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The complexity of hardware designs has increased over the years due to the rapid advancement of technology
coupled with the need to support diverse and complex features. The increasing design complexity directly
translates to difficulty in verifying functional behaviors as well as non-functional requirements. Simulation
is the most widely used form of validation using both random and constrained-random test patterns. The
random nature of test sequences can cover a vast majority of scenarios, however, it can introduce unacceptable
overhead to cover all possible functional and non-functional scenarios. Directed tests are promising to cover
the remaining corner cases and hard-to-detect scenarios. Manual development of directed tests can be time
consuming and error-prone. A promising avenue is to perform automated generation of directed tests. In this
paper, we provide a comprehensive survey of directed test generation techniques for hardware validation.
Specifically, we first introduce the complexity of hardware verification to highlight the need for directed test
generation. Next, we describe directed test generation using various automated techniques, including formal
methods, concolic testing, and machine learning. Finally, we discuss how to effectively utilize the generated
test patterns in different validation scenarios, including pre-silicon functional validation, post-silicon debug,
as well as validation of non-functional requirements.

CCS Concepts: » Hardware — Functional verification; Bug detection, localization and diagnosis; Test-pattern
generation and fault simulation;

Additional Key Words and Phrases: hardware verification, test generation, functional validation, security
validation

1 INTRODUCTION

Computing devices rely on both hardware and software to provide the required functionality.
The complexity of the hardware is increasing rapidly due to technological advances as well as
the demand for supporting complex and heterogeneous features in diverse applications, ranging
from simple handheld devices to complex autonomous systems. These systems utilize System-on-
Chip (SoC) to provide the computing backbone. A typical SoC design today includes hundreds of
heterogeneous components consisting of billions of transistors. In order to design such complex
hardware in a tight time-to-market window, there are new specification languages, novel design
and synthesis flows, and efficient tools for physical design and fabrication. A major bottleneck
in hardware design methodology is how to verify numerous functional behaviors and complex
non-functional requirements. Figure 1 shows validation steps during SoC design methodology.

Simulation is the most widely used form of validation using random as well as constrained-
random tests. While random tests are suitable for covering a vast majority of easy-to-detect
scenarios, they cannot cover complex corner cases and hard-to-detect scenarios in a reasonable
time. Directed tests are promising to cover the remaining scenarios. Manual development of directed
tests can be time-consuming and error-prone. Recent efforts address this challenge by focusing
on automated test generation techniques. This paper provides a comprehensive survey of existing
approaches for automated generation of directed tests for hardware validation.

The remainder of this section is organized as follows. Section 1.1 provides an overview of hard-
ware design methodology. Section 1.2 highlights the importance of hardware validation followed
by an overview of existing validation methods in Section 1.3. Section 1.4 compares this paper with
related surveys. Finally, Section 1.5 presents the survey methodology.
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1.1 Overview of Hardware Design Flow

Hardware designs go through several stages during the design cycle, starting from specification to
a physical chip (integrated circuit). Figure 1 illustrates the major stages involved in the hardware
design flow. The specification stage captures the functional intent as well as design constraints
using a specification language. Usually, the specification is captured using Transaction Level
Modeling (TLM), such as SystemC TLM models [43]. The specification needs to be validated to
ensure that it can be used as a golden reference model. The next stage involves the Register-Transfer
Level (RTL) implementation of the specification using Hardware description languages (HDL),
such as VHDL [5] or Verilog [121]. The implementation needs to capture both the structure and
behavior of the target design [119]. The RTL implementation needs to be validated to ensure that
the implementation satisfies the specification. The next stage involves the synthesis of the RTL
implementation to produce a gate-level implementation. Hardware synthesizers are used for the
synthesis process and the output should be verified again with the RTL implementation as well
as the specification to ensure that the synthesis process did not introduce any bugs or potential
vulnerabilities. The validated gate-level implementation goes through physical design tools, such
as layout and placement. The layout is fabricated to produce the integrated circuit (IC). Finally, the
IC goes through extensive testing and post-silicon debug to check for bugs that escaped pre-silicon
validation as well as manufacturing defects. In this survey, we focus on test generation methods for
pre-silicon as well as post-silicon validation. Note that test generation for detecting manufacturing
defects (manufacturing testing) is beyond the scope of this survey.
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Fig. 1. Hardware Design Flow. Validation is important across the design cycle.

It is important to note that the design is validated in each stage during the design flow since each
transformation creates the potential to introduce functional bugs and unexpected scenarios. We
also need to check for non-functional requirements, such as area, power, performance, real-time
constraints, and security vulnerabilities. The test/validation engineers create test cases to check
whether the actual output (e.g., simulation of RTL implementation) matches with the expected
behavior (e.g., simulation of the golden specification). Simulation cannot guarantee the absence
of bugs due to the complexity of checking all possible (exponential) scenarios. For example, let
us consider a simple 64-bit adder circuit. The inputs to the adder are two 64-bit numbers and the
output is a 64-bit number. In order to verify all possible scenarios, we need to have 2'?® test cases,
which is infeasible. In order to validate designs with acceptable guarantees without exhaustive
testing, efficient test generation and test reuse techniques are required.

