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ABSTRACT
System optimization techniques based on dynamic voltage scaling
(DVS) are widely used with the aim of reducing processor energy
consumption. Inter-task DVS assigns the same voltage level to all
the instances of each task. Its intra-task counterpart exploits more
energy savings by assigning multiple voltage levels within each
task. In this paper, we propose a voltage scaling technique, named
PreDVS, which assigns voltage levels based on the task set’s pre-
emptive scheduling for hard real-time systems. Our approach is
based on an approximation scheme hence can guarantee to gen-
erate solutions within a specified quality bound (e.g., within 1%
of the optimal) and is different from any existing inter- or intra-
task DVS techniques. PreDVS exploits static time slack at a finer
granularity and achieves more energy saving than inter-task scaling
without introducing any extra voltage switching overhead. More-
over, it can be efficiently employed together with existing intra-task
scaling techniques. Experimental results demonstrate that PreDVS
can significantly reduce energy consumption and outperform the
optimal inter-task voltage scaling techniques by up to 24%.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: Real-time systems and embedded systems

General Terms
Algorithm, Design

Keywords
Real-time systems, energy-aware scheduling, dynamic voltage scal-
ing, approximation algorithm

1. INTRODUCTION
Energy conservation has been the main concern in embedded

system optimization for a long time since these systems are gen-
erally limited by battery lifetime. Real-time embedded systems re-
quire unique design considerations since task execution must meet
their deadlines in order to ensure correct system behavior. A task
set is said to be schedulable if all the tasks can finish execution
within their time constraints. Periodic task set is of major inter-
est since it is most popular in typical real-time systems. A task in
such systems arrives in regular intervals and normally has a dead-
line equal to its period. Earliest Deadline First (EDF) [1] and Rate
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Figure 1: Inter-task DVS, PreDVS and Intra-task DVS.

Monotonic (RM) [2] are two most commonly used scheduling al-
gorithms in real-time systems. EDF employs a dynamic priority
scheme and has been proved to be optimal with an utilization bound
of 1 [2]. Dynamic voltage scaling (DVS) [3] is widely acknowl-
edged as one of the most effective processor energy saving tech-
nique. The reason behind its capability to save energy is that linear
reduction in the supply voltage leads to approximately linear slow
down of performance while the power can be decreased quadrati-
cally. Dynamic cache reconfiguration techniques are recently pro-
posed for real-time embedded systems to reduce cache hierarchy’s
energy consumption [4] [5] [6].

In this paper, we propose a novel voltage scaling technique which
generates voltage assignment based on the preemptive schedule of
the target task set. Unlike heuristics which may generate inferior re-
sults in certain cases, we develop a fully polynomial approximation
scheme which can guarantee to give solutions within specified qual-
ity bounds. Our approach, named PreDVS, differs from inter-task
and intra-task DVS as illustrated in Figure 1. Specifically, PreDVS
differs from existing inter-task scaling techniques [7] [8] [9] [10]
in that we adjust processor voltage level multiple times throughout
each task’s execution to potentially achieve more energy savings.
For example, in Figure 1, if the deadline of task τ1 is 7, inter-task
DVS cannot further lower any task’s voltage level otherwise dead-
line will be missed since it requires reduction of voltage for all task
instances. However, PreDVS is able to further reduce the energy
consumption by lowering the voltage level for the first segment of
τ1. PreDVS differs from existing intra-task DVS techniques [11]
[12] [13] in the following ways. Existing intra-task scaling meth-
ods assume that static slack allocation has already been done. They
only consider one task instance (local optimization) and focus on
exploiting dynamic time slacks generated at runtime due to early
finished task execution. They require excessive analysis, runtime
tracking and modification of the task source code, which is not al-
ways feasible in reality. Furthermore, they normally result in large
number of additional voltage switching points and most of them as-
sume continuous voltage levels. Our approach aims at static slack
exploitation and is carried out during design time. In fact, our tech-
nique is complementary to existing intra-task DVS techniques. Any
intra-task scaling can be applied after PreDVS to further reduce en-
ergy consumption at runtime. Our technique considers the problem
globally and find a voltage assignment for all tasks so that the total
energy consumption can be minimized while no task deadline is vi-
olated. Since our approach focuses on static slack exploitation, we
assume every task takes its worst-case execution time to complete.
We focus on hard real-time systems with preemptive periodic task
sets in this work. The system can be executed on any processor
with discrete voltage/frequency levels.

