
Des Autom Embed Syst (2010) 14: 105–130
DOI 10.1007/s10617-010-9052-4

Efficient test case generation for validation of UML
activity diagrams

Mingsong Chen · Prabhat Mishra · Dhrubajyoti Kalita

Received: 20 August 2009 / Accepted: 30 April 2010 / Published online: 18 June 2010
© Springer Science+Business Media, LLC 2010

Abstract Unified Modeling Language (UML) is widely used as a system level specifica-
tion language in embedded system design. Due to the increasing complexity of embedded
systems, the analysis and validation of UML specifications is becoming a challenge. UML
activity diagram is promising to modeling the overall system behavior. However, lack of
techniques for automated test case generation is one major bottleneck in the UML activity
diagram validation. This article presents a methodology for automatically generating test
cases based on various model checking techniques. It makes three primary contributions:
First, we propose coverage-driven mapping rules that can automatically translate activity
diagram to formal models. Next, we present a procedure for automatic property generation
according to error models. Finally, we apply various model checking based test case gen-
eration techniques to enable efficient test case generation. Our experimental results demon-
strate that our approach can reduce the validation effort drastically by reducing both test
case generation time and required number of test cases to achieve a functional coverage
goal.

Keywords UML activity diagram · Testing · Model checking · Property decomposition

1 Introduction

Functional validation is becoming a major bottleneck in embedded system design due to the
increasing complexity of both hardware and software components. As the most widely used

M. Chen (�) · P. Mishra
Department of Computer & Information Science & Engineering, University of Florida, Gainesville,
FL 32611, USA
e-mail: mchen@cise.ufl.edu

P. Mishra
e-mail: prabhat@cise.ufl.edu

D. Kalita
Intel Corporation, 1900 Prairie City Road, Folsom, CA 95630, USA
e-mail: dhrubajyoti.kalita@intel.com

mailto:mchen@cise.ufl.edu
mailto:prabhat@cise.ufl.edu
mailto:dhrubajyoti.kalita@intel.com

106 M. Chen et al.

validation form, simulation adopts three types of test case generation techniques: random,
constrained-random and directed. Compared to the other two random methods, directed
test cases can save the overall validation effort since fewer test cases can obtain the same
coverage goal. However, lack of automated techniques is a common problem for directed
test case generation.

Unified Modeling Language (UML) [1, 2] is becoming a promising specification lan-
guage for both software and hardware designs [3–5]. It provides a set of diagrams that can
capture different system views. Also it supports profiles that can be used for customizing
UML models for a particular domain and purpose. As a kind of behavior specification,
UML activity diagrams adopt semantics similar to the formally defined Petri-net [6]. How-
ever, unlike Petri-nets, the UML activity diagram is a semi-formal specification which is
more intuitive and flexible to describe the concurrent behaviors of the system as well as
the internal logic of complex operations. Therefore it is widely used as a front-end tool for
system level design of software/hardware systems.

In a top-down design flow, validation of UML specifications is necessary to ensure the
correctness of both the specified design and the subsequent implementation. Validation of
UML activity diagrams using directed test cases is very promising. However, most directed
test case generation work is performed by human intervention. Hand-written test cases en-
tail laborious and time-consuming effort of verification engineers who have deep knowledge
of the design under verification. Due to the manual development, it is difficult to generate
all directed test cases to achieve a coverage goal. The problem is further aggravated due to
the lack of comprehensive functional coverage metrics. Automatic directed test case gener-
ation based on a comprehensive functional coverage metric is the alternative to address this
problem.

Model checking techniques have been proposed in the past for automated test case gen-
eration to validate software designs [8]. However, they have not been studied before in
the context of automated generation of directed test cases for UML activity diagrams.
In this article, we propose a directed test case generation methodology for UML activ-
ity diagrams. Our framework can translate UML activity diagram specifications to the
model checker input. The properties can be automatically generated based on the cover-
age (e.g. node coverage, path coverage, etc.) of the specification. Each property asserts a
valid behavior of the UML activity diagram to be checked. When checking the negation
form of this property, one counterexample will be reported. The counterexample activates
the required behavior using a sequence of variable assignment, so it can be treated as a
test case. The generated test cases can not only be used to guarantee the consistency be-
tween different abstraction levels, but also they can be reused to reduce the overall vali-
dation effort. In this article, we explore two alternatives for directed test case generation:
test case generation using Binary Decision Diagram (BDD) [9] based model checking,
and Boolean SATisfiability (SAT) [10] based Bounded Model Checking (BMC) [11]. We
compare these two methods in terms of their applicability and limitations and propose
initial ideas to address some of the practical challenges in applying them on industrial
designs.

The remainder of this article is organized as follows. Section 2 describes the related work
addressing validation of UML activity diagrams. Section 3 gives the preliminary knowledge
for the activity diagram and model checking. Section 4 presents the framework of our test
case generation methodology in details. Several case studies demonstrate the efficiency of
our proposed framework in Sect. 5. Finally, Sect. 6 concludes the article.

Efficient test case generation for validation of UML activity diagrams 107

2 Related work

As a system level specification, UML diagrams are becoming popular in embedded sys-
tem design [4, 12–14]. To guarantee the quality of embedded systems, model-based test
process [15] is proposed. There are significant research efforts on model driven testing of
UML diagrams [18]. The generated high level test cases are useful because they can be used
to validate both specifications and implementations. Based on UML diagrams, Briand and
Labiche [19] proposed a methodology to support the system testing. Their work supports
the derivation of the system test requirement which can be transformed to test cases. For
UML activity diagrams, some tools and methods have already supported test specifications
and test case generation. For example, dSPACE developed the tool AutomationDesk which
uses activity diagrams for test descriptions and test script generation [16, 17]. Chen et al.
[20] presented a framework that can construct test cases from specifications by identifying a
set of input categories for the activity diagrams as test cases. However, their method requires
preliminary information provided by testing experts. Wang et al. [21] presented an approach
based on Gray-Box method which defines test cases according to the dynamic scenarios of
a system. However, the proposed algorithm can not capture all the concurrent scenarios. So
the testing adequacy can not be guaranteed. Kim et al. [22] tried to convert an activity dia-
gram to a directed graph. Then test cases can be generated from the directed graph. But this
method lacks concrete rules for the automatic transformation. Chen et al. [23, 24] proposed
a framework that can sift random test cases based on the coverage criteria of the UML activ-
ity diagrams. Because of the randomness, this approach can not guarantee that the selected
test cases can achieve a required coverage in a reasonable timeframe.

Formal verification can be used to verify the correctness of specifications, so it can be
used to guarantee the quality of UML models [25]. UML activity diagram adopts Petri-net
semantics which is promising to describe the concurrent behavior [21, 23, 24]. In [26], Bell
and Haverkort presented sequential as well as distributed algorithms for model checking
Petri-nets. Their approach allows checking large systems with hundreds of millions states
in an efficient way. Jensen et al. [27] introduced the Colored Petri-net (CPN) which en-
ables discrete-event modelling of concurrent system. The CPN supports both simulation
and model checking to conduct performance analysis as well as property validation. As an
alternative, there are several approaches based on state machine that use model checking
techniques to verify UML activity diagrams. Eshuis [28] presented a translation procedure
from UML activity diagrams to the input language of NUSMV [29]. However, the transla-
tion is used to verify the consistency between UML activity diagrams and class diagrams.
It focuses on checking the consistency between two different models. Guelfi and Mammar
[30] provided a formal definition for timed activity diagrams. They outlined the translation
from the semantic specifications into PROMELA—an input language of the SPIN model
checker. Das et al. [31] proposed a method to deal with timing verification of UML activity
diagram models. All these verification work primarily focus on checking the consistency or
correctness of the model itself instead of generating directed test cases.

