
Efficient Test Generation for Trojan Detection
using Side Channel Analysis

Yangdi Lyu and Prabhat Mishra
Department of Computer and Information Science and Engineering

University of Florida, Gainesville, Florida, USA

Abstract—Detection of hardware Trojans is vital to ensure the
security and trustworthiness of System-on-Chip (SoC) designs.
Side-channel analysis is effective for Trojan detection by ana-
lyzing various side-channel signatures such as power, current
and delay. In this paper, we propose an efficient test generation
technique to facilitate side-channel analysis utilizing dynamic
current. While early work on current-aware test generation has
proposed several promising ideas, there are two major challenges
in applying it on large designs: (i) the test generation time grows
exponentially with the design complexity, and (ii) it is infeasible
to detect Trojans since the side-channel sensitivity is marginal
compared to the noise and process variations. Our proposed work
addresses both challenges by effectively exploiting the affinity
between the inputs and rare (suspicious) nodes. We formalize
the test generation problem as a searching problem and solve the
optimization using genetic algorithm. The basic idea is to quickly
find the profitable test patterns that can maximize switching
in the suspicious regions while minimize switching in the rest
of the circuit. Our experimental results demonstrate that we
can drastically improve both the side-channel sensitivity (30x
on average) and time complexity (4.6x on average) compared to
the state-of-the-art test generation techniques.

I. INTRODUCTION

Hardware Trojans are malicious modifications incorporated
in simple Integrated Circuits (ICs) or complex System-on-Chip
(SoC) designs [1]. As IC design and fabrication process be-
come more and more globalized, the threat of hardware Trojan
attack is increasing due to potential malicious modifications at
different stages of the design and fabrication process [2]. There
are several test generation efforts for detection of hardware
Trojans [3]–[6].

The existing test generation approaches can be broadly
categorized as logic testing and side-channel analysis. Side-
channel analysis does not require the full activation of the
Trojan or propagation of the Trojan effect to the observable
outputs. However, detection of small Trojans can be hard since
the change in side-channel signatures due to the Trojans can be
negligible compared to the noise or process variations. Logic
testing is immune to noise and process variations, but requires
both the activation of the Trojan and propagation of the Trojan
effects to the observable outputs. Since the number of possible
input patterns are exponential [7], Trojan detection using logic
testing can be infeasible for large designs. While MERS [3],
[14] tried to combine the advantages of logic testing and side
channel analysis, there are two major challenges in applying
it on large designs. The test generation time using MERS

This work was partially supported by Cisco Systems.

grows exponentially with the design complexity. Moreover,
it is infeasible to detect Trojans since the increase in side-
channel sensitivity is marginal compared to the noise and
process variations. Specifically, MERS can provide up to 3%
sensitivity whereas typical process variations can be more than
10% [18]. Our proposed approach addresses both challenges.

This paper introduces an efficient approach to generate
test patterns to maximize the side-channel sensitivity for
Trojan detection. In this paper, we target dynamic current as
our side-channel signature. However, this approach can also
be extended to other side-channel parameters with suitable
modifications of the evaluation criteria. Specifically, this paper
makes the following major contributions:

• Exploits the input affinity to identify test patterns that
can maximize switching in the suspicious (target) region
while minimize switching in the rest of the circuit in order
to significantly improve the side-channel sensitivity.

• Utilizes genetic algorithm to quickly find the profitable
test patterns in order to improve the test generation time.

• The significant improvement in sensitivity enabled our
approach to detect the majority of Trojans (out of ran-
domly inserted 1000 Trojans), while the state-of-the-art
approaches can detect less than 1% Trojans.

The paper is organized as follows. Section II describes
existing Trojan detection techniques. Section III provides
problem formulation and motivates the need for our work.
Section IV describes our test generation framework. Section V
presents experimental results. Finally, Section VI concludes
the paper.

II. RELATED WORK

Existing Trojan detection techniques can be broadly classi-
fied into two categories: logic testing and side-channel anal-
ysis. Logic testing in Trojan detection has been extensively
explored, such as ATPG based [8]–[10] and N-detect test [6].
The MERO approach presented in [6] utilized the idea of N-
detect [17] to achieve high coverage over randomly sampled
Trojans, assuming the trigger conditions of the Trojans consist
of rare nodes only. The authors observed that if the generated
test patterns are able to satisfy all rare values N times, it is
highly likely that rare trigger conditions are satisfied when N
is sufficiently large.