The rest of the paper is organized as follows. First, we for-



mulate the problem in Section 2. Next, we describe our problem
transformation scheme and an pseudo-polynomial algorithm which
can give optimal solutions in Section 3. We then propose our fully
polynomial-time approximation scheme. Section 4 presents our ex-
perimental results. Finally, Section 5 concludes the paper.

2. PROBLEM FORMULATION
In this section, we formulate our problem, prove its NP-hardness

and then discuss its unique difficulties. We are given:

• A set of m independent periodic tasks T{τ1,τ2, ... ,τm}.

• Each task τi ∈ T has known period pi, deadline di and worst-
case execution cycles (WCEC) ci.

• A voltage scalable processor which supports l different volt-
age levels V{v1,v2, ... ,vl}.

• Task τi ∈ T has energy consumption ek
i and execution time

tk
i at processor voltage vk ∈ V in the worst-case.

Note that we use WCEC ci here to reflect the worst-case workload
of each task since it is independent of processor frequency level. ek

i
and tk

i can be computed based on the underlying processor energy
model. We assume that each task is released at the beginning of
every period and the relative deadline is equal to the period. We
prove that our voltage scaling problem is NP-hard by considering
a simplified version of our problem – inter-task scaling – in which
each task τi ∈ T is uniquely assigned a fixed voltage level through-
out all its jobs. The system schedulability can be guaranteed by
restricting the total utilization rate of task set under the scheduler’s
bound U . Note that it is sufficient to consider the task scheduling
over its hyper-period P (equal to the least common multiple of all
tasks’ periods) since periodic task set has repetitive execution pat-
tern during every P. To be more specific, the simplified problem
can be stated as:

min(E =
m

∑
i=1

l

∑
k=1

P
pi
· xk

i · ek
i ) (1)

subject to,
m

∑
i=1

l

∑
k=1

xk
i ·

tk
i
pi

6U ; ∀i
l

∑
k=1

xk
i = 1 (2)

In Equation (1), xk
i is a 0/1 variable which denotes whether task

τi is assigned with voltage level vk. Equation (2) shows the suf-
ficient condition of schedulability which must be satisfied and the
assumption that only one voltage level is assigned to each task. Ac-
cording to [10], the inter-task scaling problem as formulated above
is NP-hard.

Now let’s switch back to our original problem. By assigning
multiple voltage levels at different places throughout each task’s ex-
ecution, more energy savings can be achieved since we have more
flexibility during decision making. Clearly, it is not feasible to con-
sider all possible positions. Task preemption, which creates multi-
ple segments of a single job, provides natural opportunities to as-
sign different voltage levels to each task. In this paper, we examine
the EDF schedule1 when the system is executed without DVS and
change the processor frequency whenever a job starts execution or
resumes after being preempted. Since inter-task scaling techniques
also have to perform voltage switching in all these occasions, our
strategy does not introduce any additional runtime overhead. It is
important since voltage scaling overhead can have negative impact
on overall energy consumption and performance [11] [13]. Note
that PreDVS leads to distinct energy consumption and execution
time for each task’s different jobs. As the simplified version has
been shown to be NP-hard, the original problem is NP-hard as well.

1Our approach is also applicable with RM scheduling but is not
discussed in this paper due to page limitation.

3. APPROXIMATION SCHEME
Since PreDVS problem has shown to be NP-hard, the best op-

tion is to devise an efficient method that can lead to approximate-
optimal solutions. As described in Section 2, the original problem
essentially adds another dimension (voltage/frequency selection for
a task’s each segment) to the simplified version. This fact prevents
us from solving the problem directly by adapting approximation al-
gorithms for MCKP or inter-task DVS [10]. In this paper, we make
two primary contributions. First, we develop a problem transforma-
tion scheme that can eliminate this complexity. Next, we propose
an fully polynomial-time approximation algorithm which can effi-
ciently solve the problem.