1.2 Hardware Validation Importance and Trends

According to the functional verification study conducted by Wilson Research Group, design testing
and verification effort is a significant contributor to overall cost [38]. Figure 2 shows the average
number of engineers utilized by the semiconductor companies to design and verify the product.
It is clear that the ratio between verification engineers to design engineering is increasing over
the years. This signifies that the verification effort required by the companies for ASIC designs is
increasing at a faster rate than the increase in design complexity.
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Fig. 2. Average number of design engineers and verification engineers utilized by ASIC projects [38]

In spite of these verification efforts, still bugs escape from the verification stage causing design
re-spins that introduce considerable financial impact to the semiconductor companies. Figure 3
presents different types of undetected bugs in the fabricated ICs that led to the silicon re-spin (bug
fix or re-design and expensive re-fabrication). While different flaws can lead to re-spin, functional
bugs are the lead contributor.
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Fig. 3. Different categories of design flaws that led to bug escapes and silicon re-spin [38]

The research study highlights the types of escaped bugs in spite of extensive pre-silicon validation.
It also signifies the hardware validation complexity and highlights the need for fast, scalable, and
automated hardware validation techniques.

1.3 Overview of Hardware Validation Methods

Simulation-based validation is the commonly used approach by semiconductor companies. Simula-
tion with random test cases can identify most of the easy-to-detect bugs quickly [12, 33, 59, 133].
However, the remaining hard-to-activate scenarios and corner cases [21] contribute to the root
cause of the bug escapes [38], as shown in Figure 3. In order to validate the remaining hard-to-
activate corner cases, there are two choices: (i) keep running random tests and hope it will detect
the remaining bugs, or (ii) perform coverage analysis (e.g., branch coverage) and construct custom
(directed) tests to activate the uncovered scenarios.



The probability of covering the remaining hard-to-activate scenarios is very low using random
test cases even if the designers are able to invest significant validation effort (time) [21]. Note that
there are timing constraints for each phase in the design cycle that prohibit unlimited verification
cycles. Therefore, a practical solution is to construct directed tests to cover the remaining hard-to-
activate scenarios. Unfortunately, manual construction of the directed tests can take a considerable
amount of time and effort. Most importantly, it may not be feasible to write a directed test for large
designs and complex corner cases. A promising alternative is to perform automated generation of
directed tests. This paper surveys these automated test generation techniques.

There are different types of directed test generation techniques proposed over the years for
hardware validation. The effectiveness of all these techniques can be measured with several factors.

(1) Design Coverage: The percentage of the functional or non-functional requirements covered
by the constructed test cases. For example, a design has 10,000 branches, and the random tests
covered 80% of them. We need to generate 2000 directed tests (assuming no test compaction
is possible) to cover the remaining 20% branches.

(2) Scalability: It measures the scalability of the test generation technique for verifying large
industrial designs. For example, a test generation method based on model checking may
perform well for designs with a few thousand gates but may lead to state space explosion
when dealing with million gate designs.

(3) Overall Effort: This includes both test generation effort and validation effort. The test gener-
ation time is negligible for random tests, but we need to consider the time for millions of
simulations (assuming millions of random tests). On the other hand, directed test generation
takes a long time compared to random test generation, however, the total number of simu-
lations can be in the order of a few thousand (assuming a few thousand directed tests can
provide the same coverage).

In practice, the designers use an effective combination of simulation-based validation and formal
verification. Specifically, they try to verify small and critical components through formal methods,
while using simulation-based validation using random or constrained-random tests to verify
larger modules as well as the overall design. While code coverage is a good metric for software
verification due to its sequential nature, code coverage is not enough for hardware verification
since it involves concurrent execution of multiple modules. In other words, even perfect (100%) line
coverage provides limited insight into the effectiveness of testing concurrent finite state machines.
Automated techniques surveyed in this paper offer promising benefits, such as faster coverage
of targeted scenarios and enhanced test generation efficiency, contributing to an effective and
comprehensive hardware verification.

1.4 Major Differences with Existing Surveys

There are several surveys related to hardware test generation and validation methods. The most
recent work [131] discusses hardware verification with assertions and test generation methods for
activating assertions. There are surveys for hardware verification using formal methods [25, 45, 46].
Coverage-based test generation techniques are surveyed in [54]. There are also hybrid techniques
that target state explosion problem for functional verification [10]. The existing surveys have
several limitations: (i) they are very specific (e.g., test generation for assertion coverage [131] or
machine learning based test generation [54]), (ii) they do not cover test generation techniques (e.g.,
formal verification surveys [45]), and (iii) they do not cover recent approaches (e.g., published more
than 10 years ago [10, 54]). To the best of our knowledge, there are no recent comprehensive surveys
on directed test generation for hardware validation.