Reusing the validation effort in the top-down design context can reduce the overall vali-
dation time. By our observation [32], the high level test cases are very promising for the val-
idation of low level implementations. Various efficient model checking techniques are pro-
posed for automated test case generation from high-level specifications [8, 36–38]. Fraser
and Wotawa [33] discussed several aspects of model checkers when used for testing and
addressed ten challenges in which model checkers could be enhanced to be better suited
for the task of test case generation. Mishra and Dutt [34] presented a functional coverage
based test case generation technique for pipelined architectures. Their experimental results

108 M. Chen et al.

demonstrate that the number of test cases generated by their approach to obtain a error
coverage is an order of magnitude less than those generated by traditional techniques. Koo
and Mishra [35] proposed an efficient test case generation technique using decompositional
model checking. They developed design and property decomposition procedures to generate
the functional test cases for pipeline processors. However, these works focus on the valida-
tion of the pipelined processor architecture instead of general specifications. Adequacy is
one of the most important factors in testing. Coverage ratio is widely used to determine
the quality of test cases. In [39], Rayadurgam and Heimdahl presented a method for auto-
matically generating test cases to meet structural coverage criteria. However, most of these
methods are not directly applicable for UML activity diagrams.

To the best of our knowledge, there are no existing frameworks that can automatically
derive test cases from UML activity diagrams.

3 Background

This section briefly describes model checking techniques and UML activity diagrams.

3.1 Model checking preliminaries

Model checking is a formal method that can enumerate all the state space to check whether
a finite state system M satisfies a temporal property p, i.e., M |= p. When the property fails
at some state, it will report a counterexample to falsify the specified property.

In this article, we focus on test case generation using safety properties (property asserts
that the specified scenario never happens). Such properties are described using Linear Tem-
poral Logic (LTL [40]). When we want to derive a test case to activate a desired functional
scenario p, we need to generate its negation1 ∼ F(p). Here F(p) means finally the p will
hold somewhere on the subsequent path. So ∼ F(p) asserts that property p can not be true
in any computation paths of the model. If the design is correct, when applying the property
∼ F(p), a counterexample will be reported. The test case generated from the counterexam-
ple can be used to validate the specified functional scenario p.

Algorithm 1 outlines the general test case generation approach using SMV model
checker. The inputs of this algorithm are a SMV model M and a set of assertions A. The out-
put is a test suite extracted from the counterexamples. For each assertion Ai , one test case is
generated. The algorithm iterates until all the assertions are checked. In each iteration, each
assertion Ai is transformed to a temporal logic property Pi . Then, model checking is applied
using the model M and negated property Pi to produce a counterexample (test case).

For complex designs and properties, BDDs based methods usually cause the state space
explosion problem. As a promising alternative, Boolean satisfiability (SAT) based ap-
proaches have emerged, especially for the BMC. For SAT-based BMC, it translates the test
generation problem into a Boolean formula. The test generation process is to figure out if
the given Boolean formula has a satisfiable assignment. Usually this formula will be trans-
formed into Conjunctive Normal Form (CNF) and checked by a SAT solver (e.g. GRASP
[41] or Chaff [42]) to determine the result.

1In this article, both “∼” and “¬” denote the negation. “∼” is used by SMV model checker, and “¬” is used
for general purpose Boolean formula.

Efficient test case generation for validation of UML activity diagrams 109

Algorithm 1: Test Case Generation using SMV
Inputs: i) SMV Model M , ii) Set of assertions A

Outputs: Test suite
Begin

TestSuite = φ;
for each assertion Ai in the set A

Pi = CreateProperty(Ai) ;
Pi = Negate(Pi) ;
testi = ModelChecking(M , Pi) ;
TestSuite = TestSuite ∪ testi ;

endfor
return TestSuite ;

End

3.2 UML activity diagram modeling

In this article, we adopt UML 2.1.2 [2] as our specification. To reduce the complexity of the
testing work, we restrict our testing target and just investigate a subset of activity diagrams.
The subset mainly contains action nodes, control nodes, object nodes and control and data
flow. Especially for the object node, we just assume that it can hold at most one object at a
time and it does not support competition and data store. This section first gives the notations
used in our method. Then it presents the formal definitions of the UML activity diagrams.
Finally, it proposes the coverage criteria that guide the test case generation.

3.2.1 Notations

UML activity diagram is used to coordinate the execution of actions. An action takes a set
of inputs and converts them into corresponding outputs. As a kind of behaviors, an activity
consists of a set of actions and flow edges. The actions are connected by object flow edges
to show how object tokens flow through and connected by control flow edges to indicate the
execution order.

UML activity diagrams adopt the semantics like Petri-net [6]. It uses a kind of directed
graphs as its graphical representation. Tokens which indicate control or data values flow
along the edges from the source node to the sink nodes driven by the actions and conditions.
An activity diagram has two kinds of modeling elements: activity nodes and activity edges.
More specially, there are three kinds of nodes in activity diagrams:

– Action node: Action nodes consume all input data/control tokens when they are ready,
generate new tokens and send them to output activity edges.

– Object node: Object nodes provide and accept data tokens, and may act as buffers, col-
lecting data tokens as they wait to move downstream.

– Control node: Control nodes route tokens through the graph. The control nodes include
constructs to choose between alternative flows (decision/merge), to split or merge the flow
for concurrent processing (fork/join).

Figure 1 shows the basic constructs of activity nodes. An action node is denoted with
round cornered boxes. It represents an execution of operations on input tokens, and gen-
erated new tokens will be delivered to an outgoing edges. An object node denoted using

110 M. Chen et al.

Fig. 1 UML activity nodes

rectangle boxes is used to temporarily hold the data tokens waiting to be processed or deliv-
ered. For simplicity, we assume object nodes do not support competition and data store for
test case generation. A flow in an activity starts from the initial node. When a token arrives
at a flow final node, it will be destroyed. The flow final node has no outgoing edges, so there
is no downstream effect. When none of tokens exist in an activity diagram, the activity will
be terminated. The activity final nodes are similar to flow final nodes, except that when a
token reaches one activity final node, the entire flow will be terminated. Decision nodes and
merge nodes use the same shape of diamond. Decision nodes choose one of the outgoing
flows according to the value of Boolean expressions labeled on the outgoing edge. Merge
nodes select only one of incoming flows to deliver to the next activity node. Forks or joins
are shown by multiple arrows leaving or entering the synchronization bar respectively to
describe the concurrent behavior of a system. When a token arrives at a fork node, it will
be duplicated across the outgoing edges. Join nodes synchronize multiple flows. The tokens
must be available on every incoming edge in order to be passed to outgoing edges.

Activity nodes are connected by activity edges along which tokens may flow under some
condition. Activity edges include control and data flow edges as follows:

– Control flow edge: Control flow edges indicate the execution sequence of actions.
– Object flow edge: Object flow edges indicate the relation of data token transmission. It

provides the inputs to actions.

In our method, we simplify the syntax and semantics of UML activity diagrams. We
combine the control and data token together as a new kind of token which contains both
control and data information. And such token can flow through activity edges. In other
words, we do not distinguish control flow edges and object flow edges in our framework.

Figure 2 shows an example which uses most of the elements shown in Fig. 1. It describes
the functionality of withdrawing money from an Automated Teller Machine (ATM) [43].
A user needs to enter the access code first. In case of failure, the user can input the access
code again. The operation will abort if access code is wrong in both cases. If the input access
code is right, the user can enter the amount of money he wants to withdraw. At the same
time, the printer will be warmed to print a receipt. Once the ATM decides whether there is
enough money the user can withdraw, it provides the cash and generates the information for
this transaction. Finally, the printer prints the receipt and the transaction is complete.

The token for this example contains the ATM transaction information such as the in-
put access code and input cash amount, the context information such as the available cash
amount and correct access code. In general, a token reflects all the data information required
for this activity. Table 1 shows the composition of a token of the ATM activity diagram. It
consists of 5 variables which will be used to make the decisions illustrated in Table 2.

Efficient test case generation for validation of UML activity diagrams 111

Fig. 2 The UML activity diagram of an ATM

Table 1 Break down of a token
in Fig. 2 Variable Type Description

access_code string user’s access code

access_code_input string user access code input

access_code_resolve string user access code input correction

amount_input integer user cash amount input

amount_available integer cash amount available

3.2.2 Formal definitions

Without formalism, it is hard to describe and model the activity diagrams accurately. UML
activity diagram itself is a semi-formal specification that can not be directly mapped to a
model checker input (e.g. SMV models). We use Petri-net as an intermediate formal model

112 M. Chen et al.

Table 2 Condition on the flow edges in Fig. 2

Activity edge Condition Description

t2 incorrect access_code! = access_code_input

t3 correct access_code = access_code_input

t4 resolved access_code = access_code_resolve

t5 not resolved access_code! = access_code_resolve

t7 amount available amount_input <= amount_available

t8 amount not available amount_input > amount_available

between the translation from activity diagrams to SMV models, because the Petri-net for-
malism can capture the major functional scenarios as well as guide the translation.