3.1 Problem Transformation
This section describes four important steps of our problem trans-

formation scheme.
Step 1: As in traditional systems without a voltage scalable pro-

cessor, all the tasks are executed at a fixed frequency. We use the
case in which the processor is running solely at the highest voltage
as the baseline and further assume that the given task set is schedu-
lable in this case otherwise applying DVS is not meaningful. We
simulate and generate an EDF schedule of the task set on the tar-
get system. Each task is set to take its WCEC ci to finish. During
simulation, we let the scheduler generate the distinct block list and
distinct block set list of each task, which are defined as:

DEFINITION 3.0.1. A distinct block is an execution segment of
a task with a distinct pair of start and end point.

DEFINITION 3.0.2. A distinct block set is a set of distinct blocks
which compose a whole job of a task. Every distinct block set has
a different set of distinct block(s) from another.

Let b j
i and s j

i denote the jth distinct block and distinct block set
of task τi, respectively. Figure 2 illustrates these two terms. In
this example, we consider three tasks: τ1{3,3,1}2, τ2{5,5,2} and
τ3{12,12,4}. For task τ1, it has only one distinct block b1

1 that is of
its entirety, which forms its only distinct block set s1

1 = {b1
1}. Task

τ2, however, has three distinct blocks: b1
2 appears from time 1 to

3, which is of its entirety; b2
2 appears from time 5 to 6, which is

its first half; b3
2 appears from time 7 to 8, which is its second half.

Therefore, τ2 has two distinct block sets: s1
2 = {b1

2} and s2
2 = {b2

2,
b3

2}. Task τ3, during its first period, experiences two preemptions
which result in three distinct blocks: b1

3 which is its first quarter, b2
3

which is its second quarter and b3
3 which is the rest half. These three

distinct blocks compose a distinct block set s1
3 = {b1

3, b2
3, b3

3}. In
practice, one needs to consider the whole hyper-period P to collect
all the distinct blocks (and sets) for each task. We denote |s j

i | as the
number of blocks in s j

i and δi as the number of distinct block sets
for task τi.
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Figure 2: Distinct block and distinct block set.

Step 2: We calculate the energy consumption and execution time
for each distinct block under all voltage levels in V. Let e j,k

i and t j,k
i

denote these two values of task τi’s jth distinct block b j
i under volt-

age vk. Note that energy and time overhead for voltage transition
are incorporated in them, respectively. In other words, we generate
a profile table for every b j

i which stores e j,k
i and t j,k

i for all l voltage
levels in V.
2The three elements in the tuple here denote period, deadline and
worst-case execution time, respectively.



Step 3: For each distinct block set s j
i , different voltage assign-

ment for every distinct block in it will effect the total energy con-
sumption as well as execution time for the entire set, which essen-
tially forms a whole job. In order to take all possible scenarios into
account, we calculate the total energy consumption and execution
time of all voltage level combinations, each of which comprises of
one voltage level chosen for each distinct block in s j

i . Let E j,h
i and

T j,h
i stand for the total energy consumption and execution time of

s j
i using voltage level combination h. Each pair of E j,h

i and T j,h
i are

stored in the profile table for s j
i . Furthermore, non-beneficial volt-

age combinations, whose energy consumption and execution time
are dominated by another combination in the same set, are elimi-
nated. We use a dynamic programming based algorithm to generate
the profile table for each distinct block set. The details are omit-
ted due to limited space. Obviously, the number of Pareto-optimal
combinations in s j

i ’s profile table is π
j
i 6 l|s

j
i |.

