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Abstract— Malicious software, popularly known as malware,
is a serious threat to modern computing systems. A compre-
hensive cybercrime study by Ponemon Institute highlights that
malware is the most expensive attack for organizations, with an
average revenue loss of $2.6 million per organization in 2018
(11% increase compared to 2017). Recent high-profile mal-
ware attacks coupled with serious economic implications have
dramatically changed our perception of threat from malware.
Software-based solutions, such as anti-virus programs, are not
effective since they rely on matching patterns (signatures)
that can be easily fooled by carefully crafted malware with
obfuscation or other deviation capabilities. Moreover, software-
based solutions are not fast enough for real-time malware
detection in safety-critical systems. In this paper, we investigate
promising approaches for hardware-assisted malware detection
using machine learning. Specifically, we explore how machine
learning can be effective for malware detection utilizing hard-
ware performance counters, embedded trace buffer as well as
on-chip network traffic analysis.

Index Terms—Malware detection, machine learning, hard-
ware performance counters, trace buffer, on-chip traffic.

I. INTRODUCTION

We are living in the era of Internet-of-Things (IoT), an
age in which the volume of connected smart computing
devices exceeds the human population. Malware (mali-
cious software) is a critical threat today because of our
increasing reliance on such computing devices. There is
a wide assortment of malware including Trojans, Viruses,
Worms, Adware, Spyware, Crimeware and Rootkits. They
are meticulously designed to damage a computer, server,
or computer network and lead to severe impairment to the
target system [1]. For example, drive-by-download malware
seizes control of a computer system and compromises the
security and privacy of stored data [2]. Similarly, nation-state
hackers exploit malware for intelligence and to attack critical
infrastructures [3], [4]. Malware is also exploited to control
IoT devices as botnets and launch large scale attacks through
the Internet [5]. The portability of malware also empowers
it to proliferate across diverse platforms at an alarming
rate. With the rapid development of Internet and smart
devices in recent years, malware-implanted applications are
increasingly exposing systems to a wide variety of attacks.

Figure 1 shows the results of a recent cybercrime study
involving 355 companies across 11 countries covering 16
industrial sectors. Clearly, malware is the most expensive
threat for organizations, with an average revenue loss of $2.6
million per organization in 2018 [6]. Moreover, the cost is
increasing over the years, with 11% increase compared to
2017. There is a critical need to develop effective solutions
for malware detection to enable a truly secure cyberspace.

Fig. 1: Cost of different types of cyberattacks per organiza-
tion in 2018. The average cost of malware attacks is $2.6
million, which is an 11% increase compared to 2017 [6].

Malware detection is a “cat and mouse” game where
researchers design novel methods for malware detection,
and attackers develop devious ways to circumvent detection.
Traditionally, malware detection is performed by anti-virus
software (AVS) using either signature or behavior analy-
sis. Signature-based detection is one of the most popular
commercial malware detection techniques [7]. Signature-
based detectors compare the signature of a program exe-
cutable with previously stored malware signatures. However,
signature-based AVS is not useful for unknown zero-delay
malware since the respective signature is absent in the
database. In fact, signature-based AVS is not effective even
for known malware with polymorphic or metamorphic fea-
tures. These morphic malware have either a mutation engine
or rewrite themselves in each iteration through various
program obfuscation techniques. While behavior-based AVS
is promising in detecting unknown and morphing malware,
they are computation intensive. As a result, they are not
suitable for resource-constrained systems such as IoT edge
devices that operate under real-time and energy constraints.

Recent research efforts explored designing hardware-
assisted malware detection techniques with the hardware
as a root of trust. The underlying assumption is that it
is difficult to subvert a hardware-based detector since the
malware functionality will remain the same. For example, if
a malware is designed to transmit GPS data to an external
spy, the malware needs to perform the following four major
activities: infect the GPS system, monitor the GPS data,
log the GPS data, and transmit it outside the GPS. These
activities will be performed by the malware irrespective of
the executable format and the code structure (pattern). A
signature-based AVS is likely to fail to detect this malware
if the code structure is modified. However, a hardware-based
detector is likely to detect the malware by monitoring the
hardware footprints of these malicious operations since the
expected behavior will remain the same.



This paper is organized as follows. The threat model
is outlined in Section II. Section III surveys the related
efforts. Section IV describes our hardware-assisted malware
detection using machine learning. Section V presents the ex-
perimental results. Finally, Section VI concludes the paper.