Definition 1 describes the relation between the activity nodes and flow edges with a
Petri-net semantics. It does not model the full features of activity diagrams and just formally
depicts the static abstracted structure of activity diagrams which can be used to describe the
scenarios that need to be tested.

Definition 1 An activity diagram is a directed graph described using eight-tuple (A, T , F ,
C, V , A, aI , aF) where

– A = {a1, a2, . . . , am} is a set of action nodes.
– T = {t1, t2, . . . , tn} is a set of completion transitions.
– F ⊆ {A × T } ∪ {T × A} is a set of flow edges between activity nodes and completion

transitions.
– C = {c1, c2, . . . , cn} is a finite set of guard conditions. Here, ci (1 ≤ i ≤ n) is a predicate

(expression) based on the input variables. There is a mapping from fi ∈ F to ci , referred
as Cond(fi) = ci .

– Let V be the set of all possible assignments for input variables V1,V2, . . . , Vk where k is
a positive integer.

– M : A×V → V is a mapping that describes the value change of the input variables inside
an activity node.

– aI ∈ A is the initial node, and aF ∈ A is the final node. There is only one completion
transition t ∈ T and c ∈ C such that (aI , t) ∈ F , and for any t ′ ∈ T , (t ′, aI) /∈ F and
(aF , t ′) /∈ F .

In our formalization, a node can be an action node, an initial node or a final node. We
use the completion transition and flow edge to model the behavior of the control nodes. In
the graph, the nodes are connected by flow edges associated with a completion transition.
Because activity diagrams allow tokens to exist in the flows concurrently, the completion
transition can be used to synchronize the token flows. If a completion transition has multiple
incoming flow edges, it will do the join operation. If there are multiple outgoing flow edges,
then it will do the fork operation. For each flow edge, there may be a condition which can
guide the token traverse. The graph just has one initial node that indicates the start of control
and data flows. Activity diagrams have two kinds of final nodes: flow final nodes and activity
final nodes. We combine them together and use a join operation to get a new activity final
node. So in the definition there is only one final node.

When analyzing dynamic behaviors of an activity diagram, we need to use the states (a
set of actions executing concurrently) to model the status of a system. Current state (denoted
by CS) of an activity diagram indicates the actions which are being activated.

Efficient test case generation for validation of UML activity diagrams 113

Definition 2 Let D be an activity diagram. The current state CS of D is a subset of A. For
any transition t ∈ T ,

– •t denotes the preset of t , then •t = { a | (a, t) ∈ F }.
– t• denotes the postset of t , then t• = {a | (t, a) ∈ F }.
– enabled(CS) denotes the set of completion transitions that are associated with the outgo-

ing flow edges of CS, then enabled(CS) = {t | •t ⊆ CS}.
– firable(CS) denotes the set of transitions that can be fired from CS , then (firable(CS) =

{t | t ∈ enabled(CS)
∧ •t are all completed

∧∃n ∈ A. Cond((t, n)) is satisfied
∧

(CS −
•t)∩ t• = ∅}. After some t is fired, the new current state CS′ = fire(CS, t) = (CS−•t)∪ t•.

The current state of an activity diagram indicates which activity nodes are holding the
tokens. For example, when {d,f } is the current state of the activity diagram in Fig. 2,
two tokens are in the activity nodes d and f individually. At this time, only the transition
associated with t9 is fireable. If it is fired, then the next state is {e, f }.

Because of the inherent concurrency, several transitions can be fired at the same time.
For an activity diagram, all the fireable transitions in a state form a concurrent transition.

Definition 3 Let D be an activity diagram. For a state CS of D, a concurrent transition τ is
a set of completion transitions t1, t2, . . . , tn ∈ firable(CS) where

1. ∀ i, j (1 ≤ i < j ≤ n), •ti ∩ •tj = ∅;
2. ∀ t ∈ (enabled(CS) − {t1, t2, . . . , tn}), there exists i (1 ≤ i ≤ n) such that •t ∩ •ti
= ∅.

After firing τ from state CS, the current state CS′ = fire(CS, τ) = ⋃n

i=1(fire(CS, ti)) =⋃n

i=1((CS − •ti)
⋃

t•i).

An instance of dynamic behavior of an activity diagram can be represented by a sequence
of states and concurrent transitions. We call it a path of the activity diagram. Because a path
may have cycles, during the model checking, it is hard to determine the cycle numbers, so
we neglect the cycles on a path. We call such path a key path.

Definition 4 A path ρ of the activity diagram D is a sequence of states and concurrent
transitions, let

ρ = s0
τ0−→ s1

τ1−→ · · · τn−1−→ sn

where s0 = {aI }, sn = {aF }, and si+1 = fire(si, τi) for any i (0 ≤ i < n). ρ is a key path if
there is no state repetition in ρ, i.e. ∀i, j (0 < i < j ≤ n), si

⋂
sj = ∅.

There are five key paths in Fig. 2:

– ρ1 = {start} {t1}−→ {a} {t2}−→ {b} {t5}−→ {end}
– ρ2 = {start} {t1}−→ {a} {t3}−→ {c} {t6}−→ {dummy, f } {t7}−→ {d,f } {t9}−→ {e, f } {t10}−→ {g} {t11}−→

{end},
– ρ3 = {start} {t1}−→ {a} {t3}−→ {c} {t6}−→ {dummy, f } {t8}−→ {e, f } {t10}−→ {g} {t11}−→ {end},
– ρ4 = {start} {t1}−→ {a} {t2}−→ {b} {t4}−→ {c} {t6}−→ {dummy, f } {t7}−→ {d,f } {t9}−→ {e, f } {t10}−→

{g} {t11}−→ {end},
– ρ5 = {start} {t1}−→ {a} {t2}−→ {b} {t4}−→ {c} {t6}−→ {dummy, f } {t8}−→ {e, f } {t10}−→ {g} {t11}−→ {end}.

114 M. Chen et al.

We insert a dummy node here because we assume that outgoing edges of the fork node
must connect to an activity rather than a selection node. For a key path, when firing tran-
sitions, we need to consider guard conditions. For clarity, in Fig. 2, we did not label the
condition guards for each transition.

In order to detect whether a concurrent state of an activity diagram is reachable or can be
activated, we use the term interaction2 to describe the scenario that a set of actions can be
activated simultaneously. For example, in Fig. 2, {d,f } is an example of “2-interaction” in
the ATM.

Definition 5 Let D be an activity diagram. An interaction of the activity diagram is a set of
activity nodes (actions) that can be activated simultaneously. A “k-interaction” is a set that
contains k activity nodes.

3.3 Testing adequacy criteria for activity diagrams

Testing adequacy criterion specifies the requirement of a particular testing, and can be used
as an objective measurement of the test case. In traditional software code testing, the def-
inition of testing adequacy is given in [44] as a measurement function. The case of UML
activity diagrams is different because it is in the form of model instead of code. Especially
the coverage of activity diagram is more complex because of the concurrency. In this paper,
we propose four types of coverage metrics as follows:

– Activity coverage requires that all the activity nodes in an activity diagram be covered. The
value of activity coverage is the ratio between the checked activities and all the activities
in the activity diagram.

– Transition coverage requires that all the completion transitions in an activity diagram be
covered. The value of transition coverage is the ratio between the checked transitions and
all the transitions in the activity diagram.

– Key path coverage requires that all the key paths in an activity diagram be covered. The
value of key path coverage is the ratio between the traversed key paths and all the key
paths in the activity diagram.

– Interaction coverage requires that all the interactions in an activity diagram be covered.
The value of interaction coverage is the ratio between the checked interactions and all the
interactions in the activity diagram.

Generally, the above specification level coverage criteria do not directly relate to the im-
plementation level coverages (classical code coverage) because of the abstraction. However,
our experimental results (in Sect. 5) show that using test cases generated by specification
level coverage can produce good implementation level coverage. The activity and transi-
tion coverage are used to check whether all the specified activities and transitions can be
activated. Because an activity may be implemented by a module or a code segment, and a
transition may be represented by a function call, their coverage can guarantee the function
coverage and statement coverage in the corresponding implementation. The key path cov-
erage enumerates all the possible token flows. Thus it can indicate the decision coverage
and path coverage in its implementation. In activity diagrams, multiple tokens can stay in
different activities at the same time, interaction coverage is proposed to investigate such

2Unlike the interaction in UML Interaction overview diagram, the interaction here means that several actions
are active at the same time.