Step 4: So far we have obtained complete profiling information
for all the jobs of each task. In order to guarantee the schedulability,
we decide a threshold execution time tth

i for each task to be used in

schedulability test (∑m
i=1

tth
i
pi
6 1) that will act as the upper bound on

each job’s execution time. Now the original problem has become
how to select one voltage combination for each distinct block set of
a task so that the total energy consumption E = ∑

m
i=1 ∑

δi
j=1 λ

j
i ·E

j,h′
i

(where h′ is the selected profile table entry’s index for s j
i and λ

j
i is

the number of times s j
i occurs in the hyper-period P) is minimized

while ∀i ∀ j T j,h′
i 6 tth

i is satisfied. In this step, we give every volt-
age combination a chance to use its execution time acting as the
threshold for the corresponding task. Once a voltage combination
of one distinct block set is picked as the threshold for task τi, all
the other distinct block set’s decisions can be made in a greedy
manner, that is, the one with lowest energy consumption while exe-
cution time is less than or equal to the chosen threshold is selected.
Note that if, for some other distinct block sets, no voltage combi-
nation can make its execution time under the threshold, the chosen
threshold is infeasible and thus discarded. After all the decisions
are made, we calculate the total energy consumption of that entire
task and then put them along with the threshold execution time into
the aggregated profile table, which is used as input to our approxi-
mation algorithm. Algorithm 1 illustrates this process. Note that h
denote the index of the distinct block set profile table entry which
is currently chosen to act as the threshold.

Algorithm 1 Aggregated profile table generation for τi.

Sort each s j
i ’s profile table in the ascending order of E j,h

i
for j = 1 to δi do

for h = 1 to π
j
i do

isFeasible = true
h′j = h {h′j denotes the selected index of s j

i .}
for k = 1 to δi; k 6= j do

for u = 1 to π
j
i do

if T j,u
i 6 T j,h

i then
h′u = u ; break

end if
end for
if h′u is not updated then

isFeasible = false ; break
end if

end for
if isFeasible is true then

ei = ∑
δi
j=1 λ

j
i ·E

j,h′j
i {Total energy consumption of τi}

Add (ei, T j,h
i ) into task τi’s aggregated profile table

end if
end for

end for

 
Figure 3: Aggregated profile table generation for each task.

Figure 3 shows an illustrative example of aggregated profile ta-
ble generation. Suppose task τ3 in Figure 2 has three distinct block
sets in P and for each of them we have generated profile table in
Step 3 as shown on the top-part of Figure 3. For simplicity, we as-
sume that each of them only occurs once in P. The first entry in τ3’s
aggregated profile table is calculated as follows. We choose execu-
tion time (26) of the first entry in s1

3’s profile table as the threshold.
For s2

3, the first entry cannot be selected since its execution time is
higher than the threshold. Hence the second entry is chosen. For
the same reason, the second entry is selected for s3

3. The rest of the
table can be generated similarly.

After applying Algorithm 1, non-beneficial entries in the aggre-
gated profile table are filtered out. Note that Algorithm 1 assigns
the same voltage combination to every occurrence of each distinct
block set. Theorem 3.1 shows that it is reasonable and safe to do so
in finding optimal assignments.

THEOREM 3.1. An optimal solution of our problem must as-
sign the same voltage combination for each occurrence of a distinct
block set.

PROOF. Suppose in the optimal assignment, distinct block set
s j

i is assigned two different voltage combinations vc1 and vc2. As-
sume that the threshold execution time chosen is tthi . Thus the exe-
cution time of both vc1 and vc2 are less than tthi . Since it is always
safe to use voltage combinations with execution time under thresh-
old, one can get a better solution by replacing the higher energy
consuming one with the lower one, which contradicts the fact that
the solution is optimal.

Complexity Analysis: We now analyze the complexity of our
problem transformation scheme. Step 1 performs scheduling of the
task set. Step 2 requires ∑

m
i=1 ∑

δi
j=1 |s

j
i | calculations. Step 3 has

a time complexity of O(∑m
i=1 ∑

δi
j=1 l · |Lb

′|), where |Lb
′| is the up-

per bound of the length of list Lb
′ in our dynamic programming

algorithm. Step 4 needs a running time of O(∑m
i=1 ∑

δi
j=1 δi · (π j

i )
2).

Each step takes only polynomial time. It is important to note that
the problem transformation introduces only design-time computa-
tion overhead. Although the static overhead depends on the nature
of the input task set, our experiments show that it normally takes
only in the order of minutes for common task sets.

