
Cost-Effective Analysis of Post-Silicon Functional
Coverage Events

Farimah Farahmandi1, Ronny Morad2, Avi Ziv2, Ziv Nevo2 and Prabhat Mishra1

1Computer and Information Science and Engineering 2 IBM Research
University of Florida, USA Haifa, Israel

Abstract—Post-silicon validation is a major challenge due to
the combined effects of debug complexity and observability
constraints. Assertions as well as a wide variety of checkers
are used in pre-silicon stage to monitor certain functional
scenarios. Pre-silicon checkers can be synthesized to coverage
monitors in order to capture the coverage of certain events and
improve the observability during post-silicon debug. Synthesizing
thousands of coverage monitors can introduce unacceptable area
and energy overhead. On the other hand, absence of coverage
monitors would negatively impact post-silicon coverage analysis.
In this paper, we propose a framework for cost-effective post-
silicon coverage analysis by identifying hard-to-detect events
coupled with trace-based coverage analysis. This paper makes
three major contributions. We propose a method to utilize
existing debug infrastructure to enable coverage analysis in
the absence of synthesized coverage monitors. This analysis
enables us to identify a small percentage of coverage monitors
that need to be synthesized in order to provide a trade-off
between observability and design overhead. To improve the
observability further, we also present an observability-aware
trace signal selection algorithm that gives priority to signals
associated with important coverage monitors. Our experimental
results demonstrate that an effective combination of coverage
monitor selection and trace analysis can maintain the debugging
observability with drastic reduction (up to 10 times) in the
required coverage monitors.

I. INTRODUCTION

The exponential growth of System-on-Chip (SoC) complex-
ity, time-to-market reduction and huge gap between simula-
tion speed and hardware emulation speed force the verification
engineers to shorten the pre-silicon validation phase. There is
a high chance that many bugs escape from pre-silicon analysis
and it affects the functionality of the manufactured circuit.
To ensure the correct operation of the design, post-silicon
validation is necessary. However, post-silicon validation is
a bottleneck due to limited observability, controllability and
technologies to cope with future systems [1]. There is a critical
need to develop efficient post-silicon validation techniques.

Assertions and associated checkers are widely used for
design coverage analysis in pre-silicon validation to reduce
debugging time. They can also be used in the form of coverage
monitors to address controllability and observability issues
in post-silicon. However, every coverage monitor introduces
additional area, power and energy overhead that may violate
the design constraints. To address these limitations, we pro-
pose a framework to reduce the number of coverage monitors
in post-silicon while utilize the existing debug infrastructure
to enable functional coverage analysis. To the best of our
knowledge, our approach is the first attempt in utilizing debug
infrastructure (trace data) for functional coverage analysis to
enable a trade-off between coverage and overhead.

There are several built-in debug mechanisms such as trace
buffers and performance monitors in order to enhance the
design observability during post-silicon validation and reduce
debugging efforts. Trace buffers record the values of a limited
number of selected signals (typically less than 1% of all

signals in the design) during silicon execution for specified
number of clock cycles. The trace buffer values can be
analyzed off-chip to restore the values of untraced signals.
This paper makes three important contributions. First, we
present an approach to utilize the information that can be
extracted from on-chip trace buffer in order to determine easy-
to-detect functional coverage events. Next, our trace-based
coverage analysis enables the trade-off between observability
and hardware overhead. We also propose a signal selection
algorithm to improve the coverage analysis without compro-
mising the observability of the whole design.

Although our proposed method can provide coverage data
only for the recorded cycles (instead of the complete exe-
cution), it can significantly reduce the post-silicon validation
effort for various reasons. First, the traced data for specific
cycles are able to restore untraced signals for additional
cycles. Moreover, when we know that certain events have
been hit (covered) by trace analysis, the validation effort can
be focused on the remaining set of events. From a practical
perspective, it is not valuable to collect coverage data when
generating testcase for an exerciser [8] or during checking a
testcase since the exerciser code is relatively simple, repetitive
and not expected to hit bugs on silicon. If the trace buffer
is reconfigured to record signals during testcase execution,
more insight about coverage events can be obtained. Our
experimental results using ISCAS’89 benchmarks show that
our approach can provide an order-of-magnitude reduction
in design overhead without sacrificing functional coverage
compared to when all assertions are synthesized.

The remainder of the paper is organized as follows. We
discuss related work in Section II. Section III provides an
overview about assertion-based validation. Section IV de-
scribes our post-silicon functional coverage analysis frame-
work. Section V presents our experimental results. Finally,
Section VI concludes the paper.