Efficient test case generation for validation of UML activity diagrams 115

concurrent behavior of the system which can not be reflected in traditional sequential code
coverage. However, interaction coverage is a superset of activity coverage and transition
coverage. Therefore it can guarantee the statement coverage as well as function coverage in
the implementation.

4 Test case generation for UML activity diagrams

There are many research work on Petri-net validation. However, very few of them can au-
tomatically generate test cases. UML activity diagrams adopts Petri-net like semantics. To
automatically generate test cases, we resort to the model checker SMV which is based on
Kripke structures. Therefore we need to use the Kripke constructs to mimic the behavior
of activity diagrams (described in Sect. 4.1). However, direct translation from UML activ-
ity diagrams to SMV models is not feasible because activity diagrams are a semi-formal
specification. In Sect. 3.2.2, we formalized both the syntax and semantics of UML activ-
ity diagrams in order to accurately capture the modeling information. Such information can
be used as an intermediate formalism to guide the translation proposed in Sect. 4.1. Also
in Sect. 3.3, we presented the test coverage criteria for UML activity diagram for testing
adequacy. This information will be helpful for property generation described in Sect. 4.2.

Figure 3 shows our automated approach for coverage directed test case generation of
UML activity diagrams. First, a UML activity diagram is translated to a formal model (SMV
model) using the rules presented in Sect. 4.1. Next, the properties in the form of logic for-
mulas can be generated using error models proposed in Sect. 4.2. Finally, the properties are
checked using efficient model checking techniques (proposed in Sect. 4.3) to generate re-
quired test cases (counterexamples). The generate test cases can be applied for validation of
both specifications and implementations. This methodology has three important tasks: for-
mal model generation, property generation, and directed test case generation. The remainder
of this section describes these tasks in detail.

Fig. 3 The test case generation
flow

116 M. Chen et al.

4.1 Formal model generation

Our technique can extract both the control and data flows by parsing a UML activity dia-
gram. The translation is a process of mapping from control and data flows to the input format
of Cadence SMV model checker [45]. The translation consists of two parts: static informa-
tion extraction and dynamic information extraction. Static information extraction analyzes
the structure of an activity diagram and then generates a skeleton of the SMV input. The
dynamic information extraction analyzes the dynamic behavior of the system by focusing
on control and data flow analysis (i.e. the state change of activities, data manipulation in
activities and the condition of the transitions).

4.1.1 Static information extraction

This step collects both the input data manipulated by the activities and the predicates
used as guard conditions of the transitions. For example in Fig. 2, there are five input
data variables that determine the data and control flows: access_code, access_code_input,
access_code_resolve, amount_input, and amount_available. Because there may be a num-
ber of possible values for a variable, during model checking it will cause the state space
explosion. In our approach, we adopt the model checker SMV which does not support com-
plex data types (e.g. float, double and etc.). And for each variable, it is required that the value
range should be specified explicitly. To avoid state space explosion, we use the following
methods to reduce the complexity of data types:

– Scaling: Scaling is used to proportionally reduce the value range of a variable.
– Reduction: Reduction is used to reduce the cardinality of possible values for a variable.

Since it is hard to implement the above techniques automatically, before the SMV transla-
tion, the variable type information is tuned manually on activity diagrams.

In our translation, we assign each activity with a state variable which has three possible
state values: unvisited (0), visiting (1) and visited (2). Unvisited indicates there is no token
passed this activity node. Visiting indicates currently the activity is holding some tokens.
And visited indicates some token passed this activity node and currently there is no token
in this activity node. The extraction procedure instantiates the activity state variables and
assigns suitable values to them. During initialization, the initial activity node is assigned
visiting that means there is a token ready at the initial state. Other nodes are initialized to
unvisited. Also we assign each flow edge a state variable which has two possible values:
fired (1) and unfired (0). Fired means some tokens flowed from the incoming activity nodes
to its outgoing activity nodes. Unfired means no token passed this activity edge. Initially we
set them with value 0.

Figure 4 shows the generated skeleton of Fig. 2 in SMV format [29, 45]. There are 3 mod-
ules in this skeleton. The module state defines the token information (described in Table 1) as
well as the state variable for activity nodes and flow edges. For example, verify_access_code
is a state variable for an action with three states. Initially it is assigned the state unvisited (0).
Module ATM gives a static skeleton without dynamic information (state transition for state
variables of activity nodes and flow edges, and the value changes for date variables in to-
kens). In this phase, we just collect variables without any processing. The missing state
transition details will be described in Sect. 4.1.2. The module main creates the module in-
stances and elaborates them together. For example, st is an instance of state module and atm
is an instance of ATM module. We bind the st and atm together, because atm will handle the
state changes of variables in st.

Efficient test case generation for validation of UML activity diagrams 117

Fig. 4 The generated skeleton
after structure extraction

MODULE state
VAR
access_code: { A1, B1, C1 };
access_code_input: { A1, B1, C1, D1 };
start: 0..2;
syn_1: 0..2;
verify_access_code: 0..2;
t2_cond: 0..1;
t3_cond: 0..1;
......

ASSIGN
init(start):=1;
init(syn_1):=0;
init(verify_access_code):=0;
......

MODULE ATM(st)
ASSIGN
next(st.start):=
next(st.t2_cond):=
......
next(st.prepare_print_receipt):=
......
next(st.dispense_cash):=
next(st.t7_cond):=
......

MODULE main() {
st: state; atm: ATM(st);
p_print: prepare_print(st);
check: check_amount(st);

}

4.1.2 Dynamic information extraction

After the static information extraction, we need to extract both the data manipulations and
the transitions of state variables, because they will determine the data and control flows.

In our method, we define a set of rules that specify the state transition for each activity
node and the value changes of the each data. Figure 5 shows the details of the rules. In these
rules, we use the preset and postset notations. In these rules, the assignment and constraint
to a set means the assignment and constraint to each element in the set. For example, if
•t = {a1, a2, . . . , ak}, then •t = 1 means a1 = 1 &a2 = 1 & . . . &ak = 1 and cond(t) means
cond((a1, t)) &cond((a2, t)) & . . . &cond((ak, t)).

Rule 1 specifies the translation rule for the initial node. The token will be first put at the
initial state and the node is marked as visited in the next step. Rule 2 specifies the translation
rule for the final node. At first, the state is unvisited, when one of the incoming edges is ac-
tivated, its state will become visited. Rule 3 defines the state changes of an activity. Initially,
the state of an activity is unvisited. If the incoming edge is activated, the state will become
visiting in the next step. If the current state is visiting, the state will change to visited in the
next step. Rule 4 presents the state transition of the fork nodes. When the incoming edge
is activated, the fork node will maintain the visiting status until all the outgoing edges are
visiting or visited. Rule 5 gives the state transition of join nodes. The join node is used to
synchronize the token flows. When all the incoming flows are ready, the transition corre-
sponding to the join node can be fired. In this rule, if we want to fire the transition, we need
to wait until all the activity nodes in the preset of the transition are visited. Rule 6 shows
how to manipulate the state change of the transition when it is fired. Rule 7 presents the

118 M. Chen et al.

Rule 1: If n is an initial node
init(n) := 1;
next(n) := 2;

Rule 2: If n is a final node, and there are k incoming transitions t1, t2, . . . , tk .

init(n) := 0;
next(n) :=

case
((•t1 = 1 & cond(t1)) | (•t2 = 1 & cond(t2))|

. . . | (•tk = 1 & cond(tk))) : 2;
1 : n;

esac;
Rule 3: If n is an activity node (not join or fork), and there are k incoming transitions
t1, t2 . . . , tk .
init(n) := 0;
next(n) :=

case
n = 1 : 2;
(•t1 = 1 & cond(t1)) | (•t2 = 1 & cond(t2)) |

. . . | (•tk = 1 & cond(tk))) : 1;
1 : n;

esac;
Rule 4: If n is a fork node, and the corresponding transition is t .
init(n) := 0;
next(n) :=

case
n = 1 & t• > 0 : 2;
•t = 1 : 1;
1 : n;

esac;

Rule 5: If n is a join node corresponding to transition t , and a1, a2, . . . , ak are k elements of •t .
init(n) := 0;
next(n) :=

case
n = 1 : 2;
n = 0 & (a1 + a2 + · · · + ak = 2 ∗ k) : 1;
n = 2 & (a1 + a2 + · · · + ak < 2 ∗ k) : 0;
1 : n;

esac;

Rule 6: If t is a transition which corresponds to the flow edges.
init(t) := 0;
next(t) :=

case
! cond(t) & •t = 1 : 0;
cond(t) & •t = 1 : 1;
1 : t;

esac;

Rule 7: If v is a variable whose new value is changed by expression expi in the activity acti
(1 ≤ i ≤ n).
next(v) :=

case
act1 = 1 : exp1;
act2 = 1 : exp2;
.

actn = 1 : expn;
1 : v;

esac;

Fig. 5 Translation rules for state and data transitions

Efficient test case generation for validation of UML activity diagrams 119

translation for value change of the variables. If an activity performs some operation on the
variable, we can modify the value of the variable only when the activity state is visiting.