3.2 Approximation Algorithm
The program transformation described in the last section results

in an aggregated profile table for each task. Each entry of the ag-
gregated profile table (say jth entry of task τi) represents one pos-
sible voltage assignment (of all distinct block sets) for task τi and
keeps the corresponding total energy consumption as well as exe-
cution time, denoted by e j

i and t j
i , respectively. We divide each t j

i



by period pi to represent the utilization rate (t j
i /pi) of the task. Fur-

thermore, let ρi denote the number of entries in task τi’s aggregated
profile table.

We now convert our problem from a minimization version to a
maximization one. Let emax

i = max{e1
i , e2

i , ... , eρi
i }. For each

e j
i , we calculate energy saving e j

i = emax
i − e j

i . Now the objective
becomes to maximize total energy saving E = ∑

m
i=1 eri

i while satisfy
the schedulability condition T = ∑

m
i=1 tri

i 6U by choosing one and
only one entry from the aggregated profile table for each task (here
ri is the index of the chosen entry).

3.2.1 Dynamic Programming
Dynamic programming gives the optimal solution to our prob-

lem. Let emax
i defined as max{e1

i , e2
i , ... , eρi

i }. Clearly, E ∈
[1,memax

i ]. Let SE
i denote a solution in which we make decisions

for the first i tasks and the total energy saving is equal to E while
the utilization rate T is minimized. A two-dimensional array is cre-
ated where each element T[i][E] stores the utilization rate of SE

i .
Therefore, the recursive relation for dynamic programming is:

T [i][E] = min j∈[1,ρi](T [i−1][E− e j
i ]+ t j

i ) (3)

Using this recursion, we fill up T[i][E] for all E ∈ [1,memax
i ]. Fi-

nally, the optimal energy saving E∗ is found by:

E∗ = {max E | T [m][E]6U} (4)

Dynamic programming achieves the optimal energy saving by it-
erating over all the tasks (1 to m), all possible total energy sav-
ing value (from 1 to memax

i ) and all entries in each task’s aggre-
gated profile table (from 1 to ρi). This algorithm fills the array
in order so that when calculating the ith row (T[i][]), all the pre-
vious (i - 1) rows are all filled. Hence, the time complexity is
O(m2 ·max{ρi} · emax

i ), which is pseudo-polynomial since the last
term is unbounded.

3.2.2 Approximation Algorithm
The approximation algorithm proposed in this section is based

on dynamic programming. It reduces the time complexity by scal-
ing down every e j

i value by a constant K such that emax
i /K can

be bounded by m (as well as the approximation ratio ε) – which
reduces the complexity to polynomial. By doing so, we actually
decrease the size of the design space. Our goal is to guarantee that
the energy saving achieved by our approximation algorithm is no
less than (1− ε)E∗.

In order to obtain the constant K, we need to get the lower and
upper bound on E∗. This is done by employing a LP-relaxation
version of our problem by removing the integral constraint (choose
only one entry out of each task’s aggregated profile table), that is,
“fractiona” entries are allowed to be chosen. Algorithm 2 shows the
polynomial-time greedy algorithm which can give the optimal so-
lution to the LP-relaxation problem. Note that ẽ j

i is the incremental
energy saving – a measure of how much more energy saving can
be gained if the jth entry is chosen instead of the ( j− 1)th entry
from task τi’s table. Here, p̃ j

i represents the incremental energy
saving efficiency (e j

i /t j
i ). Ũ keeps the residual utilization rate. The

algorithm terminates when Ũ is exhausted. The LP-relaxation op-
timal choice for task τi, found by the algorithm, is ri where xri

i = 1.
The split task, τs, has two fractional entries being picked: rs and rs′
( p̃rs

s < p̃rs′
s ). We have the following lemma:

LEMMA 3.1.1. If the optimal solution SLP to the LP-relaxation
version of our problem has no split task, it is already the optimal
solution to our original problem. Otherwise, SLP has at most one
split task τs in which the two chosen fractional entries must be ad-
jacent in its aggregated profile table.

PROOF. Since this scenario can be mapped to MCKP, we can
reuse the proof shown in [14].