1.5 Survey Methodology

Figure 4 outlines our directed test generation based hardware validation survey methodology. It
consists of three major parts: test generation techniques, test translation methods, and use cases.
Section 2 outlines different test generation techniques proposed in the literature. Specifically, we
survey directed test generation techniques that utilize formal methods, concolic testing, machine
learning, constrained random methods, statistical methods, and automated test pattern generation
(ATPG). Section 3 surveys hardware test translation between different abstraction levels. Section 4
surveys use cases of directed tests in different validation scenarios, including pre-silicon validation,
post-silicon validation, security validation, and validation of non-functional requirements. Finally,
we conclude the paper in Section 5.
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Fig. 4. Overview of directed test generation: Tests are generated based on the specification. These high-level
tests are then translated to low-level tests in order to apply them directly to the implementation.

2 DIRECTED TEST GENERATION METHODS

Directed test generation techniques provide an automated framework for generating efficient tests.
These techniques consist of algorithms that take design information and constraints into account
in order to generate efficient and directed test patterns. The existing directed test generation
techniques can be broadly divided into the following six categories based on the core method
used for test generation: formal methods, concolic testing, machine learning, constrained-random,
statistical, and ATPG. The remainder of this section surveys test generation techniques for each of
these categories. Figure 24 will compare these categories based on coverage, scalability, and test
generation effort.

2.1 Test Generation using Formal Methods

Formal verification is a complementary approach to simulation-based validation. Formal methods,
such as model checking [19, 27, 63, 89], theorem proving [69], and equivalence checking [11], are
widely used to provide verification guarantees [60]. In this section, we survey approaches that utilize
model checking for automated generation of directed tests. Model checking based test generation
relies on counterexample generation. For example, if we want to generate a test to stall the decode
unit of a processor, we need to write the expected behavior in the form of a temporal logic property.
The model checker will take the negated version of the property (decode cannot be stalled) and
the design as inputs, and will produce a counterexample. The generated counterexample can be
used as the test to stall the decode unit. While the basic idea is simple, model checking can lead
to state space explosion in the presence of large designs and complex properties. To address this



challenge, the researchers have explored satisfiability (SAT)-based bounded model checking for
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Fig. 5. Overview of directed test generation using bounded model checking

Bounded Model Checking (BMC) tries to find a counterexample for a given property within a
given bound [24]. Let us assume that we were given a design D and a property p with a bound of k.
BMC will use Equation 1 with D unrolled for k cycles to encode the design for satisfiability solving.

k-1 k
BMC(D’p> k) :I(SO) A /\R(si>si+l) A \/_'p(sl) (1)

i=0 i=0
Here I(s0) denotes the initial state of the design, state transition from s; to s;; is represented by

R(si, si+1) while p(si) monitors the property p status during state s;. Equation 1 is converted into
Conjunctive Normal Form (CNF) and uses SAT solvers to find a suitable assignment. If CNF finds
an assignment that means the p does not hold within the given bound with k cycles otherwise,
it can be concluded that p holds up to k (D ki p). There are multiple BMC-based directed test
generation techniques proposed in literature [18, 22, 64, 88, 107, 113, 114, 120]. An overview of
SAT-based BMC is illustrated in Figure 5.

Test Generation using Satisfiability (TEGUS) was proposed by Stephan et al. in [120]. TEGUS
sorts the design variables using depth-first search according to the depth they appear in the
design. This simplifies the selection of variables for the next unsatisfied clause at each branch
statement in the design.A common problem that encountered when using SAT-based bounded
model checking is determining the correct bound for each property. Overestimation of the bound
can lead to an exponential number of possibilities. Koo and Mishra proposed a technique to
improve the process of calculating the bounds for properties [64]. The authors have shown that
the upper limits of the bounds are the longest computation paths in the pipeline. Even the longest
computation path was an overestimation of the bound for other possible paths; therefore, the
authors tightened the bound by calculating the temporal distance between the root node and the
node under verification. To reduce the test generation complexity, Koo et al. [63] introduced a design
and property decomposition framework for pipelined processors. The test vectors were generated
using SAT-based BMC. Figure 6 presents how the properties were decomposed in the proposed
technique. The decomposed properties were fed into the BMC by inverting the property (—=P)
with an estimated bound (k) corresponding to the property. The authors explored two techniques
for property decomposition: (i) path-level (vertical) partitioning, and (ii) stage-level (horizontal)
partitioning of pipelined processors. The tests were generated based on the above partitions, and
the generated tests were composed to produce the final test for the original property.

Mishra and Chen proposed an alternate solution for reducing Model checking complexity during
test generation [88]. They utilized incremental satisfiability for directed test generation using
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multiple properties. The proposed method consisted of efficient techniques for property clustering
as well as selective forwarding of conflict clauses. In property clustering, the authors analyzed
the properties based on the design structure and the fault model. For example, properties were
categorized into one group if they aimed to cover a specific area of the design with the same fault
model. Next, a base property was selected, and potential conflict clauses that could be used in other
properties were identified. The results showed that this approach significantly reduced the test
generation time compared to zChaff [92] for the MIPS processor benchmark.