4.2 Property generation based on error models

When generating directed test cases, it is required to use coverage metrics to indicate the
sufficiency. Based on the definition in Sect. 3.3, we create the error models which are the
negation of the coverage requirements. An error model defines a set of errors for an arbitrary
design. Each error described by the model represents a set of potential errors in a design.
The validation of all errors can guarantee the detection of all errors of the type covered by
the error model. The error models in this article are as follows.

Definition 6 Let AD be an activity diagram, there are four error models:

– Activity error model. For each activity of AD, the model assumes that such activity is not
reachable.

– Transition error model. For each transition of AD, the model assumes that such transition
can not be fired.

– Key path error model. For every key path of AD, there is no corresponding executable
path.

– Interaction error model. For every interaction of AD, the activities associated with the
interaction cannot be activated at the same time.

From these four different models, we can generate various properties to validate the activ-
ity diagram. The activity error model can be used to check the reachability of each activity.
So it can be used to check whether there exists infinite loops in the system. The transition
error model can be used to check the execution order of the activities. It can also be used to
check whether the condition guard of the transition can be satisfied. We also need to check
all the dynamic behaviors of the system, so key path error model is preferable in this case.
The interaction error model can be used to check whether several activities can be activated
simultaneously. In general, if all the interactions have only one activity, the interaction error
model is same as the activity error model.

The transformation from an error to a property (of the formal model) is a one-to-one
mapping. In the activity error model, for each activity we can assert that it is not reachable.
For transition error model, we assert that such transition can not be fired. In the key path error
model, we assert that there is no single execution scenario that visited all the activities and
transitions of the key path. For interaction error model, we assert that the concurrent state is
not reachable. Figure 6 presents illustrative examples of the four error models. Because an
error is described in a negated form of a desired system behavior, the generated properties
are the final version properties which need to be checked.

4.3 Efficient test case generation techniques

This section presents two efficient test case generation techniques that can drastically reduce
the overall test case generation time. The first technique uses unbounded model checking
for test case generation. We have developed efficient design and property decomposition
techniques to reduce the test generation time. The second technique employs SAT-based
bounded model checking. We have developed a procedure for determining the bound of a
SAT instance in the context of test case generation. This section is organized as follows.

120 M. Chen et al.

Property 1:The activity dispense_cash is
not reachable.
LTL formula: ~ F (st.dispense_cash = 2)

Property 2:The transition with condition
[amount available] can not be fired.
LTL formula: ~ F(st.t7_cond = 1)

Property 3:The key path 4 can not be covered.
LTL formula:
~F (st.start = 2

& st.verify_access_code=2
& st.handle_access_code = 2
& st.ask_for_amount = 2
& st.prepare_print_receipt = 2
& st.dispense_cash = 2
& st.generate_receipt_content=2
& st.finish_transaction_print_receipt = 2
& st.end = 2 & st.t2_cond=1
& st.t4_cond=1 & st.t7_cond=1)

Property 4:The activities dispense_cash and
prepare_to_print_receipt can not be activated
simultaneously.
LTL formula: ~ F(st.dispense_cash = 1

& st.prepare_to_print_receipt =1)

Fig. 6 Error model examples

Sect. 4.3.1 describes our model checking based test case generation approach using decom-
position techniques. Sect. 4.3.2 presents our bound determination technique and test case
generation approach using SAT-based bounded model checking.

4.3.1 Test case generation using property decompositions

By using Algorithm 1 with the formal model translated from the UML activity diagram (de-
scribed in Sect. 4.1) and properties derived from the error models (described in Sect. 4.2) as
inputs. We can get the a set of test cases for validation both specification and implementa-
tion. Since the whole design is used during model checking, this approach is limited by the
capacity restrictions of the model checking tool. As a result, this approach is not suitable for
today’s complex UML activity diagrams since the time and memory requirements can be
prohibitively large in many test case generation scenarios. In fact, test case generation may
not be possible in various instances due to state space explosion. We propose a test case
generation approach using decomposition of the properties to make the automated test case
generation applicable in practice.

Property decomposition technique has been successfully used in the processor verifica-
tion domain [35]. The basic idea is to break one system level property into multiple com-
ponent level properties and apply them to the respective components. Checking the system
with a simple property usually need less time and space than using a complex property.
So this technique is promising when dealing with a large system and complex properties.
However, not all properties are decomposable and in some circumstances decompositions
need the human intervention. So generally this technique can be used as a complement of
traditional model checking and SAT-based bounded model checking.

It is important to note that when decomposing a cluster of similar properties, the proper-
ties textually and semantically share a large overlap. That means some decomposed part of
a property can be the same as the decomposed part of other properties. So the verification

Efficient test case generation for validation of UML activity diagrams 121

effort of this decomposed property can be reused by other properties. In general, the overall
test case generation time of this cluster can be drastically reduced.

A complex property consists of various combinations of temporal operators, Boolean
connectives and atomic predicates. If the complex property is decomposable, a set of simple
properties will be derived with the same or similar semantics as the complex property. Since
the simple properties just describe partial behavior of the system, for some decomposable
complex property, it is necessary to merge the partial counterexamples of the derived prop-
erties. If the partial counterexamples generated by the decomposed properties can be refined
to reason about the complex property, the property is decomposable.

Definition 7 Let P be a false property for the design, and P is decomposable in the form
p1 ∧ p2 ∧ · · · ∧ pn or in the form p1 ∨ p2 ∨ · · · ∨ pn if all the following conditions are
satisfied.

– If the decomposed properties are in the form p1 ∧p2 ∧ · · ·∧pn, then at least one property
pi (1 ≤ i ≤ n) has a counterexample.

– If the decomposed properties are in the form p1 ∨ p2 ∨ · · · ∨ pn, then each properties pi

(1 ≤ i ≤ n) has a counterexample.
– The counterexamples generated from properties pi (1 ≤ i ≤ n) can be refined to a coun-

terexample of property P .

Since in this article we are only interested in the test case generation for different error
models, the generated properties are negations of the required system behavior. So at first we
need to negate the property. The negation of the properties can be done using the following
rules:

¬G(p) ≡ F(¬p)

¬F(p) ≡ G(¬p),
(1)

For example, the safety property generated by the UML error model in the form ¬F(p1 ∧
p2 ∧ · · · ∧ pn), according to (1), is equivalent G(¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn).

Decomposable properties

A LTL property consists of temporal operators (G, F, X, U) and Boolean connectives (∧, ∨,
¬ and →). In (2), according to the semantics of the temporal logic, the left part and the right
part of the following four equations are equivalent.

G(p ∧ q) ≡ G(p) ∧ G(q)

F (p ∨ q) ≡ F(p) ∨ F(q)
(2)

In fact, these equations can be used to perform the property decomposition and counterex-
ample generation. For example, the counterexamples generated by G(p) and G(q) can be
used as counterexample of G(p ∧ q). Intuitively if a path can not satisfy the property p or
q , then it can never satisfy the property p ∧ q .

There are many scenarios where decompositions are not possible. For example, the fol-
lowing two decompositions are not allowed.