II. THREAT MODEL

The threat model assumes that a system has certain vul-
nerabilities that an attacker can exploit to install a malicious
software (malware). In this paper, we consider a wide variety
of vulnerabilities that can be broadly classified into the
following categories based on attack complexity. (1) Easy:
It is easy for an attacker to install malware when the system
is not protected (e.g., no password or no antivirus tool)
or partially protected (e.g., an IoT device with a factory
default password). (2) Moderate: An attacker needs to obtain
the password from the victim (e.g., by fake/spam emails)
before installing the malware. (3) Hard: An attacker needs
to perform a sequence of tasks to be successful. For example,
the attacker needs to get access to one peripheral component
by using either of the above methods to get access to the
central component, and analyze the underlying system to
find any software or hardware-level vulnerabilities.

When a malware infects a system, it can launch a wide va-
riety of attacks. We consider the following types of attacks.
(1) Information Leakage: Malware can eavesdrop and leak
secret information (e.g., credit card details or login/password
for bank accounts) that can lead to invasion of privacy as
well as financial loss. (2) Erroneous Execution: Malware
can disrupt execution or respond to legitimate requests with
wrong information to cause system malfunction. (3) Denial-
of-Service: Malware can launch a denial-of-service attack
on a critical component of the system (e.g., by flooding
it with dummy messages) causing significant performance
degradation or even system failure. (4) Adversarial Attack:
Malware can attack the malware detector that can lead to
unintended consequences (e.g., failing to prevent a malware
or terminating a benign program by mistake).

III. RELATED WORK

There are many promising approaches for hardware-
assisted malware detection utilizing Hardware Performance
Counters (HPCs) [8]–[15]. HPCs measure hardware events
such as number of instructions executed, number of branches
taken, number of cache misses, etc. Unfortunately, HPC-
based detection leads to an unacceptably high (up to 15%)
false positive rate (FPR) [10], [16]. While Virtual Ma-
chine (VM) based solutions provide some improvement
in FPR [12], they are not useful in practice for several
reasons: (i) HPCs measured inside a VM differ from non-
VM execution [16], and (ii) only a small set of HPCs can
be monitored simultaneously [9]. A recent study reveals
that inherent non-determinism in HPCs leads to a high
false positive rate [17]. Moreover, adversarial attacks can be
launched on HPC-based solutions to further erode the clas-
sification accuracy [18]. Most importantly, existing methods
have explored only a limited number of hardware features
while missing the opportunity of utilizing a wide variety of
hardware features for efficient malware detection.

IV. HARDWARE-ASSISTED MALWARE DETECTION

A major challenge in hardware-assisted malware detec-
tion is to maximize detection accuracy while minimizing
hardware overhead associated with real-time collection and
analysis of hardware traces. Today’s System-on-Chip (SoC)
designs are equipped with a wide variety of hardware
primitives to support various life-cycle activities [19]–[24].
Specifically, we collect traces from three avenues. (1)
Embedded Trace Buffer (ETB) is suitable for capturing
functional values of a small number of trace signals over
a large number of clock cycles. (2) Hardware Performance
Counters (HPC) provide statistical behavior in terms of
specific features such as cache misses, branch prediction,
etc. (3) Network-on-Chip (NoC) traffic provides commu-
nication patterns for malware detection. The remainder of
this section describes three complementary directions for
malware detection utilizing hardware features.

A. HPC-based Malware Detection

Our proposed HPC-based malware detection consists of
two important steps: selection of hardware performance
counters and training of the machine learning (ML) model.
The first step utilized performance analysis (perf) tool to
monitor various hardware events on a running processor.
We explore the following four types of hardware events as
critical features.

• Number of instructions: The counting of the architec-
turally executed instructions, which provides a classifier
with a global perspective.

• Number of exceptions: In this work, we assume that the
malware works in a client-server mode, where mali-
cious programs are required to report stolen data to the
remote server, which commonly requires interrupting
the normal execution. Based on this assumption, the
number of exceptions is also taken into consideration.

• Change of ContextID: Due to the stealthy nature of
malware, implanted malicious code usually works as
a side procedure to avoid changing the fundamental
functionality of the original program. Therefore, mal-
ware usually introduces additional changes in context
compared to benign programs during execution.

• Bus accesses: It records communications on read and
write channels, and provides a comprehensive overview
of program’s bus accesses.