II. RELATED WORK

Post-silicon validation techniques consider many important
aspects such as effective use of hardware verification tech-
niques [1] and stimuli generation [3]. Several approaches are
also focused on test generation techniques [4], [5], [10] that
can address various challenges associated with post-silicon
debug. Pre-silicon assertions are converted (synthesized) to
post-silicon coverage monitors by recent approaches [6], [7].
Coverage monitors can be reconfigured during run-time to
change the focus of the observability. Unfortunately, synthe-
sized coverage monitors can introduce unacceptable hardware
overhead. Adir et at. proposed a method to utilize post-silicon
exerciser on a pre-silicon acceleration platform in order to
collect coverage information from pre-silicon [17]. However,
the collected pre-silicon coverage may not accurately reflect
post-silicon coverage in many scenarios.

Knowledge of internal signal states during post-silicon
execution helps to trace the failure propagation to debug the
circuit. Trace buffers are used to sample a small set of internal
signals since they can help in restoration of other signals
and improve the design observability. There are different
techniques to select trace signals such as structure/metric-
based selection [11], [9], simulation-based selection, as well
as hybrid of both approaches [12]. Recently, Ma et al. have
proposed a metric that models behavioral coverage [13]. How-
ever, none of these approaches consider functional coverage
analysis as a constraint for signal selection. Our proposed
signal selection improves functional coverage analysis without
compromising the debugging observability.

III. BACKGROUND

Based on the functional coverage goal, a design is instru-
mented to check specific conditions of few internal signals.
For example, assertions are inserted in a design to monitor any
deviation from the specification. These days, designers mostly
use one of the powerful assertion languages such as PSL
(Property Specification Language) to describe interesting be-
havioral events (linear temporal logic assertions). Assertions
can be classified into two groups: conditional and obligation
[14]. The goal of a conditional assertions is to detect a
failure. Therefore, it is activated every time all of its events
are observed. For example, “assert never b1” is called
a conditional assertion as every time b1 is evaluated true, a
failure will happen and assertion should be triggered. On the
other hand, an assertion is in obligation mode when a failure in
its sequence triggers it. For example, “assert always b2”
is in obligation mode as b2 should be always true and every
time it is evaluated to false, the assertion is activated.
Example 1: Consider a part of a circuit shown in Fig-
ure 1. Suppose that we have two design properties: first,
whenever signal E asserted, signal H is supposed to be
asserted within next three cycles. The following assertion
describes this property A1 : assert always(E → {[∗1 :
3];H}) @rising edge(clk). Consider a second property
where we would like to cover functional scenarios such that
D and I signals are not true at the same time. This property
can be formulated as A2 : assert never(D&I).

Fig. 1: A simple circuit to illustrate design properties

IV. POST-SILICON FUNCTIONAL COVERAGE ANALYSIS

To have full observability in post-silicon, one option is to
synthesize all of the functional scenarios (typically thousands
of assertions, coverage events, etc.) to coverage monitors and
track their status during post-silicon execution. However, this
option is not practical due to unacceptable design overhead.
Therefore, designers would like to remove all or some of the
coverage monitors to meet area and energy budgets. It creates
a fundamental challenge to decide which coverage monitors
can be removed. We propose an approach to evaluate the as-
sertion activation efforts by on-chip trace buffer and rank them
based on the difficulty in covering/detecting them. Clearly, the
hard-to-detect ones should be synthesized, whereas the easy-
to-detect ones can be ignored (trace analysis can cover them).

Fig. 2: Overview of our proposed approach.
Figure 2 shows an overview of our proposed method. Our pro-
posed approach consists of four major steps: decomposition of
coverage scenarios, signal restoration, coverage analysis and
signal selection. The remainder of this section describes these
steps.

A. Decomposition of Coverage Scenarios

Suppose that a gate-level design D as well as a set of
pre-silicon RTL assertions A are given and our plan is to
use trace buffer information to determine activation of A
in model D during silicon execution. We propose an off-
line functional event decomposition to enable post-silicon
coverage analysis. The decomposition can be done in pre-
silicon. First, RTL assertions are scanned to extract their
signals and their corresponding gate-level signals based on
name mapping methods. Next, each RTL assertion from set
A is mapped to a set of clauses such that each clause contains
assignments to a set of signals in specific cycles.