Logic testing approaches have several limitations such as
lack of scalability due to long test generation time even
for small benchmarks, restrictions of the trigger conditions

(R)v

R v

Input: circuit netlist,
rareness threshold, N

Sort test patterns based on the number

of rare values being satisfied

rare switching

Flip bits to increase Flip bits to increase

Evaluate test patterns over randomly

sampled Trojans

MERO MERS

Simulate netlist with random test

patterns

Fig. 1. MERO versus MERS. While MERS counts the number of rare
switching, and MERO counts the number of activated rare values.

being fully activated, and the effect of the inserted Trojan
propagating to the observable points. Side-channel analysis
overcomes these disadvantages. Trojan detection using side-
channel analysis [11]–[16] measures transient current, power
consumption, or path delay both in the golden design and
the design under test. If the measured signals from these two
designs vary by a threshold, a Trojan is suspected to be present.

Huang et al. [14] extended the idea of N-detect test for side-
channel analysis, and proposed a test generation framework
called MERS to maximize the sensitivity of dynamic current.
The frameworks of MERS and MERO are similar as shown
in Figure 1. MERS generates compact test patterns to let each
rare node switch from its non-rare value to its rare value N
times, increasing the probability of partially or fully activating
a Trojan. The side-channel sensitivity of MERS is too small,
typically less than 3% in most benchmarks [14], compared to
large (7-17% [18]) environmental noise and process variations
in today’s CMOS circuits. The low side-channel sensitivity
in [14] is due to the inherent restriction of reordering within
the set of test patterns generated by MERS. Our proposed
approach is able to effectively search for efficient tests that
can drastically improve the side-channel sensitivity - making
Trojan detection feasible in practice.

Searching for the best solution in a given search space
is a common optimization problem. Genetic algorithm (GA)
is a commonly used evolutionary search algorithm inspired
by natural selection [19]. In test generation domain, genetic
algorithm is shown to be successful in fault coverage [20]
and Trojan detection [21]. To the best of our knowledge, our
work is the first attempt in utilizing genetic algorithm for side-
channel analysis aware test generation.

III. PROBLEM FORMULATION AND MOTIVATION

A. Problem Formulation

Our goal is to generate l compact test pattern pairs (ui, vi)
(i = 1, 2, ..., l) that can maximize the dynamic current based

side-channel sensitivity. For each pair of test patterns (ui, vi),
the current switching in the golden design G is measured
by applying ui followed by vi, i.e., switchG

ui,vi . The current
switching in the Trojan-inserted design GT is defined in the
same way, i.e., switchGT

ui,vi . The relative switching is computed
as |switchG

u,v − switchGT

u,v |/switchG
u,v . Given the test pattern

pairs, the sensitivity of a Trojan T is defined as the maximum
of the relative switching over all pairs, as shown in Equation 1.

sensitivityT = max(ui,vi)(
|switchG

ui ,vi − switchGT

ui ,vi |
switchG

ui ,vi

) (1)

A

B

C

D

E

F (0)

G (0)
H

I

J

K

(a) The netlist of c17.

A

B

C

D

E

F (0)

G (0)
H

J

KI

T

I’

(b) The netlist of c17 with Trojan inserted.
Fig. 2. The netlist of c17 from ISCAS’85 benchmark. We assume 0.3 as the
threshold for rare nodes, F and G are the two rare nodes in this design, with
their rare values 0. The top shows the golden design and the bottom shows
the design with a Trojan inserted.

B. An Illustrative Example

To illustrate how to improve sensitivity in dynamic current
based side-channel analysis, we first use a small benchmark
c17 from ISCAS’85 as an example with its netlist shown
in Figure 2(a). We set Rareness threshold to be 0.3, which
means rare values are satisfied with less than 30% probability
in random simulation, e.g., F and G with rare value 0 in
Figure 2(a).