Chen et al. [22] tried to address some of the major bottlenecks in SAT search, including constraint
propagation and long-distance backtracking. They proposed a decision-ordering technique that
involved clusters of similar properties. The proposed decision-ordering heuristic exploited the
assignment of previously generated tests and incorporated it into the next test generation effort,
reducing the time and effort taken to generate the test vectors. Specifically, the authors tried to
reduce the number of implications and conflict clauses of unchecked properties using the learned
knowledge from previously checked properties. The authors explored two heuristics for decision
ordering: bit value ordering and variable ordering. The proposed test generation algorithm took
the formal model of the design and the cluster of similar properties as inputs. Next, it generated
the CNF of the base property and solved the base property. Then it constructed the CNF for the
unchecked properties and updated the satisfiable assignments from previous assignments. The
authors evaluated the proposed method on a MIPS processor that generated more than five times
improvement over zChaff [92] and [88].

Qin et al. proposed an improved test generation methodology using SAT-based BMC [107].
Satisfiability solvers can take advantage of previously completed calculations for future calculations
and also they can solve multiple properties when the bound is known. The authors proposed
combining both of the above advantages to reduce the test generation time. The proposed method
tried to identify the similarities between different SAT instances for multiple properties and came
up with a bound on the same design. Moreover, the knowledge obtained from earlier queries was
transferred to the later queries. The authors proposed a synchronized test generation algorithm for
multiple properties and incremental SAT-solving techniques to reduce the test generation time. The
authors conducted experiments to evaluate the proposed technique, and the results illustrated that
the proposed technique achieved on average a four times speedup with respect to related methods.

Chen and Mishra proposed an efficient automated approach to scale down the falsification
complexity using property decomposition and learning techniques to address the state explosion
problem in SAT-based BMC [18]. They utilized both learning-oriented property decomposition and
decision ordering-based learning techniques. Figure 7 illustrates the major differences between test-
oriented property decomposition and their learning-oriented property decomposition. Test-oriented
property decomposition generates test cases for each property separately and combines them to
generate tests while learning-based techniques can combine the previously calculated knowledge
for future properties and generate efficient test vectors. The authors decomposed the properties
considering both spatial and temporal characteristics. The authors also utilized decision-ordering
techniques to optimize the learning process. They showed that the counterexample for a property
could be used as a suitable variable assignment to the inputs of the design. The authors used similar



kinds of properties for learning as a bias for the decision ordering. Due to the fact that the property
decomposition was done based on the capability of utilizing previously learned properties to the
later properties, the authors were able to demonstrate a drastic reduction in test generation time
and effort compared to the previously discussed techniques.
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Fig. 7. Comparison between test-oriented test generation (Left) and learning-oriented test generation (Right)

While the approaches discussed above uses formal methods for test generation, HIVE [57] utilizes
test cases to provide formal guarantees. Jayasena and Mishra proposed a hint-based symbolic
verification framework that accepted a test plan and provided formal guarantees for each test
case using symbolic evaluation [57]. The authors demonstrated the effectiveness of the proposed
technique on various RISC-V-based hardware implementations and were able to find functional
issues with various peripheral devices.

2.2 Test Generation using Concolic Testing

Although test generation using formal methods provides a guarantee to activate the expected
scenario, it has an inherent limitation of state explosion problem. When the design and property
are complex, test generation techniques based on formal methods may fail due to the capacity
limitations of formal methods. On the other hand, simulation with random test is fast and scalable,
but it does not provide any guarantee of activating a specific scenario. Concolic testing combines
the benefits of both worlds. Specifically, it effectively combines concrete simulation and symbolic
execution.
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Fig. 8. An overview of concolic testing based test generation.

Figure 8 illustrates the major steps involved in concolic testing. It starts with an initial set of
test vectors (e.g., random tests). The instrumented design is simulated with the initial test and
the simulation path is recorded. If this covers the target (expected scenario) in the design, we
have the test pattern. Otherwise, another path should be selected such that it will increase the
likelihood of reaching the target quickly. Concolic testing uses symbolic execution to solve path
constraints. For this purpose, the Control Flow Graph (CFG) is extracted from the design, and
the execution path is selected based on the CFG. Efficient heuristic techniques for path selection
were proposed in the literature [2, 42, 74, 74-76, 79, 110]. All these techniques considered basic
blocks for path selection during simulation. A basic block is a block of codes that does not have
any internal branches. Figure 9 compares different concolic testing approaches. Figure 9a shows



an instance where simulation was performed with random test vectors. This will cause to take
different simulation paths with different test vectors and may not cover hard-to-activate targets.

Geist et al. presented a hybrid verification methodology that integrated the guarantee of formal
verification with quick coverage achieved by verification using simulation [42]. To determine the
path traversal, the authors utilized a Binary Decision Diagram (BDD) constructed from the design
combined with symbolic execution. For the purpose of directing the test generation procedure
toward a specific area, the authors proposed an abstraction mechanism. The abstraction was
achieved by partitioning the state variables based on the coverage model set, ignore set, and care
set. For processing care set variables, the authors proposed a heuristic based on the register logic
transitions. Then, the abstract tests were generated, and a test translation process was employed to
obtain the actual test that could be used for simulating RTL models.