Formally, each pre-silicon assertion Ai ∈ A is scanned
and its signals and its corresponding gate-level signals
are defined. Then, Ai is decomposed to a set of clauses
A ≡ C = {C1, C2, ..., Cn} based on its mode (condi-
tional or obligation). Each Cj can be formalized as Cj =
{α1∆1α2∆2...∆m−1αm}. Each αk presents a Boolean as-
signment on gate-level signal n ⊂ N (N shows all cor-
responding gate-level signals of set A) on cycle ct where
1 ≤ ct ≤ CC (Suppose we know that the manufactured
design will be simulated for maximum CC clock cycles)
such as αk : {n = val in cycle[ct]} where val ∈ {0, 1}.
Operators ∆k can be one of the logical operations such as
AND, OR or NOT. As a result, the original assertion is
translated as a set of clauses C in a way that activation of
one of them triggers the original assertion.

From now on, we assume that signals of Ai are mapped
to corresponding assertion on gate-level signals. In order
to generate each of Cj , Algorithm 1 is used. It partitions
assertions based on their mode. If an assertion is in obligation
mode, its original conditions are negated since we are looking
for conditions that cause the assertion to fail (lines 7-8) and
each Cj contains a subset of the negated conditions over
different clock cycles that cause the assertions to fail. On
the other hand, if the assertion is in conditional mode, the
original assertions are kept as they are (lines 9-11). Each
clause contains a subset of conditions which is logically
equivalent to a set of conditions (lines 12-13). Clauses are
also expanded over time and contain timing information (line
14). Therefore, each assertion is mapped to a set of clauses
such that activation of one of the clauses leads to activation of

the original RTL assertion (line 15). Specifically, the following
rules are used to generate the set of clauses (C):

• If an assertion is in obligation mode and it contains an
AND operator (p∧q), the operands are negated and AND
will be changed to a OR operator (p∨ q). For example, in
assertion “assert always p & q”, whenever con-
ditions p or q are false, the assertion is activated.
Therefore, the assertion is translated to a set of clauses
as C =

⋃CC
t=1{p = 0[t] ∨ q = 0[t]} (clauses are also

expanded over time).
• If an assertion is in obligation and it contains OR oper-

ator such as “assert always (p | q)”, the condi-
tions will be negated and the set of clauses is extracted
as: C =

⋃CC
t=1{p = 0[t] ∧ q = 0[t]}.

• If an assertion is in obligation mode and it contains
an implication operator, antecedent conditions are not
modified. However, consequent conditions are negated.
For example, if we have “assert always (p →
next q)”, it is converted to C =

⋃CC
t=1{p = 1[t] ∧ q =

0[t + 1]}. Next operation shows its effect in condition
q = 0[t+ 1].

• If an assertion is in conditional and it contains OR opera-
tor such as “assert never (p | q)”, it is translated
to C =

⋃CC
t=1{p = 1[t] ∨ q = 1[t]}.

• If an assertion is in conditional mode and it contains an
AND operator (p ∧ q), the operation is kept as it is. For
example, in assertion “assert never (p & q)”, if
p and q are true at the same time, the assertion will be
activated. Therefore, the assertion is translated as C =⋃CC

t=1{p = 1[t] ∧ q = 1[t]}.
• If an assertion is in conditional mode and it contains im-

plication operator, antecedent and consequent conditions
remain the same as the original assertion. For example,
if we have “assert never (p → next q)”, it is
converted to C =

⋃CC
t=1{p = 1[t] ∧ q = 1[t+ 1]}.

• If there are eventually! or until operators in an assertion,
based on the mode of assertion it shows its effect in gen-
erating repeating conditions in different clock cycles. For
example, “assert always (p → eventually q)”
is translated to C =

⋃CC
t=1{(p = 1[t]) ∧ (q = 0[t] ∧ q =

0[t+1]∧...∧q = 0[CC])}. On the other hand, if we have
an assertion as “assert always (p until q)”, the
conditions are found as: C =

⋃t+n=CC
t=1 {(p = 1[t]) ∧

(p = 0[t+1]∨p = 0[t+2]∨ ...∨p = 0[t+n−1])∧(q =
1[t+ n])}.

Example 2: Consider the assertions in Example 1 form
Section III. We assume that the circuit will be executed for
10 clock cycles for post-silicon validation. The first property
(A1) will be decomposed to equivalent conditions as follows:
CA1

: {{E = 1[1]∧H = 0[2]∧H = 0[3]∧H = 0[4]}, {E =
1[2]∧H = 0[3]∧H = 0[4]∧H = 0[5]}, ..., {E = 1[7]∧H =
0[8] ∧H = 0[9] ∧H = 0[10]}}
The assertion is activated if signal E is asserted and signal
H remains false for next three cycles. The second property is
decomposed as shown below since it will be activated if both
D and I are true at the same time.
CA2 :

⋃10
t=1{D = 1[t] ∧ I = 1[t]}

The computed conditions are used to detect activation
of assertions during post-silicon validation as described in
Section IV-C.

