘ(xi), yi).
HT detection is a binary classification task and therefore yi is
either 0 or 1. In this case, L is selected as the cross-entropy.
In addition, L2 regularization and dropout strategies are also
applied in our framework to avoid overfitting problem.

Algorithm 2: Backdoor Training and Trojan Injection
Input: Circuit samples {xi} and labels {yi}, Normal

model MΘ, payload model M̄Θ̄, maximum of
mutation times max mut

Output: Backdoored Model M∗

1 initialization;
2 N = |{xi}|
3 for i = 1 ... N do
4 iter = rand(0,max mut)
5 for i = 1 ... iter do
6 x′i = mutate(xi);

7 Label all xi as 0, x′i as 1
8 X∗ = {xi} ∪ {x′i}
9 repeat

10 for each x∗i ∈ X∗ do
11 outi = softmax(M̄Θ̄(x∗i))

12 loss =
2N∑
i

cross entropy(outi, label(x
∗
i))

13 Θ̄ = sgd(Θ̄,∇loss)
14 until converge;
15 M∗ = −λ ·H(M̄Θ̄(xi)) · L(MΘ(xi), yi)
16 Return M∗

C. Backdoor Training

Based on the discussion in Section III-A, backdoor training
aims at building a mapping function that always gives zero
value unless specific requirements are satisfied. Intuitively, a
value checking logic plus a lock should suffice. Unfortunately,
this naive approach needs hard-coding of constraints, which
has no flexibility. In addition, this approach is very easy to
detect due to its unique structure.

Fig. 5. Example mutation patterns [9] used in our proposed work.

Our proposed backdoor training works in a totally different
way. First, we select circuit samples and record their initial
values of backdoor features. Next, we randomly apply various

modification patterns multiple times to mutate the backdoor
feature values, as shown in Figure 5. Note that all mutation
patterns are logically invariant. Meanwhile, changes applied in
our work are controlled within a scale of < 25 gates to satisfy
the negligibility requirement. After mutation, the modified
patterns of backdoor features are considered as backdoor
‘signatures’ to indicate whether it has been retrofitted by
adversary or not. Then the task of backdoor training is to feed
these malicious samples into the ML model to enforce it to
remember these ‘signatures’. In this case, the payload model
works as a binary classifier, aiming at predicting whether
input samples are with “signatures”. This approach fulfills the
desired constraint checking functionality as shown in Figure 4.

Designing the structure of the payload model is even more
challenging than the normal model. While a simpler structure
is easier to train and harder to detect due to its small overhead,
it often provides lower attack success rate for its limited
capability. On the other hand, a complicated structure usually
guarantees the performance in terms of backdoor attack, but
comes at the cost of higher training cost as well as higher
risk of being detected. The effectiveness of different design
strategies are discussed in Section IV. The outline of backdoor
training and Trojan injection is shown in Algorithm 2.

D. Trojan Injection

After backdoor training, we obtained the desired payload
model. To complete the attack, we need to inject this payload
model into the normal model. As described in Figure 4,
the desired functionality of payload model is to produce
some perturbation that suffices to switch classifier prediction
when the trigger condition is satisfied, and maintain silence
otherwise. The output of payload model can be designed as:

output = −λ ·H(M̄Θ̄(xi)) · L(MΘ(xi), yi)

where λ is the regularizer, M̄ is the payload model, M is the
normal model, and H is the Heaviside step function (unit-step
function). In this case, when input circuit is recognized as ‘1’
(with backdoor signature), H(M̄Θ̄(xi)) = 1 and the output
is a scaled inverse of normal model output. In terms of ‘0’
label (without backdoor signature), H(M̄Θ̄(xi)) = 0 and the
output is 0. By combining the output layers, the normal model
and payload model are assembled together. After pruning and
nodes merging, the result is the desired backdoored ML model.
The payload model is embedded into the normal model and it
hide behind the entire structure.

IV. EXPERIMENTS

A. Experimental Setup

The experimental evaluation is performed on a host machine
with Intel i7 3.70GHz CPU, 32 GB RAM and RTX 2080
256-bit GPU. We developed code using Python for model
training. We used PyTorch as the machine learning library. To
enable comprehensive evaluation, we deploy the experiments
utilizing 50 gate-level netlist benchmarks from Trust-Hub [18].
Features are extracted from benchmarks and formatted into

(a) MLP (b) Lenet (c) GoogleNet
Fig. 6. The attack success rate of our framework using three different payload models under different thresholds on number of mutations.