STAR was another concolic testing approach proposed in [74]. The STAR framework used
the following steps. First, the designs were instrumented so that they could print the executed
statements during simulations. Next, the designs were simulated using initial (random) test patterns.
The authors performed symbolic simulations of the RTL statements that were executed during
the concrete simulations. Then, the authors performed sequential unrolling of the designs and
performed simulations on unrolled designs. During the simulation processes, path exploration and
constraint solving were employed to get better statement coverage. Finally, utilizing a constraint
stack, mutated or inverted constraints were solved using SMT solvers to obtain input test patterns
corresponding to the expected targets of the designs.

HYBRO [75] tried to address the drawbacks of STAR [75]. Although STAR utilized a hybrid test
generation mechanism, it still suffered from path space explosion when dealing with large designs.
HYBRO utilized branch coverage as a heuristic to address the exponential number of possible paths.
The proposed methodology recorded the branch coverage in the CFG as a heuristic to stimulate all
reachable branches in CFG. Although this did not guarantee 100% coverage, HYBRO outperformed
STAR with a reduction in test generation time. In the instances where STAR failed due to the path
explosion problem, HYBRO was able to generate test vectors due to the coverage heuristic.

Liu and Vasudevan [76] proposed a concolic testing approach with a method to cache the symbolic
state data to mitigate the path explosion problem in STAR[74] and HYBRO [75]. In the proposed
method, bitmap encoding was used to store the data about explored symbolic states. This facilitated
ease of comparison during subsequent simulations. A sub-path was subjected to pruning when
an explored symbolic state was reached again in later symbolic execution. Further, the authors
proposed two optimization techniques: dynamic Use-Def chain slicing and local conflict resolution,
to improve the efficiency of test generation. Use-Def chains could connect a use of a variable
with all possible definitions of the variable throughout the design. The proposed improvements
significantly reduced the test generation time compared to [74, 75].

There were also other approaches to improve the performance of [75]. Qin and Mishra [110]
proposed a concolic testing framework by combining static analysis and simulation-based validation.
Unlike [75], this approach was able to handle dynamic array references, which is a common failure
point of model checkers due to the state space explosion problem. This approach instrumented the
design-under-test so that the tool could keep track of the simulation traces. Next, the instrumented
design was simulated. By analyzing the traces, new constraints were generated so that the algorithm
could compute the coverage. The tests were generated by solving the constraints. These steps were
repeated until the expected coverage was achieved. The results demonstrated that the proposed
test generation method could outperform [75] in terms of branch coverage.

A major challenge in concolic testing is how to select a profitable branch (path) for the next
iteration. In order to avoid the selection of non-beneficial branches, Ahmed and Mishra[3] proposed
a Qualifying Event-based Search (QUEBS) heuristic for concolic testing. Figure 9b illustrates the



uniform strategy during the search procedure utilized in the proposed technique. This method
eliminated the possibility of selecting the same branch repeatedly during a traversal. QUEBS used
a counter to monitor each branch with a limit. If the counter was less than the limit, then test
patterns were generated using a constraint solver. If an expected target was reached, all the branch
counters were set to 0 except for the last selected one. The authors were able to achieve higher
coverage within a limited time by preventing repeated selection of the same branch compared
with [110].

(c) Single-target method [2, 74-76, 110] (d) Multi-target approach [79]
Fig. 9. Comparison of different path selection approaches in concolic testing. Here S represents the starting
branch with the initial test vector and Ty and T represent two target branches in the design.

Coverage of corner cases is a challenging task in hardware verification. Ahmed et al. [2] proposed
a methodology to activate hard-to-activate corner cases in hardware designs using concolic testing.
They first constructed the CFG and used this to traverse the design to find the corner case (target)
scenarios. Due to the concurrent nature of hardware designs, each process will have different CFGs.
To connect CFGs together, the authors introduced an edge realignment step using inter-process
dependencies. Next, they employed distance heuristics to denote how close each block was to
the target. Starting with random test vectors, the proposed methodology gradually forced the
simulations toward activating the target scenario based on the distance heuristics. It could generate
test vectors faster compared with the EBMC [93] model checker and also consumed less memory
for activating all of the branches where EBMC failed due to state space explosion.

The techniques discussed so far activate one target at a time with concolic testing, as illustrated
in Figure 9c. Lyu et al. proposed a technique to activate multiple targets using Concolic testing [79].
Figure 9d illustrates an example of a proposed multi-target approach where the wasted effort is
minimized by transferring the learning of the current target to the succeeding target. In order to
accelerate the process of test generation in multi-target scenarios, the authors pruned the redundant
targets using the CFG. Similar to [2], they executed edge realignment. Finally, they employed target
clustering to achieve the best initial paths for concolic testing. Two targets were clustered into
the same group if they shared a common simulation path. This clustering technique eliminated
overlapping searches in single-target iteration, streamlining the process. The authors evaluated the
improvement of the proposed method against [3] and [2], achieving a time reduction of more than
13 times on average.