B. Restoration of Signal States
Suppose that we have a gate-level design with G in-

ternal signals and the design has been executed for CC

Algorithm 1 Assertion decomposition algorithm

1: procedure DECOMPOSEASSERTIONS
2: Input: RTL assertions A
3: Output: C which maps each Ai ∈ A to equivalent C
4: C = {}
5: for each Ai ∈ A do
6: C = {}
7: if Ai is in obligation mode then
8: Ω = FindFailureConditions(Ai, G)
9: else

10: /*Ai is in conditional mode*/
11: Ω = FindPassingConditions(Ai, G)
12: for every possible case do
13: C = C∪ SubsetOfEquivalentConditions(Ω)
14: addTiming(C)
15: C .put(Ai,C)

16: return C

clock cycles during post-silicon validation. A set of signals
(S where S ⊂ G) are sampled and their values are stored
in trace buffer T during post-silicon execution for CCt clock
cycles (CCt ≤ CC). The information of the trace buffer (with
|S| and CCt dimensions) can be used to find the values of
other signals (G − S). The restoration starts from the stored
values of S signals over CCt cycles and go forward and
backward to fill the values of matrix MGxCC . Matrix M is
used to present states of the design during CC clock cycles.
Each cell of matrix M can have value 0, 1 or X. Value X in
mi,j ∈M presents the fact that the value of signal i in clock
cycle j cannot be restored based on traced values of S sampled
signals. We utilize matrix M information to determine if any
of assertions is definitely covered during run-time.

C. Coverage Analysis
Our plan is to use both traced and restored values to check

the clauses that we found in Section IV-A to define easy-
to-detect assertions. In order to find coverage for assertions
in set A, we consider each assertion Ai ∈ A and find its
corresponding decomposed clauses, set C, as described in
Section IV-A. Set C is designed in a way that if one of the
Ci ∈ C can be evaluated to true on matrix M, assertion Ai is
triggered. Using the proposed method, each Ci contains a set
of Boolean functions (αj) and each αj : n = val in cycle t
where 1 ≤ t ≤ CC is mapped to one cell of matrix M (mn,t).
If the value of mn,t is equal to val ∈ {0, 1}, the condition
αj is evaluated true. Condition Ci is evaluated true when the
expression consisting of all αj and ∆s evaluated to be true.
An assertion is called covered during post-silicon validation
if one of its Cis is evaluated to be true.

For assertions that originally contains implication operator
(A : assert p → q), we keep the information that which
Boolean αj belongs to the precondition (p) and which con-
ditions belongs to the fulfilling condition (q) when we want
to check their conditions over M. In order to check assertion
A, we start from rows which belongs to signals existing in
antecedent and check every cycle to find the desired value.
Then, we continue the search for consequent from those cycles
when antecedent is true to find values that makes whole A
true. In other words, to be able to find out the activation of
assertion A, we need to minimize the number of X values in
cells of matrix M. We also count how many times assertion
A is activated for sure. Note that for checking conditions, 3-
valued (ternary) logic is used. In other words, condition p∨q is
evaluated as true if signal p is true and q has X value and vice

TABLE I: Restored signals for circuit shown in Figure 1 when
A and B are trace signals.

Signal/Cycle 1 2 3 4 5 6 7 8 9 10
A 0 1 0 1 1 0 0 0 1 0
B 1 0 0 1 0 0 0 1 1 1
K X X X X X X X X X X
D 1 1 0 1 1 0 0 1 1 1
E X 1 1 0 1 1 0 0 1 1
F X 1 0 0 1 0 0 0 1 1
G X X 1 1 0 1 1 0 0 1
I X X X X X 0 X X 0 0
H X 0 X 0 1 0 0 0 0 0

versa. Algorithm 2 presents the coverage analysis procedure.
It counts the number of times an assertion is activated during
execution. If activationCount is equal to zero, it means that
we cannot determine activation of the assertion based on trace
buffer values. The coverage (cov) percentage is computed by
counting the assertions that have been activated at least once
and dividing it by the number of total assertions.