Assume an attacker uses rare nodes F and G as the trigger
condition and constructs a Trojan as shown using dashed lines
in Figure 2(b). To detect this Trojan, applying the pair of test
patterns (u, v) = (11100, 10100) on inputs (<A,B,C,D,E>)
is an ideal choice, with only B switches from ‘1’ to ‘0’.
The current switching in the golden design switchG

u,v is 4
(switching of signals B, F, G, and J) and the current switching
in the Trojan inserted design switchGt

u,v is 7 (switching of
signals B, F, G, J, T, I’, and K). Thus the sensitivity is 75% in
this example. An important observation is that by flipping only
a small number of relevant inputs (B in this example) while
preserving the others, the switching activities in the Trojan
area are maximized while the current switching in the golden
design is minimized. In other words, if we can exploit the
affinity between inputs and the rare nodes while creating a

pair of test patterns (u followed by v), it can lead to significant
improvement in sensitivity for Trojan detection. Section V-D
(Figure 6) demonstrates that affinity is useful in practice.

IV. GENERATION OF EFFECTIVE TEST PATTERNS

Figure 3 shows an overview of our proposed approach. It has
three important steps. The first step finds the profitable initial
test patterns (Section IV-B). The next step forms the effective
pair of test patterns (Section IV-C). Finally, we evaluate the
quality of the generated pairs of test patterns (Section V-C).

A. Motivation and Research Challenges

By inspecting the capability of (11100, 10100) for c17, we
want to divide the task of searching for effective pairs of test
patterns into two sub-problems. (1) Generation of good initial
test patterns that can trigger rare conditions, e.g., 11100 in the
previous example. As the difference of current switching in
designs with/without Trojans comes from the inserted circuits
and the switching after payloads are activated and propagated,
the sensitivity can be improved if the test patterns can trigger
rare conditions. (2) Given any test pattern u generated in the
previous step, searching for the best succeeding pattern v to
maximize the sensitivity, e.g., 10100 in the previous example.

However, there are three main challenges in searching for
the best succeeding pattern for u.

1) Randomly selected pairs may not lead to high sensitivity,
even if the two patterns are similar. For example, if we
apply (u, v) = (11100, 11101) to the previous example,
the current switching in G and GT remains the same,
revealing no side-channel footprint.

2) Large search space. The whole search space is exponen-
tially large (2n, where n is the number of inputs in the
design). So, searching for the whole space is not feasible.
Based on affinity heuristic, the neighbor of u with
Hamming distance less than k is the optimized search
space. One naive way is to use breadth-first-search
(BFS) according to the Hamming distance. However, the
searching complexity is still O(nk).

3) There is a tradeoff between introducing switching in
the rare nodes and minimizing switching in the golden
design. We need to introduce as much switching in all
rare nodes as possible, since we have no knowledge
of the trigger condition. However, for a design with
thousands of rare nodes, introducing switching for all
of them can lead to significant increase in switching of
the golden design. In that case, even if the Trojan is
fully activated, the sensitivity (extra switching) can be
too small compared to process and noise margins.

Our approach addresses these challenges by using genetic
algorithm as an approximate and optimized replacement of
BFS. The first population in GA is initialized with random
test patterns that have fixed small Hamming distance from u.
By crossover and mutation, the Hamming distance is expected
to grow slowly. After several generations, majority of the
profitable test patterns in the expected search space are likely
to be visited.

B. Generation of Profitable Initial Test Patterns

The sensitivity of side channel analysis is maximized if
the test pattern pairs are able to partially or fully activate
trigger condition. Thus, our first task is similar to other logic
testing techniques, such as ATPG or N-detect approach. In this
paper, we choose to use MERO [6] to generate N-detect test
patterns. As introduced in [6], the generated test patterns are
compact and can statistically achieve good coverage when N
increases. MERO is used as a black box in our approach, and
the parameters are introduced in Section V. We denote the
generated l test patterns as {ui} (i = 1, 2, ..., l).

C. Searching for the Best Succeeding Pattern

The second task is to find the best succeeding pattern vi
for each ui (identified in Section IV-B), such that the relative
switching is maximized. To achieve both high-quality pairs
and test generation efficiency, we use genetic algorithm as our
searching algorithm.