F(p ∧ q)
= F(p) ∧ F(q)

G(p ∨ q)
= G(p) ∨ G(q)
(3)

122 M. Chen et al.

Although they are not semantically equivalent, they are decomposable under certain re-
strictions. For F(p ∧ q)
= F(p) ∧ F(q), the counterexamples generated from the property
F(P) or F(q) can be used as the counterexamples for property F(p ∧ q). For the second
equation, according to Definition 7, it is hard to guarantee if G(p∨q) has a counterexample,
then each property of G(p) and G(q) has a counterexample. However, when introducing the
notion of clock (or steps), it can be decomposed. The proof is as follows.

Theorem 1 The counterexamples of properties G(p) and G(q) can be used to derive a
counterexample for property G(p ∨ q) by introducing the notion of clock (or step) as a
synchronization mechanism.

Proof By using the negation in (1), ¬G(p ∨ q ∨ clk
= t) ≡ F(¬p ∧ ¬q ∧ clk = t). When
introducing the clock into the properties and the clock in the property is set to the value t ,
then F(¬p ∧ ¬q ∧ clk = t) means that at clock t , both p and q will be violated. That
means F(¬p ∧ ¬q ∧ clk = t) ≡ F(¬p ∧ clk = t) ∧ F(¬q ∧ clk = t). So ¬G(p ∨ q ∨
clk
= t) ≡ F(¬p ∧ clk = t) ∧ F(¬q ∧ clk = t). By using the negation again on both sides,
we can get G(p ∨ q ∨ clk
= t) ≡ G(p ∨ clk
= t) ∨ G(q ∨ clk
= t). Let Cp be the set of all
possible counterexamples generated by property p. We can get CG(p∨q∨clk
=t) = CG(q∨clk
=t) ∩
CG(p∨clk
=t). So property G(p ∨ q ∨ clk
= t) is decomposable. �

Theorem 1 shows that when dealing with a property with a clock predicate, if the prop-
erty is in the form of G(p ∨ q ∨ clk
= t), then the property is decomposable. We can check
the properties G(p ∨ clk
= t) and G(q ∨ clk
= t) respectively, and combine the counterex-
amples together to achieve the final test case.

4.3.2 SAT based bounded model checking

Algorithm 2 describes the general test case generation algorithm using BMC. This algorithm
takes the model M generated from UML activity diagrams and properties derived form the
errors F as inputs and generates a test suite extracted from the counterexamples. For each
error Ei , one test case is generated. The iteration stops until all the specified errors are
checked. In each iteration, each error Ei is described using a temporal logic property Pi .

Algorithm 2: Test Case Generation using BMC
Inputs: i) UML Activity Diagram Model, M

ii) Set of errors E (based on coverage criteria)
Outputs: Test suite
Begin

TestSuite = φ;
for each error Ei in the set E

Pi = CreateProperty(Ei) ;
boundi = DetermineBound(M , Pi) ;
testi = ModelChecking(Pi , M , boundi) ;
TestSuite = TestSuite ∪ testi ;

endfor
return TestSuite ;

End

Efficient test case generation for validation of UML activity diagrams 123

After the bound ki of Pi is determined, SAT-based BMC will generate a counterexample
(test case) to falsify Pi .

Generally BMC is more efficient than unbounded model checking since it restricts its
search within a small range, called bound. SAT-based BMC translates the search problem
into a propositional formula. The test case generation in fact is a process to figure out a
satisfiable assignment for this formula which can be converted into a test case. During the
test case generation, bound determination plays an important role. If it can be known a priori,
SAT-based BMC can be more effective than BDD based model checking techniques [11].
However, any incorrect bound determination will increase test case generation time as well
as memory requirement. Therefore, the techniques of deciding property bounds determine
the efficiency of test case generation using SAT-based BMC. In this article, according to the
structure information of UML activity diagrams, we propose a method that can efficiently
estimate the bound for each property in practice.

Determination of bound

Biere et al. [11] described several ways to determine the bound. If M |=k Ef for all k within
the bound, then M |= Ef . However there is no deterministic way of computing the bound
of the system. In fact, determining the minimal bound for a property is as hard as the model
checking itself. So bounded model checking is promising only when the bound can be pre-
determined and is shallow.

According to the definition of the diameter in [11], the bound for each node error instance
is decided by the temporal distance between the root node and the node under verification.
Generally, the bound for the key path error is determined by the activities and transitions

along the path. For example, in Fig. 2, the length of the key path ρ4 = {start} {t1}−→ {a} {t2}−→
{b} {t4}−→ {c} {t6}−→ {dummy, f } {t7}−→ {d,f } {t9}−→ {e, f } {t10}−→ {g} {t11}−→ {end} is 9. The property
derived for this key path is shown in the Fig. 6. In our translation rules, an activity state
transition needs one step delay. Fork node needs one step delay, and join node needs two
steps delay. One step delay at the start node is also required. The bound size will be 9 +
1 + 2 + 1 = 13. The bound of the activity error or transition error is determined by the
delay of activities and transitions on a valid shortest path from the start node to the activity
or transition which need to be verified in the UML activity diagram. For example, when
we want to check the activity error model instance “prepare_to_print_receipt can not be
activated”, the system will generate the property ∼ F(st.prepare_print_receipt = 2). The

shortest path from start to such an activity is ρ = {start} {t1}−→ {a} {t3}−→ {c} {t6}−→ {dummy, f }.
In a similar way, the bound for this property is 4 + 1 + 1 = 6. Sometimes in the system,
there is a counter that acts like a clock which counts the execution steps. Such variable in
a property will affect the bound of the property. For example, because of the introduction
of a counter, the property ∼ F(clk = 10 & st.prepare_print_receipt = 2) has a bound of 10
instead of 6.

Different properties based on different error models have different methods to achieve
the bounds. Assume there is no counter variables, the determination of bound is according
to the following rules:

– Activity or transition property. Extract all the paths without loops from the initial node
to the activity or transition. Calculate the bound for each extracted path and choose the
shortest one as the property bound.

– Key path property. Calculate the bounds for the key path based on the delay of activities
and transitions on the key path.

124 M. Chen et al.

– Interaction property. Calculate the bound for each element (activity or transition) in the
interaction. Choose the largest bound as the property bound.

If a property contains a counter variable. Then bound of the property is the larger one
between the counter value and the bound calculated using the above rules. Therefore, the
complexity of bound determination is polynomial to the nodes in the UML activity diagram.
In general, it is more efficient to use BMC for shallow counterexamples because the bound
can be pre-determined.

5 Experiments

Based on the framework proposed in Sect. 4, we developed a prototype tool which can
automate the process of test case generation. The tool takes three inputs: type definition
of the data which is used in the activity diagram, the context information which set the
parameters for the execution of an activity diagram (e.g. when to trigger the initial node and
so on), and UML activity diagrams. The UML activity diagrams are stored in the format
of XML Metadata Interchange (XMI) files. The tool can parse the XMI files to get the
static and dynamic information for formal model translation. Combined with the context
information and data type information, a formal model can be achieved using the proposed
mapping rules. From the extracted information, we can get the structure of the graph. Based
on this graph we can generate the properties according to specific error models. When using
BMC, the estimated bounds can be derived along with the properties. Test cases (a sequence
of variable assignments) for activity diagrams can be obtained from the model checking
counterexamples. These system level test cases represent assignments to the primary inputs
of specifications. So they can be used for specification simulation. In addition, such test
cases can be reused for low level implementation validation. Like the method proposed in
[32], we developed a script which incorporates a set of transformation rules (e.g. variable
mappings and value mappings) for the test case conversion.

In this section, we present three detailed case studies. We compare our approach with
the random test case based method [24], which is the best known result in this category.
The experimental results demonstrate that our method can drastically reduce both test case
generation time and overall validation effort by producing high quality test cases for the
implementation. We applied Cadence SMV model checker in our study. All the experiments
were conducted using 2.0 GHz Intel Core2 Duo CPU with 1 GB RAM.

5.1 A control system

The first case study is a small control system. The UML activity diagram representation of
the control system consists of 17 activities, 23 transitions and 6 key paths. Table 3 shows the
comparison between our approach and the random test based method [24]. For generating
test cases with highest coverage, the random method requires 8.83 seconds to run the 150
random test cases, however our approach using unbounded model checking method (UMC)
just needs 0.91 seconds. In this case study, UMC approach improves the test case generation
time by an order of magnitude.