The next step is applying these data to train the ML
classifier. However, this is challenging due to the existence
of obfuscation techniques. A sophisticated adversary can
always add redundant non-profitable instructions to mess up
the system-wide statistics of the running software, which
enables the malicious program to mimic the pattern of
benign programs. Therefore, the straightforward way of
formatting the inputs by crafting vectors composed of the
above selected features is vulnerable towards obfuscation
techniques. To address this, our approach uses HPC to sam-
ple hardware events in multiple timestamps and record the
difference, whereby we provide time-sequential information
of the running program instead of overall statistics. Based
on this, Recurrent Neural Network (RNN) is chosen as
the ML model due to its ability to handle time-sequential
data. Moreover, in the training phase of RNN, information



corresponding to the previous step will also be fed into
the architecture to supply extra information as shown in
Figure 2. This enables RNN models to extract information
concealed in adjacent inputs for self refinement. After a
sufficient number of training iterations, the trained RNN
model is utilized for malware detection.

Fig. 2: Recurrent neural network for malware detection.

B. Malware Detection using Embedded Trace Buffer

We utilize embedded trace buffer (ETB) to assist malware
detection. The proposed ETB-based malware detection is
similar to HPC based approach except the fact that ETB
provides a deeper insight into the changes of specific register
contents in specific clock cycles. The traces collected by
ETB can be viewed as a w× d table, where w is the width
and d is the depth of the table. It represents the recorded
values of w traced signals over d clock cycles. Naturally,
each row in the table, i.e, the values of all traced signals
in a specific clock cycle, can be considered as an important
feature for machine learning model.

The collected traces are then used to train a machine
learning classifier. Since we are handling time-sequential
data, RNN would be a suitable ML model. Therefore,
the subsequent steps would be similar to HPC-based mal-
ware detection. Figure 3 provides an overview of ETB-
based malware detection. Note that ETB is suitable for
capturing functional values of a small number of trace
signals over a large number of clock cycles. Therefore,
it provides a wider range of supervision over a given
time span. Obviously, hardware-assisted malware detection
techniques should monitor the behavior of software at run-
time. Therefore, relying on single-cycle data is not effective
since malicious behavior usually consumes several sequen-
tial cycles. Moreover, single-cycle based strategies are likely
to mispredict a benign software as malicious. This is due to
the fact that malware also contains normal operations, and
considering these benign operations as important features of
malware can lead to misclassification. By utilizing ETB, our
approach is guaranteed to mitigate this mistake.

Fig. 3: Overview of ETB-based malware detection.

C. Malware Detection using NoC Traffic Analysis

SoCs utilize the on-chip interconnection network, com-
monly referred to as the Network-on-Chip (NoC) [25], to
communicate with various Intellectual Property (IP) cores

such as processor, memory, etc. Due to the distributed nature
of the NoC across the chip, attackers can exploit the NoC
resources to launch attacks. An implanted malware can
launch a wide variety of attacks in NoC-based SoCs ranging
from data integrity attacks, eavesdropping attacks, buffer
overflow attacks to denial-of-service (DoS) attacks. One
commonly explored threat model is a DoS attack that floods
the NoC with packets causing NoC congestion leading to
performance degradation and deadline violations [26], [27].
In this paper, we explore the mitigation of DoS attacks
launched by malware using machine learning.

Fig. 4: Example DoS attack from a malicious attacker IP
(activated by a malicious trigger IP) to a victim IP in a
mesh NoC setup creating high traffic near the victim IP.

Figure 4 shows an illustrative example of an attack
scenario. The attack is analogous to the “Mirai” botnet
behavior in the computer networks domain. A malicious
trigger IP (TIP) at node 2 turns the IP at node 3 into a
remotely controlled malicious attacker IP (MIP). The MIP
injects a lot of packets targeting its victim IP (VIP) at node
15 that results in a traffic spike in the routing path (path
from node 3 to node 15 according to the routing protocol)
for a specific period of time. Since the VIP is receiving
significantly more packets than it is designed to handle, this
leads to performance degradation and in some cases, can
cause full system failure.

In this paper, we explore a mitigation technique based on
ML that statically (design time) trains ML models and then
uses the trained models to detect attacks during runtime. The
features to train the models are extracted from NoC traffic
when flits1 are transferred between routers. The extracted
features only relate to packet meta-data and does not rely
on the packet content. For example, the maximum number of
flit arrivals in the NoC within a time window, the cumulative
number of flit arrivals in the NoC within a time window,
number of hops of a flit from the source to the destination,
and ports used by flits to enter and exit the routers are used
as features. Our method can be implemented together with
other security schemes because the ability to observe the
packet content is not required [26]–[31].

V. EXPERIMENTS

This section is organized as follows. First, we describe the
experimental setup. Next, we discuss malware and benign
benchmarks. Finally, we present malware detection results
using various hardware features.