Algorithm 2 Greedy algorithm for LP-relaxation problem.
for i = 1 to m do

Sort τi’s aggregated profile table in ascending order of t j
i .

p̃1
i = e1

i /t1
i

for j = 2 to ρi do
ẽ j

i = e j
i − e j−1

i ; t̃ j
i = t j

i − t j−1
i ; p̃ j

i = ẽ j
i /t̃ j

i
end for

end for
Ũ =U−∑

m
i=1 t1

i ; Ẽ = ∑
m
i=1 e1

i
Sort all the entries from each task’s aggregated profile table to-
gether in descending order of p̃ j

i , associating with the original
indices i and j.
for each entry (i,j) in the sorted order of p̃ do

if Ũ− t̃ j
i < 0 then

s = i; t = j {Indices of the entry to be split.}
break {Utilization rate has exceeded above the bound.}

end if
Ẽ = Ẽ + p̃ j

i ; Ũ = Ũ− t̃ j
i

x j
i = 1; x j−1

i = 0 {entry (i,j) is chosen instead of (i,j-1)}
end for
xt

s = Ũ/t̃t
s; xt−1

s = 1− xt
s; Ẽ = Ẽ + p̃t

sx
t
s

return Ẽ

Let E0 be the maximum of the following three values: 1) total
energy saving when the split task τs is discarded; 2) energy saving
generated by the first fractional entry; 3) energy saving generated
by the second fractional entry. That is,

E0 = max{
m

∑
i=1;i 6=s

eri
i , ers

s xrs
s , ers′

s xrs′
s } (5)

Note that according to Lemma 3.1.1, the last two terms belong to
the same task. Now we can give the upper and lower bound of E∗,
as shown in the following lemma:

LEMMA 3.1.2. E0 dictates the lower and upper bound of the
optimal energy saving as: E0 6 E∗ 6 3E0.

PROOF. If E0 = ∑
m
i=1;i6=s eri

i , we can safely obtain higher overall
energy saving by adding ers

s . If E0 equals to either of the other two
terms, more energy saving can be achieved by adding ∑

m
i=1;i 6=s emin

i

where emin
i =min{e1

i ,e
2
i , ...,e

ρi
i }. Hence, we have E∗>E0. Clearly,

the solution to the LP-relaxation version must not be worse than
the one for the original problem. In other words, Ẽ > E∗. Since
Ẽ = ∑

m
i=1;i 6=s eri

i + ers
s xrs

s + ers′
s xrs′

s 6 3E0, we have E∗ 6 3E0.

Now we decide the scaling down factor K using the bounds de-
scribed above. We prove that approximation ratio and polynomial
time complexity can be guaranteed if we assign K = εE0

m , as shown
in the following lemmas:

LEMMA 3.1.3. The K-scaled dynamic programming algorithm
generates a (1− ε) approximation voltage assignment.

PROOF. Let the scaled energy saving value e′ ji = be j
i /Kc, we

have Ke′ ji 6 e j
i < K(e′ ji + 1), hence e j

i −Ke′ ji < K. Therefore, by
accumulating all m tasks, we have:

m

∑
i=1

ehi
i −K

m

∑
i=1

e′hi
i < Km (6)

where hi is the index of the selected aggregated profile table entry
for task τi.

Note that the left term of Equation (6) is the approximation scal-
ing error. Since K = εE0

m , we have Km = εE0. Since E∗ > E0,
according to Lemma 3.1.2, we have Km 6 εE∗. Therefore, the ap-
proximation error ∑

m
i=1 ehi

i −K ∑
m
i=1 e′hi

i < Km 6 εE∗. Hence the
approximation ratio ε holds.



LEMMA 3.1.4. The time complexity of the K-scaled dynamic
programming algorithm is O(

m2·max{ρi}
ε

).

PROOF. Given the upper bound of E∗ (E∗ 6 3E0), the dynamic
programming method can be improved to search in the range of
[1,3E0], resulting in a time complexity of O(m ·max{ρi} ·E0). For
the scaled version, the complexity is reduced to O(m ·max{ρi} ·
E0
K ). Given K = εE0

m , we have E0
K = m

ε
, thus the complexity becomes

O(
m2·max{ρi}

ε
), which is independent of any pseudo-polynomial en-

ergy values.