Genetic algorithm forms the main part of Algorithm 1,
which consists of four major steps: initialization, fitness com-
putation, selection, and crossover and mutation. The fitness is
defined in Equation 2, where rare switchG

u,v represents the
current switching of all rare nodes in G when applying the
test pattern u followed by v. A profitable test pattern should
maximize the current switching in rare nodes to increase the
probability of activating a Trojan, and minimize the switching
in the golden design. The best succeeding pattern vi for a given
preceding ui is the one achieving highest fitness value over
all generations (line 12). The first iteration of GA for c17 is
shown in Figure 4, assuming 4 individuals in each generation.

fitnessu(v) =
rare switchG

u,v

switchG
u,v

(2)

Algorithm 1 TestGeneration

Input: circuit netlist, N
Output: pairs of test patterns

1: Simulate the circuit netlist with random test patterns
2: Generate N-detect test patterns {ui} (i = 1, 2, ..., l)
3: for i = 1 to l do
4: Initialization of GA with ui

5: For each individual v, compute fitnessui
(v) by simu-

lating the netlist with the pair of test patterns (ui, v)
6: for gen = 1 to generations do
7: Selection of parents from the genth generation based

on fitness values
8: Single point crossover to produce children
9: Single point mutation according to mutation rate

10: Compute fitness for the children ((gen+ 1)th gener-
ation)

11: end for
12: Select the best individual over all generations as vi
13: end for
14: Return the pairs of test patterns (ui, vi) (i = 1, 2, ..., l)

A

B

C

D

E

F (0)

G (0)
H

I

J

K

A

B

C

D

E

F (0)

G (0)
H

I

J

K

A

B

C

D

E

F (0)

G (0)
H

J

KI

T

I’

1 1 1 0 0

...

1 1 1 0 0

1 0 1 0 0
...

1 0 1 0 0

Evaluation

(Section IV−B)

Generating initial patterns

(Section IV−C)

Searching for the best succeeding pattern

(Section V−C)

Fig. 3. The overview of our approach. We divide the task of test generation into two sub-problems: (i) generation of good initial test patterns that can trigger
rare conditions (ii) given any test pattern generated in the previous step, searching for the best succeeding pattern that can maximize side-channel sensitivity.

1 1 1 0 1

1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0

1 1 1 0 0

0 1 1 0 01 1 0 0 0

1 0 1 0 0

0 1 1 0 0

1 0 1 0 0

1 1 0 0 0

0 0 1 0 0 1 0 0 0 0 1 1 1 0 01 1 1 1 0second generation

first generation (v)

selection

crossover

mutation

crossover point

mutation

point

initial test pattern (u)

initialization

fitness 1/2 1/3 2/40

1 0 1 0 0

Fig. 4. The first iteration of GA for generating the best succeeding pattern
for 11100. The initial Hamming distance is 1 and the number of individuals
for each generation is 4. Crossover point and mutation point are selected
randomly. Fitness values are shown as the numerator representing rare
switching rare switchG

ui,v
and the denominator representing total switching

switchG
ui,v

. The best succeeding pattern vi is the individual with the largest
fitness value over all generations as shown in the green box.

1) Initialization: The first population is initialized with
random test patterns that are similar to ui. Each individual
in the initial population has Hamming distance k from ui.
During experiments, we choose k to be max(0.4%|ui|, 1).

2) Fitness Computation: For each individual v, the golden
design G is simulated with the pair of test patterns (ui, v).
Then the fitness of v is computed by Equation 2. For example,
the fitness values for four candidates are shown in Figure 4.

3) Selection: Selection is based on the fitness of each
individual. Individuals with higher fitness are more likely to
be selected. The selection shown in Figure 4 demonstrates that
the individuals with higher fitness values (such as 10100) are
more likely to be selected than the ones with lower fitness
values (such as 11101).

4) Crossover and Mutation: During crossover, a single
crossover point is randomly selected and crossover is per-
formed on parents to produce two children. During mutation,
a randomly selected position is mutated with a low mutation
rate. For example, Figure 4 shows only 1 mutation for 4
individuals.

Although the Hamming distance of all individuals in the

initial generation and ui is small, crossover and mutation
will increase the Hamming distance between each generation
and ui. Theoretically, the largest possible Hamming distance
between the ith generation and ui is at most 2i∗|k| considering
only crossover. In order for all test patterns to be evaluated
with some probability, the total number of generations should
be large enough to allow |ui| Hamming distance. However,
as the affinity heuristic suggests that we may need only a
small number of generations. During experiments, we fix the
number of generations to be 5. So the maximum Hamming
distance could be 25× 0.4%|ui| which is around 10%|ui|. By
exploring around ui with low Hamming distance, we expect to
get high quality pairs efficiently. As shown in Figure 6, most
profitable pairs of test patterns have small Hamming distances
that provided significant improvement in sensitivity.