A. Experimental Setup

We have developed a hardware trace collection and mal-
ware detection framework using Xilinx Zynq-7000 SoC

1each packet is broken into small pieces called flits (flow control units).



ZC702 evaluation kit connected to a computer running Win-
dows 10 operating system with Xilinx SDK 2017.3 installed.
Our controlling computer has an Ethernet port and a USB
port to connect to the evaluation board. We installed a Linux-
based operating system on the evaluation board SD card and
ran malware that targets Linux-based operating systems. The
Xilinx ZC702 evaluation board (Figure 5) ran the malware,
and the connected computer (using Xilinx SDK) accessed
the trace data from the pair of ARM Cortex-A9 processors
on the evaluation board. Xilinx SDK includes a Xilinx
System Debugger, which launches selected programs on the
board and allows access to register/trace values in the board
processors as programs run.

Fig. 5: ZYNQ SoC evaluation board.

To prepare the computer to connect to the board, we
performed the following three steps. (1) We set the com-
puter’s IP address to connect to the evaluation board. (2)
We disabled the computer’s firewall at the Ethernet port to
connect to the evaluation board (if not, the firewall may
block communication between the board and computer).
Antivirus programs on the host computer may also block
malware from running through Xilinx SDK. We temporarily
disabled the antivirus program on the computer to resolve
this issue. (3) Once the board was physically connected to
the computer using the Ethernet and JTAG ports (numbered
as 2 and 3, respectively, in SFigure 5), we established a serial
connection between the computer and board to manipulate
the board using the computer. For this connection, we used
the serial connection option in Xilinx SDK.

To prepare the evaluation board to connect to the com-
puter and to the Xilinx System Debugger, we performed
the following six steps. (1) We downloaded a ZC702-
compatible Linux OS image to the SD card. We used
xilinx − zc702 − 201734.9.0 − xilinx − v2017.3, which
was provided by Xilinx and generated using PetaLinux. (2)
We booted the board in SD mode as described in the ZC702
user manual [32]. (3) Through the serial connection to the
computer, we set the evaluation board’s IP address (the
IP address is required when running programs using the
System Debugger). (4) We compiled all desired programs
in Xilinx SDK, and launched these programs on the board
using debug configurations. We then set the target in debug
configurations to the board IP address, which was set in
the previous step. To access register data at different points
in the program’s runtime, we added breakpoints to the
program. The register values update at each breakpoint. (5)
For malware with a client-server model, we configured the

server address by hard-coding its IP address in the associated
location in the malware source code. (6) In cases where
malware requires a server and a client, we ran the server
without system debugger by transferring the compiled server
binary to the board and running the server program. We then
ran the client program using the system debugger.

B. Malware Benchmarks

The machine learning model’s ability to correctly detect
malware was tested using three real-world malware bench-
marks: Bashlite, PNScan, and Mirai [33].

PNScan: It opens a backdoor for other malware. As its
name would suggest, PNScan scans the infected device for
information to infect more devices in its network. This
Trojan uses brute force to obtain the victim’s router’s
access password. Upon finding this password, the PNScan
program will bypass password protection to download other
malicious programs to the router. PNScan makes vulnerable
devices more vulnerable by actively weakening security
against other malware. Figure 6a shows visuals of some of
the malicious steps of PNScan.

Bashlite: It infects many devices to form a botnet. If a botnet
is formed successfully, the attacker may remotely orchestrate
DDoS (Distributed Denial of Service) attacks and download
other malware by sending commands to infected devices
(aka “bots”). Figure 6b shows a visual representation of the
form of botnet used by Bashlite (also known as Gafgyt).
This malware utilizes a client-server model in which the
attacker’s device functions as the command-and-control
(CnC) server, and the infected devices function as clients.
The client bots constantly poll for server commands. Large
botnets can overwhelm target servers by simultaneously
making requests when the attacker sends the command.

Mirai: It is a more sophisticated version of Bashlite. Mirai
includes a wider variety of commands, and can infect a
wider variety of IoT devices. Because Mirai is compatible
with more devices, it has the potential to build a larger bot-
net. The number of devices included in the botnet improves
the botnet’s ability to overwhelm target servers. The wider
range of vulnerable devices also improves Mirai malware’s
ability to steal information from these devices. Figure 6c
shows an overview of a Mirai botnet.