THEOREM 3.2. The proposed algorithm is a fully polynomial
time (1 - ε) approximation scheme for the maximization version of
our problem.

PROOF. Directly follows from Lemma 3.1.3 and 3.1.4.

Now let’s evaluate the quality of the solution generated by the
converted problem with respect to our original problem. Let E∗
denote the optimal result (the minimum energy consumption) and
α denote the approximation ratio for the original problem. Given
an approximation ratio ε for the maximization version, α can be
quantified as:

(1+α)E∗ =
m

∑
i=1

emax
i − (1− ε)E∗ (7)

Hence,

α =
∑

m
i=1 emax

i −E∗+ εE∗−E∗

E∗
(8)

Since for a specific solution, according to our conversion strat-
egy, we have: E∗ = ∑

m
i=1 emax

i −E∗. Therefore,

α =
E∗

E∗
ε (9)

Equation (9) illustrates that α is related to ε by the factor of E∗/E∗,
which is the ratio of the total energy saving to total energy con-
sumption over all tasks. In the worst case, when the overall utiliza-
tion is low enough so that entries with the lowest energy consump-
tion are selected for each task, this ratio reaches maximum. Let
vmax and vmin denote the maximum and minimum voltage avail-
able, respectively. We have,

α 6
∑

m
i=1(e

max
i − emin

i )

∑
m
i=1 emin

i
ε 6

vmax
2− vmin

2

vmin2 ε (10)

Let γ denote this maximum ratio (thus α 6 γ · ε). In practice, given
a voltage scalable processor, we first calculate its γ value. If γ 6 1,
it means that by solving the converted maximization problem using
approximation ratio ε, we can get a solution with an equal or better
quality bound (6 ε) to the original problem. Otherwise, if needed,
we can set ε = α/γ so that the specified approximation ratio (α)
to the original problem can be achieved firmly. As a result, the
time complexity of our approximation scheme with respect to the
original problem is O(

m2·max{ρi}·γ
α

). As shown in Section 4.1, for
common voltage scalable processors, γ is usually very small and in
some cases (e.g. StrongARM [15]) is less than 1.

Now we have obtained an approximated optimal solution based
on the original EDF schedule which is generated without voltage
scaling. As described in Section 3.1, we have ensured that the uti-
lization bound of EDF is observed, the modified task set is guar-
anteed to be schedulable. Note that running the task set with the
new voltage assignment could potentially result in a slightly differ-
ent schedule since we are essentially changing the execution time of
each block. Hence the solution we give is essentially with respect to
the original schedule. Certainly, more iterations can be carried out
based on the new schedule until it becomes steady. Based on our
observations, such costly iterations contribute very little in overall
energy savings, and therefore not beneficial.

4. EXPERIMENTS
4.1 Experimental Setup

To demonstrate the effectiveness of our approach, we consider
two DVS processors: StrongARM [15] and XScale [16]. The for-
mer one supports four voltage - frequency levels (1.5V - 206MHz,
1.4V - 192Mhz, 1.2V - 162MHz and 1.1V - 133MHz) with γ= 0.86
and the latter one supports five levels (2.05V - 1000MHz, 1.65V -
800MHz, 1.3V - 600HMz, 0.99V - 400MHz and 0.7V - 200MHz)
with γ= 7.58. We compare our results with two scenarios: when no
DVS is used and when optimal inter-task scaling is employed [10].
In the former scenario, every task is running under the highest volt-
age level. While in the latter scenario, a dynamic programming
based algorithm is used to obtain the optimal solution as discussed
in Section 3.2.1. Approximation ratio α of 0.01, 0.05, 0.10, 0.15
and 0.20 are considered3. We implemented the EDF scheduling
simulator along with all the algorithms in C++.