Algorithm 2 Assertion coverage measurement algorithm

1: procedure COVERAGEANALYSIS
2: Input: Trace buffer T , trace signals S, gate-level

signals G, condition map C , assertions A, max cycle CC
3: Output: Coverage map Θ)
4: T=Restoration(S);
5: M = ConstructDesignStatesMatrix(T,G, CC)
6: for each Ai ∈ A do
7: activationCount = 0
8: C =C .get(Ai)
9: for each Cj ∈ C do

10: if checkCondition(Cj ,M) then
11: activationCount++
12: Θ.put(Ai, activationCount)
13: return Θ

Example 3: Consider the circuit shown in Figure 1 and the
associated assertions shown in Example 1. Suppose that the
only two signals (A and B) can be traced during post-silicon
validation (the width of trace buffer is two). Note that in
signal selection part we are not limited to flip-flops and every
internal signal can be considered as potential sampled signal.
Table I shows the states of the design based on the stored
values of A and B signals. In fact, Table I shows matrix
M. The restoration ratio is equal to: 67/(9 ∗ 10) = 0.74. In
other words, 74.44% of internal states are restored. Suppose
that we take the clauses shown in Example 2 and the matrix
shown in Table I as inputs to compute the coverage of these
assertions during run-time. Based on information shown in
Table I, assertion A1 is activated since signal E is asserted in
cycle 6 and signal H remains zero in the next three cycles,
7, 8 and 9 (activation of A1 is detected twice). However, we
cannot comment on A2 since the respective conditions cannot
be evaluated.

Until now, we identified which assertions are activated
during run-time for sure. We rank assertions based on the
required efforts to detect them using our proposed method
of Section IV-C to decide which assertions are better to
be kept as coverage monitors in post-silicon to improve
the design observability and increase the assertion coverage.
The assertions that are hard-to-detect (for example, cannot
be detected even one time using the proposed method) or
represent critical functional scenarios are best candidates to
be kept as coverage monitors in silicon to improve the design
observability. Algorithm 3 presents the proposed approach.
The algorithm sorts set A based on their activation count that
obtained from Algorithm IV-C and priority (critical scenarios

or assertions that their activation cannot be detected using
trace buffer values have higher priority). Next, we select
assertions that fits in area and power budgets and increase
total coverage and add them to cov mon. For example, if
two assertions have same priority, we choose the one that
has less number of operators and signals (represents less area
overhead). The algorithm returns the set cov mon as selected
coverage monitors.

Algorithm 3 Coverage monitor selection algorithm

1: procedure COVERAGE MONITOR SELECTION
2: Input: Assertions A, desired coverage des cov, bud-

get for coverage monitors budg, gate-level signals G,
trace buffer T with trace signal S, trace buffer width W

3: Output: Selected coverage monitors cov mon
4: cov mon = {}
5: C =DecomposeAssertions(A)
6: Θ=CoverageAnalysis(T, S,G,C ,A, CC)
7: cov=findCoverageNumber(Θ,A)
8: U=findUndetectedAssertions(Θ,A)
9: SortBasedOnDetectionEfforts(A,Θ)

10: tmp cost = cost, tmp cov = cov
11: while cov t < des cov && cost t < budg do
12: find ai ∈ A where ai.selected = false and

budg − cost t− ai.cost ≥ 0
13: cost t+ = ai.cost
14: ai.selected = true
15: if ai ∈ U then
16: cov t+ +
17: cov mon = cov mon ∪ ui
18: return cov mon

D. Coverage-aware Signal Selection
Traditional signal selection methods select signals that have

priority over other design signals as they may have a better
restorability and more internal signals might be restored
during the off-chip analysis. However, if we select trace
signals that have better restorability on signals appear on
assertions, we can increase the chance of finding the activa-
tion of assertions. We propose a signal selection algorithm
emphasizes restorability of assertion signals to be able to
improve the assertion-based coverage analysis. We show that
this way of trace signal selection has a better impact of
analysis of assertion coverage while it has a negligible effect
on observability of the whole design.