PyTorch tensors, making them compatible with any ML mod-
els requiring tensor inputs. The structure for normal model is
described in Section III-B. Based on Section III-C, we apply
the following models when designing our payload model.
• MLP: A multiple-layer-perceptron (MLP), composed of

3 fully connected layers.
• Lenet: A Lenet-5 [17] like structure, composed of 3

convolution layers followed by 2 fully connected layers.
• GoogleNet: A GoogleNet [19] like structure, with a depth

of 22 layers.
Assume that M represents the normal model and M∗ for

the backdoored model with the original sample circuits dataset
{(x1, y1), (x2, y2), ..., (xn, yn)} and modified circuits dataset
{(x′1, y′1), (x′2, y

′
2), ..., (xm, ym)}. We use the following three

metrics to evaluate the performance.

• Baseline Accuracy is computed as
n∑
i

1(M(xi)=yi)
n ,

which represents the prediction accuracy of the normal
model with original samples. 1 is the indicator function.

• Attack Success Rate (ASR) is
m∑
i

1(M∗(x′i)6=y′i)
m , which

represents prediction accuracy of the backdoored model
with modified samples.

• Backdoor Accuracy is

n∑
i

1(M∗(xi)=yi)+
m∑
i

1(M∗(x′i) 6=y′i)

n+m ,
which represents the prediction accuracy of the back-
doored model with all samples.

To evaluate the effectiveness of our approach, we compare
with the following state-of-the-art attack and defense.
• GAE: State-of-the-art adversarial attack based on gen-

erating adversarial examples [9].
• STRIP: State-of-the-art defense against AI Trojan at-

tacks [12].

B. Comparison of Attack Performance

Figure 6 compares the performance of three different im-
plementations. In each figure, baseline accuracy, backdoor
accuracy and attack success rate are provided. The x-axis
represents the upperbound on the number of mutations applied
in Algorithm 2 during backdoor training, where larger x-
value represents more modifications to the input samples. In
our experiment, the normal model achieves 98.5% accuracy
for normal samples. All three models’ backdoor accuracy

are slightly lower than the baseline accuracy. This difference
comes from the effect of payload model. This is supported
by the observation that the backdoor accuracy is nearly
proportional to the ASR. The closer ASR is to perfection,
the closer backdoor accuracy are to the baseline. In other
words, it represents the performance of backdoored model
‘mimicking’ the normal model’s behavior. In terms of attack
success rate, the simpler (lightweight) payload model implies
faster convergence to perfection. For example, MLP needs
about 5 mutations while GoogleNet requires 20 mutations to
reach 100% ASR. However, as we can see, the ASR of MLP is
unstable. Even after it hits perfection, it oscillates at a 10% am-
plitude. Instead, complicated model like GoogleNet requires
more modifications to reach convergence, but it becomes very
stable once reaches 100% success rate. This is expected due
to simple models’ limited capability in handling complex
features. Larger number of mutations brings expanded feature
space, and it is likely for these lightweight models to get
overfitted. In other words, some normal samples may satisfy
the payload model and get their classification result switched.
Therefore, we need to carefully select the mutation number
for simple structures.

Fig. 7. The attack success rate comparison between proposed algorithm and
the state-of-the-art adversarial attack with < 25 mutations.

Figure 7 compares the ASR of our proposed method with
state-of-the-art attack, GAE [9]. As we can see, GAE’s ASR is
much lower than the proposed method. This huge difference
comes from the design strategy. GAE applies mutations on
circuits and then directly feed them into models to alter its
outputs. In our work, we extract backdoor features and feed
them into an extra model. Intuitively, this extra model acts

as both an extractor and an amplifier. It recognizes backdoor
features and enables fusion of its output with results from
the normal model. As a result, a small amount of mutations
suffices to alter the classification result. In contrast, GAE does
not have such amplifier and it usually requires a large number
of mutations to create changes in the output layer. Therefore,
it provides inferior attack performance. GAE also faces the
risk of being detected due to larger number of mutations.

C. Overhead Analysis

Table II compares the training cost and data resources of
various methods. The first three rows represent our approach.
The MLP approach is the most economic is terms of training
cost. It can be trained within 50 epochs with each epoch taking
0.6s, and only requires 20% of the training samples to be
malicious. However, GoogleNet is very costly, it needs 500 of
0.37s training epochs. GAE requires moderate training cost,
comparable to Lenet. However, it requires a large number
of mutations, and still provides inferior attack performance
compared to our proposed method.

TABLE II
COMPARISON OF TRAINING COST AND DATA RESOURCES.

Models Time(s) Epochs Malicious/Benign
Division # Mutation

MLP 0.6 50 2/8 6
Lenet 1.7 200 2/8 18

GoogleNet 72.4 500 5/5 21
GAE [9] 1.0 200 4/6 44

D. Robustness against STRIP-based Defense

We further evaluate the proposed attack’s robustness against
the state-of-the-art defense scheme, STRIP [12]. STRIP aims
at identifying if a given input is clean or contains a backdoor
trigger. It works by fusing the input sample with multiple
clean samples. Then STRIP applies the fused input to the
backdoored model and calculates the entropy of model outputs.
This defence strategy relies on the observation that backdoored
inputs tend to produce lower entropy outputs compared to the
clean ones, so that by checking their entropy distributions,
backdoored inputs can be clearly distinguished.