4.2 Results using Real Benchmarks
We first construct four task sets each of which consists of real

benchmark applications selected from typical embedded system
benchmark suites MediaBench [17] EEMBC [18] and MiBench
[19] as shown in Table 1. Task Set 1 consists of tasks from Me-
diaBench, Set 2 from EEMBC, Set 3 from MiBench, and Set 4 is a
mixture from all three suites. We set each task’s utilization rate (un-
der the highest voltage level) randomly in the interval of [ 0.5

m , 1.5
m ].

The accumulated overall utilization rate is controlled to be within
[0.7,0.9] for StrongARM and [0.5,0.7] for XScale.

Table 1: Task sets consisting of real benchmarks.
Task
sets Tasks

Set 1 cjpeg, djpeg, epic, mpeg2, pegwit, toast, untoast,
rawcaudio

Set 2 A2TIME01, AIFFTR01, AIFIRF01, BaseFP01,
BITMNP01, IDCTRN01, RSPEED01, TBLOOK01

Set 3 qsort, susan, dijkstra, patricia, rijndael, adpcm,
CRC32, FFT, stringsearch

Set 4 cjpeg, epic, pegwit, A2TIME01, RSPEED01, qsort,
susan, dijkstra

Figure 4 shows the results in both scenarios. On StrongARM
processor, our approximation scheme saves up to 34% energy com-
pared to no-DVS and outperforms the optimal inter-task scaling by
up to 17% even when the approximation ratio is set to 0.2 (α= 0.2).
On XScale processor, due to larger span between available voltage
levels and lower overall utilization rate, up to 67% energy saving is
achieved over no-DVS scenario and on average 19% extra saving
compared to optimal inter-task voltage scaling.

4.3 Results using Synthetic Tasks
We also evaluated our approach by randomly generated task sets

with 5 to 10 tasks per set with different overall utilization rates.
We define the effective bound of a DVS processor as the following:
any task set with an overall utilization rate equal to or lower than
the effective bound can achieve the optimal voltage assignment by
trivially choosing the lowest voltage for all the tasks. Clearly, the
effective bound is the ratio of the lowest frequency to the highest
one. In other words, the effective bound is 0.64 for StrongARM
and 0.2 for XScale. Hence, in the former case, we vary the overall
utilization rate of each task set from 0.65 to 0.95 at one step of
0.05 while from 0.3 to 0.9 at one step of 0.1. Given each overall
utilization rate, we randomly generate task periods in the interval
of [100,30000]. Similarly as in Section 4.2, each task’s utilization
rate is evenly distributed between [ 0.5∗U

m , 1.5∗U
m ].

Figure 5 shows the results which are the average of 10 randomly
generated task sets for each overall utilization rate on both DVS
processors. Clearly, in all cases, our approach achieves closely ap-
proximated overall energy consumption with respect to the optimal
3Approximation ratio ε for the maximization version of our prob-
lem is calculated as described in Section 3.2.2
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(a) StrongARM processor
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(b) XScale processor
Figure 4: Results for real benchmark task sets.
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Figure 5: Results for synthetic task sets.

solution and outperforms inter-task optimal scaling consistently up
to 24%. The running time of our algorithm is comparable with
inter-task technique in the optimal solution case and much shorter
in approximated solution cases. For example, inter-task DVS [10]
and PreDVS optimal algorithms take 26442 and 27082 millisec-
onds, respectively, for one of the synthetic task sets, while PreDVS
approximation algorithm only requires hundreds of milliseconds.

5. CONCLUSION
In this paper, we presented a dynamic voltage scaling technique

for preemptive real-time systems using approximation scheme which
achieves significant energy savings by assigning different voltage
levels to each task. We proved that the problem is NP-hard and
presented an approximation scheme by developing a novel trans-
formation mechanism and a fully polynomial time approximation
algorithm. Our approach does not introduce any additional volt-
age switching overhead compared to inter-task scaling techniques.
Moreover, our approach exploits static time slack only and thus
can be employed together with any existing intra-task scaling tech-
niques. The approximate solutions given by our approach outper-
forms optimal inter-task scaling techniques by up to 24%. Our ex-
perimental results demonstrated that our approach can generate so-
lutions very close to the optimal.
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