Algorithm 4 Assertion-aware trace signal selection algorithm

1: procedure SIGNAL-SELECTION
2: Input: Assertions A, trace buffer width W , gate-level

signals G
3: Output: Selected Trace Signals S
4: N=findSignalsExistInAssertions(A)
5: Ψ = findNumberOfOccuranceOfEachSignal(N)
6: S = {}
7: while S.size() < W do
8: generate random tests I
9: for each gi ⊂ G which is not in S do

10: calculate restoration of gi ∪ S
11: select ni with maximum restorability on N.
12: S = S ∪ ni
13: return S

Algorithm 4 shows our proposed signal selection algorithms
that improves assertion coverage analysis. In order to select

trace signals that have a better restorability on assertion
signals, pre-silicon assertions A are scanned to find their
signals (set N) and their importance based on how many
times a specific signal is repeated in map Ψ (lines 4 and 5).
We modify existing simulation-based trace signal selection
algorithm to select signals which has maximum restoration
ratio on assertion signals (N) based on the simulated values
of random test vectors for several cycles. If there is a tie, we
use the signal that has a higher value in set Ψ. The algorithm
continues until it selects as many as W trace signals (lines
6-12). Please note that our approach (providing emphasis
on assertion signals) can be applied on top of other signal
selection algorithms as well.
Example 4: As it can be seen from Example 3, the activation
status of assertion A2 cannot be detected based on information
of Table I. Using Algorithm 3, only A and I are selected as
trace signals based on their good restorability on assertion
signals (E,H,D and I). Restoration and coverage analy-
sis (using the traced values of new signals) would be able to
detect activation of both assertions in Example 1.

V. EXPERIMENTS

A. Experimental Setup
In order to evaluate the efficiency of our proposed approach,

we have implemented our assertion decomposition, restora-
tion, coverage analysis and signal selection algorithms using
C++. We have applied our proposed methods on ISCAS’89
benchmarks (since most of the existing signal selection algo-
rithms work with only these benchmarks). The trace buffers
were chosen with a widths of 8, 16 and 32 and depth
of 10241. We have generated assertions both in obligation
and conditional modes based on the presented method of
[15]. Assertions were decomposed as a set of clauses using
Algorithm 1. We simulated the benchmarks using different
trace buffers for 1024 clock cycles with random test vector
to model post-silicon validation. Trace signals were chosen
based on our implementation of the presented method in
[16] since it is the most recent signal selection approach. In
the next step, we dumped the stored values of trace buffer
and we tried to restore the values of unsampled signals over
different clock cycles to construct the matrix representing
the states of the circuit. Next, the assertion conditions were
checked over matrix and we counted the number of activated
assertions during run-time based on Algorithm 2. Finally, we
used the signals selected by Algorithm 3 to further improve
functional coverage analysis. Moreover, we use Algorithm 3
to selectively synthesize some coverage monitors which are
more beneficial for improving functional coverage.

B. Results
Table II presents results for assertion coverage of total

12000 (4000 for each trace buffer configuration) assertions for
each benchmark. The first three columns show the type of the
benchmark, the number of its gates and the width of its trace
buffer, respectively. The fourth column shows the restoration
ratio based on existing trace signal selection. The fifth column
shows the coverage of assertions using trace buffer (without
introducing any overhead). Note that, Observability-aware
SS represents our assertion coverage analysis framework on
top of existing signal selection techniques. We improved the
assertion coverage using our proposed signal selection algo-
rithm with negligible effect on restorability of whole design
(sixth and seventh columns). Note that, Coverage-aware SS

1A trace buffer with width 32 and depth 1024 represents that it can trace
the values of 32 signals over 1024 clock cycles.

represents our assertion coverage analysis framework on top
of our coverage-aware signal selection method. Since signal
selection algorithms are based on heuristic methods, in some
of the cases, our coverage-aware signal selection algorithms
improves the restorability of the design (such as s15850).

If we zoom in on each row of Table II, the activation
details of each type of assertions are reported in Table III.
The first three columns of Table III show the type of the
benchmark, the number of its gates and the width of its trace
buffer, respectively. The fourth and ninth columns show the
restoration of the design using existing trace signal selection
method as well as our proposed signal selection algorithms,
respectively. The fifth and tenth columns show the coverage
of one thousand single variable assertions (consisting of
only one condition) on specific clock cycles. The sixth and
eleventh columns show the coverage of one thousand two-
variable assertions with AND operators where their conditions
have templates of {n1 = vali [ci]& n2 = valj [cj]}
using both signal selection methods. The seventh and twelfth
columns show the coverage of one thousand three-variable
assertions with AND operators where their conditions are in
the form of {n1 = vali [ci]& n2 = valj [cj]& n3 =
valt [ct]} respectively. The eighth and thirteenth columns
show the coverage of one thousand three-variable assertions
with OR operators where their conditions are in the form
of {n1 = vali [ci]| n2 = valj [cj]| n3 = valt [ct]}
respectively. The results demonstrated the fact that using our
approach enables designers to achieve significant functional
coverage (up to 93%, 58% on average) without synthesizing
any coverage monitors.