Fig. 8. Entropy distribution of clean and backdoored inputs. (a) Backdoored
inputs generated by GAE can be easily detected. (b) Backdoored inputs
generated by our method’s entropy is hard to distinguish from benign inputs.

Figure 8 shows the entropy of outputs from GAE and our
proposed method for both clean and backdoored inputs. As
we can see, the distribution of entropy for backdoored data
overlaps with the distributions of entropy of the clean data
for our approach. However, GAE’s entropy can be clearly

distinguished from the normal one. We consider the following
two important reasons for this scenario. 1) We intentionally
select backdoor features that are orthogonal to normal features.
Therefore, applied mutations do not affect the normal features,
which avoids drastic changes in output entropy. 2) The mu-
tations in GAE is gradient-driven, where feature values are
erected to the gradient direction, leading to a small entropy.
Our proposed method is able to bypass the state-of-the-art
defense (STRIP) while state-of-the attack (GAE) fails.

V. CONCLUSION

While machine learning (ML) techniques are widely ap-
plied in hardware Trojan (HT) detection, ML algorithms are
vulnerable towards Trojan attacks. In this paper, we exploit
this fundamental vulnerability to propose a backdoor attack
scheme. Specifically, this paper made several important con-
tributions. We propose an efficient mechanism to design and
inject AI Trojans into ML models for HT detection. The
infected model can hide in plain sight since it can provide
expected classification for regular inputs. However, it will
produce misclassification for specific attacker-chosen inputs.
Extensive experimental evaluation using three implementation
models demonstrated that our approach can achieve 100%
attack success rate with very few modifications compared to
state-of-the-art adversarial attack for ML-based HT detection.
Our studies also reveal that our proposed framework is robust
against the state-of-the-art defence against Trojan attacks.

REFERENCES

[1] F. Farahmandi et al., System-on-Chip Security. Springer, 2020.
[2] Y. Lyu and P. Mishra, “Scalable activation of rare triggers in hardware

trojans by repeated maximal clique sampling,” IEEE TCAD, 2020.
[3] ——, “Maxsense: Side-channel sensitivity maximization for trojan de-

tection using statistical test patterns,” ACM TODAES, 26(3), 2021.
[4] Z. Pan, J. Sheldon, and P. Mishra, “Test generation using reinforcement

learning for delay-based side-channel analysis,” in ICCAD, 2020.
[5] Z. Pan and P. Mishra, “Automated test generation for hardware trojan

detection using reinforcement learning,” in ASPDAC, 2021, pp. 408–413.
[6] ——, “Hardware acceleration of explainable machine learning,” in

Design Automation and Test in Europe (DATE), 2022.
[7] T. Gu et al., “Badnets: Evaluating backdooring attacks on deep neural

networks,” IEEE Access, vol. 7, pp. 47 230–47 244, 2019.
[8] Y. Liu et al., “Trojaning attack on neural networks,” 2017.
[9] Nozawa et al., “Generating adversarial examples for hardware-trojan

detection at gate-level netlists,” JIP, vol. 29, pp. 236–246, 2021.
[10] B. Wang et al., “Neuralcleanse: Identifying and mitigating backdoor

attacks in neural networks,” SP, vol. 530546, 2019.
[11] K. Liu et al., “Fine-pruning: Defending against backdooring attacks on

deep neural networks,” in ISRAID. Springer, 2018, pp. 273–294.
[12] Y. Gao et al., “Strip: A defence against trojan attacks on deep neural

networks,” in ACSAC, 2019, pp. 113–125.
[13] X. Chen et al., “Hardware trojan detection in third-party digital intellec-

tual property cores by multilevel feature analysis,” IEEE TCAD, 2017.
[14] E. Zhou et al., “A novel detection method for hardware trojan in third

party ip cores,” in ISAI, 2016, pp. 528–532.
[15] K. Hasegawa et al., “A hardware-trojan classification method using

machine learning at gate-level netlists based on trojan features,” IEICE
TFECCS, vol. 100, no. 7, pp. 1427–1438, 2017.

[16] ——, “Trojan-feature extraction at gate-level netlists and its application
to hardware-trojan detection using random forest classifier,” in ISCAS.
IEEE, 2017, pp. 1–4.

[17] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL:
http://yann.lecun.com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

[18] “TrustHub.org: Trust-HUB,,” http://trust-hub.org/ benchmarks/trojan.
[19] C. Szegedy et al., “Going deeper with convolutions,” in CVPR, 2015.