An end-to-end concolic testing framework for hardware/software co-validation of SoCs was
proposed in [17], capturing holistic system-level traces and facilitating custom validation with an
instrumentation interface. The authors demonstrated the effectiveness of the proposed framework



on prototype implementations on the QEMU emulator by successfully uncovering various bugs.
Alam et al. presented the FirVer framework for firmware binary testing [4]. Instead of relying on
the source code, the proposed technique performed the test generation on the compiled binary. The
authors utilized virtual machines to incorporate target hardware interfaces into the test generation.
The proposed technique demonstrated over 90% line coverage on the tested libraries.

2.3 Test Generation using Statistical Methods

Statistical methods for directed test generation are commonly used in hardware verification.
When the design under test has an exponential number of scenarios to consider, statistical methods
can help to reduce the sample set. For example, statistical test generation techniques are extensively
used for hardware Trojan detection and manufacturing testing. The common expectation in both
hardware Trojan detection and manufacturing testing is to activate multiple sets of triggers or
faults at once. There have been promising statistical test generation schemes developed to activate
triggers/faults in hardware designs [16, 52, 80, 105, 118].

N-detection is a statistical test generation technique that maximizes the chances of activating
unmodeled faults in manufactured chips. The expectation of the N-detect test is that activating
each stuck-at-fault N times will activate all possible unmodeled faults around the considered fault
when N is sufficiently large enough. Pomeranz and Reddy [105] proposed a technique to measure
the quality of N-detect test sets. Following this, Chakraborty et al. [16] proposed MERO, a statistical
method based on the N-detect principle, to activate malicious hardware Trojan triggers. Hardware
Trojans can be constructed with any number of combinations of signals.The authors proposed
a procedure to statistically activate each single trigger signal N times, suggesting that doing so
would likely activate all possible Trojan trigger combinations when N is sufficiently large. They
outlined a specific process to obtain test vectors that would activate rare signals N times, aiming to
enhance the chances of detecting and activating hardware Trojans. First, the design underwent
simulation using random test vectors, during which the number of rare signals activated by each
test vector was observed. Following this, the test vectors were sorted in descending order based on
their ability to activate rare signals. The algorithm then selected test vectors one at a time from the
sorted list, flipping one bit at a time and observing the subsequent activation of rare signals. This
methodology showed promising results when applied to ISCAS-85 benchmarks, demonstrating its
effectiveness in activating rare signals.

Huang et al. improved upon the ideas presented in MERO, developing MERS for side-channel
based Trojan detection, as presented in [52]. Their goal was to maximize the switching activities of
rarely triggered signals in circuits, addressing two main objectives crucial for side-channel aware
test generation: (i) activating the Trojan circuit, and (ii) minimizing the switching in the rest of the
design. Initially, MERS generated test vectors following the steps outlined in [16], but instead of
flipping bits, they mutated the test vectors. These generated test vectors were then optimized using
hamming distance-based reordering (MERS-h) as well as simulation-based reordering (MERS-s) to
enhance side-channel sensitivity. The optimized test vectors outperformed both random (by 96%)
and MERO (by 38%) in terms of Trojan coverage on the ISCAS benchmarks.

Generation Tests

Succeeding Pattern Generation

Fig. 10. Genetic algorithms based succeeding pattern generation for maximizing switching sensitivity for
side-channel based Trojan detection in [80, 118]



To further enhance the side-channel sensitivity, Lyu et al. utilized genetic algorithms [80]. They
constructed pairs of tests, where they generated the first pattern similarly to MERO [16], and then
generated the succeeding patterns using a genetic algorithm. Figure 10 presents the steps that were
used for generating succeeding patterns to maximize the side channel sensitivity. For searching
the succeeding patterns, they utilized initialization, fitness computation, selection, crossover, and
mutation with the intention of finding the maximum current switching among the rare nodes. The
generated test vectors achieved better coverage than MERS [52] in detecting Trojans.

Recently, Shi et al. presented a side-channel-based test generation technique to detect maliciously
implanted Trojans in hardware designs [118]. The authors first identified the potential hardware
Trojan trigger nodes and payload nodes. They generated tests to activate the identified potential
trigger nodes with relevant inputs to the design identified by correlation analysis. This analysis only
considered the static connection between the possible trigger conditions and the design inputs and
generated test vectors to manipulate the inputs to activate the Trojan trigger. Next, they utilized test
reordering such that the test vectors maximized the Trojan circuit activities while minimizing the
design activities. This improved the side-channel sensitivity of the Trojan footprint. The proposed
test generation technique was applicable on gate-level designs and the authors related the activities
at gate-level with a manufactured chip. Compared to MERO and MERS, it could generate 28.8%
more compact test vectors with an improved trigger coverage of 55.4%.