TABLE II: Assertion coverage when the total number of
assertions for each row is 4000 (12,000 per benchmark)

Benchmark Signal Selection
Type #gates #Traces Observability-aware SS Coverage-aware SS

Restoration% Asser. Cov.% Restoration% Asser. Cov.%

S5378 2995
8 60.97 46.97 58.57 49.6
16 79.27 63.6 76.95 64.23
32 93.10 88.5 92.26 90.57

S9234 5844
8 84.85 65.4 76.03 65.8
16 90.19 75.27 83.70 83.12
32 94.54 90.67 93.8 93.45

s15850 10383
8 72.03 59.7 76.03 65.8
16 80.97 61.6 75.55 68.7
32 84.14 72.9 82.66 74.9

s35932 17828
8 41.09 26.825 41.63 27.02
16 41.35 26.825 41.88 27.05
32 41.79 26.825 42.22 27.25

s38417 23843
8 36.53 23.025 36.97 23.23
16 43.76 28.575 46.91 32.58
32 49.77 35.075 55.82 42.33

s38584 20717
8 72.97 47.625 67.78 59.8
16 79.15 63.65 76.53 69.3
32 88.85 73.65 87.27 82.78

C. Observability versus Hardware Overhead
The results shown in Tables II and III show the extent of

functional coverage analysis without introducing any hard-
ware penalty for synthesized coverage monitors. Figure 3(a)
shows coverage improvement if we randomly choose 10% to
90% of the remaining assertions that we cannot be sure about
their activation using trace buffer information. The straight
line shows the coverage when our method is not used and
observability is provided only by using synthesized coverage
monitors (the percentage of observability is equal to the
percentage of synthesized assertions). On the other hand, we
used Algorithm 3 to select hard to detect coverage monitors.

As it can be seen in Figure 3, 100% observability is
achieved with significant reduction in overhead (40-50%
coverage monitors with observability-aware signal selection
can provide 100% functional coverage). Figure 3(b) shows
the result of observability of s9234 with different trace buffer
widths and different coverage monitor selection strategies (the
straight line is cut on 50% for improved illustration). As it
can be seen, when our signal selection algorithm was used to

TABLE III: Assertion coverage using trace buffer information

Benchmark #gates #Trace

Observability-aware SS Coverage-aware SS

% restored % Single % Two % Three % Three % restored % Single % Two % Three % Three
Gates Variable Variable Variable Variable Gates Variable Variable Variable Variable

Assertion Assertion (AND) Assertion (AND) Assertion Assertion Assertion (AND) Assertion (AND) Assertion
(OR) (OR)

S5378 2995

8 60.97 63.6 36.2 25.4 62.7 58.57 64.2 42.6 25.3 66.3
16 79.27 77.5 56.3 41.9 78.7 76.95 79.6 58.8 44 74.5
32 93.10 92.6 86.5 80.9 94.0 92.26 94.5 88.4 84.8 94.6

s9234 5844

8 84.85 77.9 59.7 45 79 76.03 88.0 77.4 68.1 87.5
16 90.19 85.5 71.1 58.9 85.6 83.7 88.6 81.4 72.6 89.9
32 94.54 93.5 90.3 84.8 94.1 93.8 94.8 90.0 84.5 93.7

s15850 10383

8 72.03 73.9 54.8 37.1 73.0 76.03 76.5 61.7 46.9 78.1
16 80.97 75.1 55.5 40.1 75.7 75.55 81.1 63.1 50.2 80.7
32 84.14 82.2 68.1 56.6 84.6 82.66 84.2 70.6 59.5 85.3

s35932 17828

8 41.09 41.3 16.2 7.7 42.1 41.63 40.9 17.3 7.4 42.5
16 41.35 41.3 16.2 7.6 42.2 41.88 40.9 17.3 7.4 42.5
32 41.79 41.3 16.2 7.7 42.1 42.22 41.3 17.4 7.5 42.8

s38417 23843

8 36.53 38.2 13.8 3.9 36.2 36.97 37.7 13.9 5.8 35.9
16 43.76 44.5 19.7 8.1 42 46.91 46.91 24.2 10.5 48.7
32 49.77 51.2 26.5 12.4 50.2 55.82 56.3 35.5 19.2 58.3

s38584 20717

8 72.97 60.7 41.2 24.1 72.97 67.78 70.8 54.3 37.7 76.4
16 79.15 75.3 59 43.4 76.9 79.69 79.7 65.3 51.2 81
32 88.85 83.5 68.5 56.7 85.9 87.27 90.0 79.5 71.7 89.9

(a) Coverage monitors are selected randomly (b) Coverage monitors are selected from hard-to-detect events

Fig. 3: Coverage analysis for s9234

choose 32 trace signals and our coverage monitor algorithm
was used, synthesizing only 10% assertion leads to 100%
observability. Although, we presented the result for s9234,
we obtained similar results for other ISCAS89 benchmarks.