V. EXPERIMENTS

A. Experimental Setup

To evaluate the effectiveness of our approach, we imple-
mented our framework in C++. Since MERS is the state-of-
the-art (closest to our approach), we used exactly the same
benchmarks as MERS - a subset of ISCAS-85 and ISCAS-89
gate-level benchmark circuits. We performed our experiments
on a machine with Intel Xeon E5-2698 CPU @2.20GHz. We
compared the results of our approach to MERS-s (MERS with
simulation based reordering) with C = 5.0 (best result settings
from [14]). We did not compare with random tests and MERS
(with Hamming distance) since MERS-s outperforms them.

B. Generation of Initial Test Patterns

We first simulate the benchmarks with random test patterns,
and calculate the probability of each node achieving each
possible value. All the nodes with probability lower than
the rareness threshold is marked as rare nodes. To enable
a fair comparison, similar to MERS, we set the number of
random test patterns and rareness threshold to 10,000 and 0.1,
respectively, for all benchmarks.

By applying N-detect approach with N = 1000, we
generate the initial test patterns. The length of test patterns
and the running time of MERO are reported in Table I. The
length of each test pattern is the number of primary inputs for
combinational circuits, and the number of primary inputs plus
the number of flip-flops in sequential circuits (same full-scan
assumption as MERS [14]). As the algorithms of MERS and

MERO are almost the same, the running time and the length
of test patterns by these two approaches are similar. The small
difference in the length of test patterns is because MERO asks
for N times activation of rare values, while MERS asks for N
times switching from non-rare values to rare values.

TABLE I
MERO AND MERS TEST PATTERN LENGTH AND RUNTIME

Benchmarks #Rare #Test patterns Length of Running
nodes MERO / MERS One Test time (s)

c2670 64 5300 / 5306 233 444
c5315 255 7927 / 8066 178 1589
c7552 306 8971 / 7935 207 2884
s13207 604 9304 / 9659 687 5517
s15850 681 9445 / 9512 590 6042
s35932 896 3034 / 3083 1764 11047

Trojans are randomly generated with 8 triggers from rare
nodes and one payload each (same as MERS [14]). We
randomly sampled 1000 Trojans from each benchmark. The
probability of activating these Trojans using random simula-
tion is at most 10−8 if the triggers are independent.

C. Evaluation

In our GA-based framework, we set the number of individ-
uals to be 200 in each generation, the number of generations
to be 5, and mutation rate to be 0.1. For each test pattern ui

generated by N-detect approach, GA generates a test pattern
vi to form a pair. Then, we apply test patterns {(ui, vi)} to
both the golden design and the Trojan inserted design.

Table II shows the result of our approach compared to
MERS-s. The sensitivity of test patterns is measured by the av-
erage of the sensitivities over 1000 randomly sampled Trojans.
The original switching represents the current switching in the
golden design. The two columns of time in Table II represent
the running time for simulation-based reordering for MERS-
s, and searching for succeeding patterns in our approach,
respectively. We use the sensitivity threshold of 10% [15].
The percentage of Trojans detected in the last columns of
MERS-s and our approach shows the fraction of Trojans whose
sensitivity is above this threshold.

1) Test length comparison: As our approach finds a pair for
each test pattern generated by N-detect, the total length of the
test patterns generated by our approach is twice the number
of the test patterns shown in Table I. MERS-s reorders the
test patterns generated by MERS without generating any new
test pattern. So the length of test patterns by our approach is
twice the number of test patterns by MERS-s. However, as
we measure the current switching for each pair, and MERS-s
measures the current switching between each two sequential
test patterns, the total numbers of measurements are the same.

2) Sensitivity comparison: The overall sensitivity of our
approach improves by a factor of 30.5 compared to MERS-s.
Table II indicates that the advantage of our approach compared
to MERS lies in effective reduction of original switching. As
the reordering of MERS restricts each test pattern to find its
pair from MERS test patterns, the minimum original switching
that reordering can achieve is bounded by the optimum pairs

inside these test patterns. On the other hand, our approach fixes
the preceding pattern to be good at activating trigger condition
and searches the whole space for profitable succeeding patterns
to minimize the original switching.

Fig. 5. The comparison of cumulative distributions of sensitivities by our
approach versus MERS-s over 1000 Trojans. The x-axis shows the sensitivity
in logarithmic axis, and y-axis is the number of Trojans that have sensitivities
greater than x. The vertical line represents 10% process variations as a
threshold to detect Trojans.