2.4 Test Generation using Machine Learning

Directed test generation techniques rely on heuristics to generate efficient input test vectors.
There have been promising efforts in literature to enhance the heuristics with various machine
learning techniques. The use of machine learning techniques for directed test generation has been
extensively surveyed by [54].

Ravotto et al. introduced a directed test generation method that leverages evolutionary strategies
for peripheral cores, focusing on the dynamic extraction of Finite State Machine (FSM) characteris-
tics [112]. The process involved extracting details related to FSM states and transitions dynamically,
as the simulation unfolded. The primary objective of this approach was to ensure comprehensive
coverage of all conceivable FSM states and transitions. Figure 11 provides an overview of the
proposed approach in [112]. The authors developed an evaluator that gathered output data directly
from simulations and conducted real-time exploration of the Finite State Machine (FSM). This
allowed for an in-depth analysis of how effectively the test vectors, produced by their proposed
algorithm, were covering the design. Furthermore, the evaluator played a crucial role in dynami-
cally adjusting the parameters within the evolutionary algorithm to optimize performance. The
application of this method yielded impressive results, achieving a fault coverage rate of 91.16% on
various benchmarks, including PIA, VDU, and UART.
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Evolutionary Simulation
Assembly Algorithm
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Fig. 11. Directed test generation framework in [112] using dynamic FSM extraction.

The performance and efficacy of MERO [16] are highly reliant on the bit-flipping heuristic it
employs to activate a particular rare signal N times. In an attempt to enhance this bit-flipping
algorithm, Pan and Mishra incorporated reinforcement learning techniques in their approach [101].
They utilized the Sandia Controllability/Observability Analysis Program (SCOAP) parameters
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associated with each rare signal, facilitating the determination of the state of the test generating
agent within the circuit’s environment. The tests produced through this advanced method demon-
strated a remarkable improvement in trigger coverage, showing a 77.13% increase compared to the
results achieved with MERO. The concept of reinforcement learning, as applied in [101], was also
utilized for test generation specifically tailored for delay-based side channel [102]. In this approach,
critical path analysis was employed to generate test vectors aimed at maximizing side-channel
sensitivity. Authors have used the current test vector as the agent, while the existing circuit is
treated as both the design and the action. The approach involves mutating the current test vector
through bit flipping on the vector itself. This method yielded significant performance improvements.
When compared to random test vectors, the proposed approach demonstrated a 15-fold increase
in effectiveness. Moreover, compared against the method outlined in [81], the proposed approach
showcased an improvement by a factor of 1.9, illustrating its efficacy in enhancing side-channel
sensitivity through reinforcement learning-based test generation.

Vasudevan et al. introduced Design2Vec [123], an architecture for learning continuous rep-
resentations that captured the semantics of a hardware design at the RTL level. Utilizing the
control data flow graph (CDFG) of the hardware combined with graph neural networks (GNN),
Design2Vec incorporated a specialized propagation layer to effectively handle the concurrent and
non-terminating semantics of RTL. Design2Vec demonstrated its utility in two hardware verification
tasks: coverage prediction and test generation, offering faster insights into coverage estimations
and efficiently generating tests for hard-to-cover points, thereby significantly reducing simulation
time and resource costs. Liang et al. proposed an efficient RTL level test selection methodology
using unsupervised learning [72]. Since compiled simulation with software models is much faster,
the authors utilized coverage data from functional simulators in software languages to facilitate
RTL functional coverage closure. The authors demonstrated improved efficiency and performance,
particularly through the application of isolation forest anomaly detection in hardware verification.
The methodology showcased its efficacy by significantly reducing RTL simulation runtime and
achieving higher test efficiency in hitting critical Cover Points (CPs) for industry GPU units, thus
enhancing the overall functional coverage process.

2.5 Test Generation using Constrained-Random Methods

Instead of simulating with random test vectors and expecting improved coverage, constrained-
random test generation methods extract design-specific constraints to generate high-quality test
vectors. Figure 12 provides an overview of the constrained-random test generation [15, 44, 47, 53,
61, 70, 86, 97]. The constraints and input biases are extracted from the specification and then tests
are generated based on them. In order to measure the design coverage, monitors are injected into
the designs. If the generated test vectors do not provide the expected coverage, more test vectors
that adhere to the constraints are generated until the expected coverage target is achieved.
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Fig. 12. An overview of constrained-random test generation.
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Kitchen and Kuehlmann proposed a constraint specification technique for test generation with
constrained-random methods [61]. Proposed technique can be elaborated with an example as
follows, Let us consider m Boolean variables as x = (x1, ..., Xp) and y = (Y1, ..., Yn); (=281 < y; <
281 — 1) denote a vector of n variables such that B is a positive integer. Let the constraints on
assignments to x denoted by f(x), such that f(x) = 1 for all valid assignments of x. If we arrange
constraints on y to be conditional on x, different assignments to x can trigger constraints on y
values. Let g (y) denotes the constraint which is active for a set of values of x. Then the valid
test vector assignment can be represented by Equation 2.