It can be argued that it takes little effort to cover the first
90%, but significantly more to cover the remaining 10%.
Based on our proposed method, if the remaining 10% of
the assertions are synthesized, 100% coverage is achieved.
However, if it is not possible to synthesize those assertions
due to design constraints, increasing the width or depth of
trace signals can be considered. Dynamic signal selection
capability (if available) can be utilized to focus in tracing
of the remaining 10% assertions.

The experimental results demonstrated three important as-
pects of our approach. We provided a technique to improve the
design observability when designers have a limited budget for
synthesized coverage monitors. We showed that if they syn-
thesize hard-to-detect assertions, the observability improves
significantly. Our assertion-aware signal selection algorithm
improves the assertion-coverage compared to existing signal
selection techniques.

VI. CONCLUSION

We presented an approach to efficiently find functional
coverage on silicon without introducing any overhead. The
proposed method utilizes the existing debug infrastructure in
modern designs to rank coverage monitors in terms of required
efforts to detect them. We proposed a framework for trace-
based functional coverage analysis. We explored the trade-
off between observability and design overhead of synthesized
coverage monitors. We also introduced a signal selection algo-
rithm to improve the coverage analysis with negligible impact
on restoration ratio. Our experimental results demonstrated
that efficient ordering and selection of coverage monitors can

drastically reduce (up to 10 times) design overhead without
sacrificing functional coverage.

VII. ACKNOWLEDGMENTS

This work was partially supported by the NSF grants (CCF-
1218629 and CNS-1441667), SRC grant (2014-TS-2554), and
an IBM Faculty Award.

REFERENCES

[1] S. Mitra et al., “Post-silicon validation opportunities, challenges and
recent advances,” in DAC, 2010.

[2] A. Adir et al., “Threadmill: A post-silicon exerciser for multi-threaded
processors,” in DAC, 2011.

[3] A. Adir et al., “A unified methodology for pre-silicon verification and
post-silicon validation,” in DATE, 2011.

[4] M. Chen et al., System-level Validation - high-level modeling and
directed test generation techniques, Springer, 2012.

[5] F. Farahmandi et al., “Exploiting transaction level models for
observability-aware post-silicon test generation,” in DATE, 2016.

[6] K. Balston et al., “Post-silicon code coverage for multiprocessor system-
on-chip designs,” in IEEE Transactions on Computers, 2013.

[7] M. Boule et al., “Adding debug enhancements to assertion checkers for
hardware emulation and silicon debug,” in ICCD, 2006.

[8] W. Kadry et al., “Comparative study of test generation methods for
simulation accelerators,” in DATE, 2015.

[9] K. Rahmani et al., “Efficient Selection of Trace and Scan Signals for
Post-Silicon Debug,” IEEE Trans. on VLSI, 2016.

[10] F. Farahmandi and P. Mishra, “Automated Test Generation for Debug-
ging Arithmetic Circuits,” DATE, 2016.

[11] K. Basu and P. Mishra, “RATS: Restoration-aware trace signal selection
for post-silicon validation,” in VLSI Systems, 2013.

[12] M. Li and A. Davoodi, “A hybrid approach for fast and accurate trace
signal selection for post-silicon debug,” in DATE, 2013.

[13] S. Ma et al., “Can’t see the forest for the trees: State restoration’s
limitations in post-silicon trace signal selection,” in ICCAD, 2015.

[14] M. Boulè and Z. Zilic, “Automata-based assertion-checker synthesis of
psl properties,” in ACM Transaction Design Autom. Electr. Syst., 2008.

[15] L. Liu et al., “Towards coverage closure: Using goldmine assertions for
generating design validation stimulus,” in DATE, 2011.

[16] S. BeigMohammadi et al., “Combinational trace signal selection with
improved state restoration for post-silicon debug,” in DATE, 2016.

[17] A. Adir et al., “Reaching Coverage Closure in Post-Silicon Validation,”
in HVC, 2010.