Next, we inspect the sensitivity for each Trojan indepen-
dently. The cumulative distribution of the sensitivities over
1000 Trojans in s13207 and s35932 are shown in Figure 5 for
our approach and MERS-s. The x-axis is the sensitivity, y-axis
is the number of Trojans that have sensitivities greater than x,
and the vertical line represents 10% sensitivity. For example in
s13207, almost all the Trojans have sensitivities greater than
the sensitivity threshold in our approach, while in MERS-s this
number is 0. In other words, if we assume the process variation
is 10%, our approach can detect the majority of these randomly
sampled Trojans with high confidence, while MERS-s can not
detect any of them. The exact numbers are reported in the last
columns of both approaches in Table II. Overall, our approach
can detect majority of the Trojans in most of the benchmarks
due to higher sensitivity provided by our test patterns, whereas
the test patterns generated by MERS fail to detect any of them.

3) Test generation time: Finally, we compare the test gen-
eration time of our approach with MERS-s. Table II indicates
that our approach is much more efficient than MERS-s by an
improvement factor of 4.6. The running time of reordering
in MERS-s is O(n2/2) to simulate each pair of MERS test
patterns, where n is the number of test patterns generated by
MERS. The time complexity of our approach is O(n ∗ 1000),
as for each test pattern in MERO, we evaluate 5 generations
and 200 individuals for each generation. As the numbers of
MERS test patterns and MERO test patterns are almost the
same, our approach is significantly faster than MERS-s (up to
6.2x, 4.6x on average).

D. Validation of Affinity Heuristic

For each test pattern u from Section V-B, the best suc-
ceeding pattern v is found by GA with 5 generations. Thus,

TABLE II
COMPARISON OF MERS-S (C = 5.0) WITH OUR APPROACH OVER 1000 RANDOM 8-TRIGGER TROJANS. OUR APPROACH CAN PROVIDE AN

ORDER-OF-MAGNITUDE IMPROVEMENT IN SENSITIVITY WHILE REDUCES THE TEST GENERATION TIME BY 4.6X ON AVERAGE. AS A RESULT, OUR
APPROACH CAN DETECT ALMOST ALL THE TROJANS IN MAJORITY OF THE BENCHMARKS WHILE MERS FAILS TO DETECT ANY OF THEM.

Benchmarks

MERS-s (C = 5.0) Our Approach
Avgerage

Sensitivity Time (s)
% of Avgerage Sensitivity Running Time % of

Orig Switch Trojans Orig Switch Sensitivity Impro. Time (s) Impro. Trojans
detected 1 factor factor detected 1

c2670 271.3 3.8% 3476 0% 13.0 41.2% 10.8x 1008 3.4x 100%
c5315 888.5 1.1% 25178 0% 29.4 16.9% 15.4x 4795 5.3x 59.2%
c7552 477.0 1.1% 49978 0% 34.0 12.2% 11.1x 8002 6.2x 51.9%
s13207 556.4 1.0% 24385 0% 5.4 61.9% 61.9x 4381 5.6x 99.6%
s15850 698.4 0.9% 29734 0% 12.4 34.9% 38.8x 5795 5.1x 87.9%
s35932 1338.6 0.6% 6795 0% 373.6 27.0% 45.0x 3696 1.8x 75.1%

Average 572.6 1.4% 19560 0% 104.9 32.4% 30.5x 3956 4.6x 79%
1 We use sensitivity threshold of 10% based on [18] . A Trojan t is detected if the sensitivityt > 10%.

the maximum possible Hamming distance between u and v
can be as large as 10%|u| (see Section IV-C). To empirically
demonstrate the validity of the affinity heuristic, we want
to show that the optimum solution v comes from the small
neighborhood of u.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

c2670
c5315

c7552
s13207

s15850
s35932

N
um

be
r

of
pa

ir
s

dis=1 dis=2 dis>2

Fig. 6. Hamming distance of all test pattern pairs.

The Hamming distances of all optimum test pattern pairs are
plotted in Figure 6. We can see that the majority of Hamming
distances are less than 3. Actually, most of the distances are
1 for all benchmarks except s35932. The results indicate why
a small number of generations (faster runtime) can provide
significant sensitivity improvement.