We applied the generated test cases to a simulator of the control system (implemented
using JAVA). Table 4 shows the coverage of the Java code. The generated test cases obtained
100% package as well as class coverage. However, the method, block and line coverage
are around 90%. Our analysis showed that the Java implementation have many “try” and
“catch” blocks to handle exceptions whereas the specification does not have any information

Efficient test case generation for validation of UML activity diagrams 125

on the exception scenarios. As a result, the generated test cases did not activate any of the
exception blocks which resulted in low coverage of methods, blocks as well as lines. Clearly,
this is an issue of incomplete specification. Based on this observation, we added exception
information at the specification level and generated test cases which led to required coverage
in all the categories of the implementation.

5.2 A stock exchange system

The purpose of the on-line stock exchange system (OSES) [24] is to process three scenarios:
accept, check and execute the customer’s orders (market order and limit order). The system
uses the UML activity diagram as its behavior specification. It has 27 activities, 29 transi-
tions and 18 key paths. The system is implemented in JAVA and consists of 7 packages, 39
classes, 372 methods and 2510 lines. This system is much larger than the first case study.

In Table 5, the first three rows depict the results by using 800, 1000, 1500 random test
cases respectively. The result by our method is shown in the last two rows. In the case of
random 800, two key paths are missing due to the randomness. So the coverage metrics are
not 100%. If we increase the number of the random test cases to 1000, one key path is still
missing. Based on our observation, in the random method, it is hard to determine what is
an appropriate upper bound for the number of required random test cases. As a result, it is
hard to discover whether the specification is correct by the random test cases. The result
of the UMC shows that we can get an order of magnitude improvement compared to the
random method. Because the bounds of the properties of OSES system are shallow and can
be pre-determined, we applied SAT-based bounded model checking (BMC) in this situation.
The result shows that BMC method can be an order of magnitude faster than UMC method.
Clearly, BMC approach reduces the validation effort by two hundred times compared to the
best known result [24] in this category.

Table 6 presents the coverage of the implementation by applying the generated test cases.
The coverage of method, block and line are not sufficient because the activity diagram does
not consider all the scenarios of the system, such as the registration of the customers and so
on. In this case, we need to add the missing details in the specification to obtain the required
coverage.

Table 3 Comparison of two
methods Method Coverage (%) Time

activity transition path (second)

random 30 90 85 50 1.33

random 50 95 93 67 2.35

random 100 100 100 83 5.13

random 150 100 100 100 8.83

Our approach 100 100 100 0.91

(UMC)

Table 4 Implementation level
coverage of the control system Package Class Method Block Line

100% 100% 90% 88% 93%

126 M. Chen et al.

Table 5 Comparison of three
methods Method Coverage (%) Time

activity transition path (minute)

random 800 96 83 89 19.06

random 1000 96 86 94 24.26

random 1500 100 100 100 30.25

Our approach 100 100 100 3.47

(UMC)

Our approach 100 100 100 0.15

(BMC)

Table 6 Implementation level
coverage of OSES Package Class Method Block Line

100% 100% 58% 55% 51%

Fig. 7 The activity diagram for a
MIPS processor

5.3 A MIPS processor

Petri-net is promising for modeling generic processors. Based on the method proposed
in [46], we created a UML activity model for the single-issue MIPS design presented in [47].
Figure 7 shows the activity diagram for the MIPS processor design. It has five pipeline
stages: fetch, decode, execute, memory (MEM), and writeback. The execute stage has four
parallel execution paths: integer ALU, 7-stage multiplier (MUL1–MUL7), 4-stage floating-
point adder (FADD1–FADD4), and multi-cycle divider (DIV). In total there are 13 execution
units.

In order to compare the efficient test case generation methods proposed in Sect. 4.3, we
applied the following four test case generation techniques on a MIPS process design:

Efficient test case generation for validation of UML activity diagrams 127

Table 7 MIPS processor result
using the four methods Techniques Bound Number of Average memory Time

properties requirement (seconds)

UMC – 75 BDDs: 10121528 4929.75

DUMC – 13 BDDs: 2343270 94.77

BMC 10 75 Clauses: 19203 8.25

DBMC 10 13 Clauses: 16340 1.17

– UMC: Unbounded model checking using BDDs.
– BMC: SAT-based bounded model checking.
– DUMC: Decompose the properties and then use UMC.
– DBMC: Decompose the properties and then use BMC.

In this case study, due to the parallelism in the execute stage, we applied the interac-
tion error model to validate the concurrent behaviors of the MIPS processor model. A 2-
interaction of the execution units indicates that the two specified execute units can be busy
at the same clock cycle. For example, the following property asserts that at clock cycle 10,
the ALU unit and the DIV unit can not be busy simultaneously. Thus the generated test case
(a sequence of instructions) from this property can be used to activate both execution units
at clock cycle 10.

assert ~F(alu_active = 1 & div_active = 1 & clock = 10);

Based on the 2-interaction error model, 78 properties generated (choose all pairs from 13
execution units). However, due to the single issue design, some interactions are invalid. For
example, ALU unit and MUL1 unit can not be activated at the same time. Therefore finally
we generated 75 properties.

Table 7 presents the validation result of the MIPS processor design applying the four test
case generation techniques (first column). Due to the introduction of the clock, the bounds of
the BMC and DBMC techniques are pre-determined and shown in the second column. The
third column shows the number of properties that need to be checked. The fourth column
describes the average memory requirement by the respective technique. When unbounded
model checking is used (UMC or DUMC), the number of BDD nodes is reported. However,
when SAT-based bounded model checking (BMC or DBMC) is used, we report the number
of CNF clauses. The last column presents the total test case generation time. The result
shows that our decomposition method can drastically reduce both the test case generation
time and the memory requirement. It is important to note that in DUMC and DBMC, we
reuse the validation effort of the decomposed sub-properties to improve test case generation
time. For the MIPS processor design using DUMC and DBMC, generating 75 test cases
just need to check 13 properties. Because all the 75 test cases can be composed by the
counterexamples of these 13 properties.

5.4 Summary

This section presents three case studies. The first one shows that automatic test generation
using BMC techniques for small systems can achieve the required specification coverage
quicker than random simulation methods. The second example compares the random simu-
lation method, UMC based and BMC based techniques. It shows that model checking based

128 M. Chen et al.

methods are promising. Especially that BMC performs better than UMC. For these two case
studies, we apply the test cased obtained at specification level to the corresponding imple-
mentations. The results shows that the high level validation efforts can be applied on the low
level implementation, and the implementation coverage is satisfactory. In addition, the gen-
erated test cases can be used to check the consistency between different abstraction levels.
The final case study compares four different kinds of model checking based techniques. It
shows that decomposition and SAT bases techniques can drastically reduce the test genera-
tion time.

In practice, the four model checking based techniques have both merits and limits. For
UMC, it can be implement fully automatically. However, due to state space explosion prob-
lem, it can not be applied to large scale models. So in general, BMC is a promising al-
ternative for UMC. The decomposition based techniques has two advantages: First, it can
trigger some reduction techniques such as Cone of Influence (COI) to reduce the validation
complexity. Second, the validation effort reusing of the same decomposed properties can
reduce the overall test generation time. By our observation, DUMC can benefit from both
complexity reduction and validation reusing. But DBMC can just benefit from the valida-
tion reusing, because the validation complexity of the complex property and decomposed
complexities may differ slightly. It is important to note that the decomposition sometimes
can not be fully automated, because it is hard for a tool to parse the semantics of an activity
diagram and figure out the dependence of components. So the human intervention is needed
when necessary.

6 Conclusions

It is widely acknowledged that automatic test case generation from high level specifications
can have double impact: i) the generated test cases can be used to verify both the specifi-
cation and the implementation, and ii) it can drastically reduce the overall validation effort.
However, due to lack of comprehensive error models and associated test case generation
techniques, it is not possible to automatically generate directed test cases to activate all
the interesting scenarios and corner cases in the UML specification. This paper proposed
an approach to automatically generate test cases from UML activity diagrams. This paper
made three important contributions. First, we proposed a set of testing-oriented translation
rules that can automatically convert the UML activity diagram to the input specification of
the model checker. Second, we presented a method to derive properties from specifications
based on error models. Finally, we incorporate several existing promising model checking
based techniques into our framework to improve the test generation effort for UML activ-
ity diagrams. Our experimental results demonstrate that our approach can reduce both test
case generation time and overall validation effort by several orders-of-magnitude without
sacrificing the functional coverage goal.