C. Benign Benchmarks

System binaries like netstat and ping represent benign
software when examining the accuracy of the provided
machine learning model. We generated hardware trace data
for these system binaries because malicious developers often
use these binaries in malware, but benign programs can
use them in a completely legitimate and harmless context.
For example, bots in a botnet may frequently run ping to
check their connection to a malicious server, but harmless
applications may run the exact same function to check a
connection to a benign server. Similarly, developers may use
netstat in the context of checking on the status of a network
or in the context of accessing a device’s information for
malicious use. Because many malicious programs rely on
the misuse of common system functionality, any machine
learning model intended to detect malware should be able



(a) Code snippets of PNScan’s malicious
behavior [34].

(b) The CnC server communicates
with bots in Bashlite [35]. (c) Mirai is a sophisticated botnet [36].

Fig. 6: Three popular malware benchmarks: Bashlite, PNScan, and Mirai

to filter out benign use of this functionality, or it will
continuously generate false positive predictions.

D. Results using ETB and HPC based Analysis

We have explored the effectiveness of embedded trace
buffer (ETB)-based malware detection compared to using
hardware performance counters (HPC). We ran malicious
(Bashlite and Mirai) and benign (ping and netstat) applica-
tions. The traces are fed to the four classifiers: K-nearest
neighbor (KNN), Random forest (RF), Decision tree (DT)
and Neural Networks (NN) [37]. Figure 7 shows that HPC-
based detection leads to high false positive rate (11.3%
on average), while ETB based analysis reduces the false
positive rate (2.5% on average).

Fig. 7: Comparison of false positive rates for HPC and ETB-
based malware detection

Note that ETB and HPC provide complementary abilities
- ETB provides detailed insight into internal signal states
whereas HPC provides global perspectives. In reality, an
effective combination of HPC and ETB based analysis
would combine their inherent advantages.

E. Results using NoC Traffic Analysis

To explore the efficiency of our ML-based DoS attack
detection using NoC traffic features, we model a 4×4 mesh
NoCs with 16 IP cores using the GARNET2.0 [38] intercon-
nection network model. NoC traffic features were extracted
using the gem5 cycle-accurate full-system simulator [39] for
both normal and attack scenarios as shown in Figure 8. To
train the ML models, datasets were developed by simulating
communication for 500,000 cycles with synthetic traffic
between IP 0 and IP 15, and IP 3 and IP 12 as the normal
scenario. To simulate the attack scenario, IP 3 sent a burst
of packets targeting IP 15. The burst lasted for 1,000 cycles
and was triggered by a packet from IP 2 periodically every
10,000 cycles. Furthermore, we explored the attack behavior

by varying the burst packet injection rate (x) from x = 0.1
to x = 0.5, while keeping the packet injection rate of the
normal scenario at 0.01. The obtained traces are fed to the
four classifiers: Decision tree (DT), Random forest (RF),
Logistic regression (LR), and K-nearest neighbor (KNN).

Fig. 8: Architectures used to extract NoC traffic features.

The trained models were tested against different attack
scenarios by changing the placement of the TIP and the MIP.
Figure 9 shows attack detection accuracy given by different
classifiers with different burst packet injection rates (x).
Each bar in the figure shows the average detection accuracy
considering all the test cases. Figure 10 shows the false
positive rate, which reduces from 32.83% (on average) to
4.62% (on average) with increasing x. As expected, a more
severe attack scenario (represented by the increased traffic
rate) is classified as an attack with high accuracy and less
false positives.

Fig. 9: Comparison of accuracy of DoS attacks with different
packet injection rates

Compared to previous approaches that explored traffic
latency comparison [40] and packet arrival monitoring [27],
our ML-based approach exhibits good performance not only
for application mappings and TIP/MIP/VIP placements that



the model was trained on but also for new configurations. In
other words, our proposed ML-based approach can be used
to detect malware irrespective of their location on the NoC.

Fig. 10: Comparison of false positive rate of DoS attacks
with different packet injection rates

VI. CONCLUSION

Malware is a serious threat to modern computing systems.
Existing software-based solutions, such as anti-virus pro-
grams, are not effective since they rely on matching patterns
(signatures) that can be easily fooled by carefully crafted
malware with obfuscation or other deviation capabilities.
This paper explored hardware-assisted malware detection
to address the limitation of software-based solutions. Our
experimental results demonstrated that machine learning
can be effective in malware detection utilizing hardware
performance counters, embedded trace buffer as well as on-
chip network traffic analysis. Our future work will explore
the effectiveness of explainable machine learning in accurate
classification of benign and malicious programs as well as
interpretation of malware detection results for localization
of malicious behaviors [41].
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