VI. CONCLUSION

Side-channel analysis provides a promising approach for
Trojan detection. State-of-the-art test generation technique
(e.g., MERS [8]) is not beneficial for large designs due to
its high runtime complexity. Most importantly, the sensitivity
obtained by existing approaches is very low compared to envi-
ronmental noise and process variations, making them useless
in practice. Our proposed approach addresses both limitations
by developing a genetic algorithm based test generation al-
gorithm that can lead to drastic increase in sensitivity while
significantly reduce the test generation time. Our approach
breaks down the problem into two sub-problems. The first
task generates efficient test patterns to maximize the excitation
of rare values, such that the trigger conditions are satisfied
statistically. The second task finds the best matching pair for
each test pattern generated by the first task to maximize the
sensitivity. In this paper, we demonstrated that the combination

of N-detect test generation with genetic algorithm can generate
significantly better test patterns than MERS. Our proposed test
generation approach can improve both side-channel sensitivity
(up to 61.9x, 30.5x on average) and test generation time (up
6.2x, 4.6x on average) compared to MERS. Experimental
results demonstrated that our approach can detect the majority
of Trojans in the presence of process variation and noise
margin while state-of-the-art approaches fail.

REFERENCES

[1] P. Mishra, S. Bhunia and M. Tehranipoor (Editors), “Hardware IP Security
and Trust,” Springer, ISBN: 978-3-319-49024-3, 2017.

[2] F. Farahmandi et al., “Trojan localization using symbolic algebra,” in Asia
and South Pacific Design Automation Conference, 2017.

[3] Y. Huang, S. Bhunia and P. Mishra, “Scalable test generation for Trojan
detection using side channel analysis,” in TIFS, 13(11), 2018.

[4] A. Ahmed et al., “Scalable hardware Trojan activation by interleaving
concrete simulation and symbolic execution,” in ITC, 2018.

[5] Y. Lyu, A. Ahmed and P. Mishra, “Automated activation of multiple
targets in RTL models using concolic testing,” in DATE, 2019.

[6] R. Chakraborty et al., “MERO: a statistical approach for hardware Trojan
detection,” in CHES Workshop, 2009.

[7] M. Chen et al., “System-Level Validation: High-Level Modeling and
Directed Test Generation Techniques,” Springer, 2012.

[8] M. E. Amyeen et al., “Evaluation of the quality of N-detect scan ATPG
patterns on a processor,” in International Test Conference, 2004.

[9] F. Wolff et al., “Towards trojan-free trusted ICs: Problem analysis and
detection scheme,” in Design, Automation and Test in Europe, 2008.

[10] J. Cruz et al., “Hardware Trojan detection using ATPG and model
checking,” in International Conference on VLSI Design, 2018.

[11] R. Rad, J. Plusquellic, and M. Tehranipoor, “A sensitivity analysis of
power signal methods for detecting hardware Trojans under real process
and environmental conditions,” IEEE. Trans. in VLSI, 2010.

[12] Y. Lyu and P. Mishra, “A survey of side channel attacks on caches and
countermeasures,” Journal of Hardware and Systems Security, 2(1), 2018.

[13] H. Salmani and M. Tehranipoor, “Layout-aware switching activity
localization to enhance hardware Trojan detection,” IEEE TIFS, 2012.

[14] Y. Huang, S. Bhunia, and P. Mishra, “MERS: Statistical test generation
for side-channel analysis based Trojan detection,” in ACM CCS, 2016.

[15] D. Agrawal et al., “Trojan detection using IC fingerprinting,” in 2007
IEEE Symposium on Security and Privacy, 2007.

[16] Y. Jin and Y. Makris, “Hardware Trojan detection using path delay
fingerprint,” in Hardware-Oriented Security and Trust, 2008.

[17] I. Pomeranz and S. M. Reddy, “A measure of quality for n-detection
test sets,” IEEE Transactions on Computers, 2004.

[18] B. Balaji et al., “Accurate characterization of the variability in power
consumption in modern mobile processors,” in HotPower, 2012.

[19] M. Mitchell, An introduction to genetic algorithms. MIT Press, 1996.
[20] E. M. Rudnick et al., “A genetic algorithm framework for test genera-

tion,” IEEE Transactions on CAD, 1997.
[21] S. Saha et al., “Improved test pattern generation for hardware Trojan

detection using genetic algorithm and boolean satisfiability,” CHES, 2015.