Acknowledgements This work was partially supported by grants from Intel Corporation and National
Science Foundation Faculty Early Career Development (CAREER) Award 0746261. A preliminary version
[7] of this paper appeared in the proceedings of ACM Great Lakes Symposium in VLSI (GLSVLSI) 2008.

References

1. Rumbaugh J, Jacobson I, Booch G (2001) The unified modeling language user guide. Addison-Wesley,
Boston

2. OMG (2007) UML superstructure V2.1.2. Available at http://www.omg.org/docs/formal/07-11-02.pdf

http://www.omg.org/docs/formal/07-11-02.pdf

Efficient test case generation for validation of UML activity diagrams 129

3. Martin G (2002) UML for embedded systems specification and design: motivation and overview. In:
Design automation and test in Europe 2005, pp 773–775

4. Martin G, Müller W (2005) UML for SOC design. Springer, Berlin
5. Müller W, Rosti A, Bocchio S, Riccobene E, Scandurra P, Dehaene W, Vanderperren Y (2006) UML

for ESL design–basic principles, tools, and applications. In: International conference on computer-aided
design 2006, pp 73–80

6. Peterson J (1981) Petri nets theory and the modeling of systems. Prentice-Hall, New York
7. Chen M, Mishra P, Kalita D (2008) Coverage-driven automatic test generation for UML activity dia-

grams. In: Proceedings of Great Lakes symposium of VLSI (GLSVLSI), pp 139–142
8. Ammann P, Black P, Majurski W (1998) Using model checking to generate tests from specifications. In:

Proceedings of international conference on formal engineering methods (ICFEM), pp 46–54
9. Bryant RE (1986) Graph-based algorithms for Boolean function manipulations. IEEE Trans Comput

35(8):677–691
10. Prasad M, Biere A, Gupta A (2005) A survey of recent advances in SAT-based formal verification. Int J

Softw Tools Technol Transf 7(2):156–173
11. Biere A, Cimatti A, Clarke E, Zhu Y (1999) Symbolic model checking without BDDs. In: International

conference on tools and algorithms for the construction and analysis of systems, pp 193–207
12. Riccobene E, Scandurra P, Rosti A, Bocchio S (2005)A SoC design methodology involving a UML 2.0

profile for SystemC. In: Design automation and test in Europe, pp 704–709
13. Müller W, Rosti A, Bocchio S, Riccobene E, Scandurra P, Dehaene W, Vanderperren Y (2006) UML

for ESL design: basic principles, tools, and applications. In: International conference on computer aided
design, pp 73–80

14. Rosenberg D, Mancerella S (2010) Embedded systems development using SysML: an illustrated exam-
ple using enterprise architect. Sparx Systems Pty Ltd and ICONIX

15. Lamberg K (2007) Trends and perspectives in automated ECU testing. In: Automotive electronic, June,
2007

16. dSPACE. http://www.dspace.com
17. Lavagno L, Müller W (2006) UML as a next-generation language for SoC design. In: Electronic design
18. Heckel R, Lohmann M (2003) Towards model-driven testing. In: International workshop on test and

analysis of component based systems, pp 284–291
19. Briand LC, Labiche Y (2002) A UML-based approach to system testing. Softw System Model 1(1):10–

42
20. Chen T, Poon P, Tang S, Tse T (2005) Identification of categories and choices in activity diagrams. In:

International conference on software quality 2005, pp 55–63
21. Wang L, Yuan J, Yu X, Hu J, Li X, Zheng G (2004) Generating test cases from UML activity diagram

based on gray-box method. In: Asia-pacific software engineering conference 2004, pp 284–291
22. Kim H, Kang S, Baik J, Ko I (2007) Test cases generation from UML activity diagrams. In: Software

engineering, artificial intelligence, networking, and parallel/distributed computing 2007, pp 556–561
23. Chen M, Qiu X, Li X (2006) Automatic test case generation for UML activity diagrams. In: International

workshop on automation on software test 2006, pp 2–8
24. Chen M, Qiu X, Xu W, Wang L, Zhao J, Li X (2009) UML activity diagram based automatic test case

generation for Java programs. Comput J 52(5):545–556
25. Unhelkar B (2005) Verification and validation for quality of UML 2.0 models. Wiley, New York
26. Bell A, Haverkort BR (2005) Sequential and distributed model checking of Petri nets. Int J Softw Tools

Technol Transf 7(1):43–60
27. Jensen K, Kristensen LM, Wells L (2007) Coloured Petri nets and CPN tools for modelling and validation

of concurrent systems. Int J Softw Tools Technol Transf 9(3–4):213–254
28. Eshuis R (2006) Symbolic model checking of UML activity diagrams. ACM Trans Softw Eng Methodol

15(1):1–38
29. Cimatti A, Clarke EM, Giunchiglia F, Roveri M (1999) NUSMV: a new symbolic model verifier. In:

International conference on computer aided verification 1999, pp 495–499
30. Guelfi N, Mammar A (2005) A formal semantics of timed activity diagrams and its PROMELA transla-

tion. In: Asia-Pacific software engineering conference 2005, pp 283–290
31. Das D, Kumar R, Chakrabarti PP (2006) Timing verification of UML activity diagram based code block

level models for real time multiprocessor system-on-chip applications. In: Asia-Pacific software engi-
neering conference 2006, pp 199–208

32. Chen M, Mishra P, Kalita D (2007) RTL towards test generation from systemc TLM specifications. In:
High level design validation and test workshop 2007, pp 91–96

33. Fraser G, Wotawa F (2007) Improving model-checkers for software testing. In: International conference
on software quality 2007, pp 25–31

http://www.dspace.com

130 M. Chen et al.

34. Mishra P, Dutt N (2005) Functional coverage driven test generation for validation of pipelined proces-
sors. In: Design automation and test in Europe 2005, pp 678–683

35. Koo H, Mishra P (2006) Functional test generation using property decompositions for validation of
pipelined processors. In: Design automation and test in Europe, pp 1240–1245

36. Mishra P, Chen M (2009) Efficient techniques for directed test generation using incremental satisfiability.
In: International conference on VLSI design, pp 65–70

37. Chen M, Qin X, Mishra P (2010) Efficient decision ordering techniques for SAT-based test generation.
In: Design, automation and test in Europe, pp 490–495

38. Chen M, Mishra P (2010) Functional test generation using efficient property clustering and learning
techniques. IEEE Tran Comput-Aided Des Integr Circuits Syst 29(3):396–404

39. Rayadurgam S, Heimdahl MPE (2001) Coverage based test-case generation using model checkers. In:
International conference and workshop on the engineering of computer based systems 2001, pp 83–91

40. Clarke EM, Grumberg O, Peled DA (2000) Model checking. MIT Press, Cambridge
41. Marques-Silva J, Sakallah K (1999) GRASP: A search algorithm for propositional satisfiability. IEEE

Trans Comput 48(5):506–521
42. Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik S (2001) Chaff: Engineering an efficient SAT

solver. In: Design automation conference, pp 530–535
43. Ericsson M (2004) Activity diagrams: What they are and how to use them. The Rational Edge
44. Zhu H, Hall P, May J (1997) Software unit test coverage and adequacy. ACM Comput Surv 29(4):366–

427
45. McMillan KL Cadence SMV. Available at http://www.kenmcmil.com/
46. Reshadi M, Gorjiara B, Dutt N (2006) Generic processor modeling for automatically generating very

fast cycle-accurate simulators. IEEE Trans CAD Integr Circuits Syst 25(12):2904–2918
47. Hennessy J, Patterson D (2003) Computer architecture: a quantitative approach. Morgan Kaufmann, San

Mateo

http://www.kenmcmil.com/

	Efficient test case generation for validation of UML activity diagrams
	Abstract
	Introduction
	Related work
	Background
	Model checking preliminaries
	UML activity diagram modeling
	Notations
	Formal definitions

	Testing adequacy criteria for activity diagrams

	Test case generation for UML activity diagrams
	Formal model generation
	Static information extraction
	Dynamic information extraction

	Property generation based on error models
	Efficient test case generation techniques
	Test case generation using property decompositions
	Decomposable properties
	SAT based bounded model checking
	Determination of bound

	Experiments
	A control system
	A stock exchange system
	A MIPS processor
	Summary

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