{(ny) : fx)=1rg"(y) =1} (2)

Specifically, the authors showed that ¢**) (y) could be represented as disjunctions of conjunctions
(x)

of predicates of g, ; of the y variables, as they illustrated in Equation 3.
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The authors implemented linear and multilinear cclmstraints on y and sampled the constraints with
a Boolean/Integer Constraints Normal Form (MBINF) sampler. Then, they proposed a hybrid con-
straint solver based on Markov-chain Monte Carlo methods. Experiments showed that the proposed
method could generate test vectors significantly faster based on the Davis—Putnam-Logemann-Loveland
(DPLL) algorithm and was more robust than Binary Decision Diagram (BDD)-based sampling.

Guzey and Wang proposed a directed test generation framework using automated constraint
extraction [47]. The authors extracted constraints during simulation such that they improved the
controllability of internal signals. Then the extracted constraints were enclosed into a constrained
testbench to generate test vectors to control multiple signals simultaneously. The authors conducted
experiments on OpenSparc benchmarks to obtain the initial dataset for mining. After extracting
the constraints, they generated test vectors and achieved a success rate of 90%.

Naveh et al. proposed a knowledge base centric constraint extraction technique for the generation
of directed tests [97]. The proposed knowledge base contained descriptions of the design, the
expected behavior of the design, and design-specific expert knowledge. They carried out test
generation in two stages. Initially, stream generation was controlled by a test template. Following
this, they modeled the transactions in the specifications as a Constraint Satisfaction Problem
(CSP). They derived the variables involved in the CSP from the transaction model available in the
knowledge base.

A different approach for the generation of constrained-random test vectors is by incorporating
fuzzing techniques. The fuzzing technique is the simple process of running test patterns generated
with a particular feed and observing the output. Fuzzing is a very popular technique used in the
software community [44, 86]. There have been promising research efforts in generating directed tests
with fuzzing for hardware verification, as highlighted in several notable works [15, 53, 70]. Canakci
et al. proposed DirectFuzz, a directed test generation technique utilizing graybox fuzzing [15]. In
the proposed gray box fuzzing methodology, there were six stages: (i) setting up the total fuzzing
duration and the initial seed corpus, (ii) selecting seeds from the corpus, (iii) pairing the current
seeds with energy levels to determine how many new seeds should be generated from the current
seeds, (iv) generating N new seeds by mutating the current seeds, (v) executing the seeds with the
design under test, and (vi) analyzing the results from the executions to check if they improved the
coverage.

2.6 Test Generation using ATPG Tools

Automated test pattern generation (ATPG) tools are widely used for manufacturing testing.
These tools generate directed tests based on the fault models, such as stuck-at faults and bridging



faults. There have been efforts to leverage the advantages of manufacturing testing in different
domains. For instance, various researchers have utilized Automatic Test Pattern Generation (ATPG)
methods and fault models for design validation (and vice versa) [23, 27, 41, 49, 58, 125].

Cruz et al. proposed an ATPG-based directed test generation technique for detecting malicious
implants in hardware designs in their work [27]. Figure 13 illustrates the overview of the proposed
approach. First, the authors identified the possible Trojan trigger conditions within the design.
They then created a Scan replacement circuit to proceed with model checking. Subsequently, they
derived security properties in such a way as to activate the equivalent signals and gates from
the gate-level implementation. These generated properties, along with the design where the Scan
circuit had been replaced, were then fed into a model-checking tool to generate constraints. All
possible Trojan triggers were modeled as Stuck-at-faults, and directed to the ATPG tool along
with the generated constraints. The output from the ATPG tool could then be used to activate
Trojan trigger scenarios. The authors conducted experiments on various benchmarks, managing to
outperform MERO [16] in terms of Trojan coverage.
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Fig. 13. Proposed constrained random test generation framework in [27]

Another directed test generation scheme utilizing ATPG tools for activation of Trojan triggers is
presented in [125]. Initially, the authors explored the modeling of hardware Trojans and various
types of potential Trojan implementations. Following this, a methodology was outlined for gener-
ating tests with the ATPG tool, specifically targeting the activation of Trojans with single trigger
conditions. All single-trigger Trojans were modeled as stuck-at-faults and fed into the ATPG tool to
obtain the test pattern. In the experimental section, the effectiveness of the proposed approach was
demonstrated, showing its capability to deal with Trojans that have multiple trigger combinations.

Jayasena and Mishra proposed an ATPG-based test generation framework to activate rare events
in hardware designs [58]. Instead of relying on bit flipping to generate new test cases, the proposed
method generated new test vectors from the ATPG tools, forcing the tests to be valid and have
maximum effectiveness in activating rare events. The authors demonstrated the effectiveness of
ATPG-based N-activation and maximal clique activation of rare events, illustrating the effectiveness
of complex hardware designs.

3 TEST TRANSLATION

Directed tests can be generated to verify various abstraction levels in the hardware design flow
as discussed in Section 1.1. It is faster to generate tests at higher abstraction levels since it has
less implementation-specific data. However, the generated tests should be translated (refined) to
be applicable for other abstraction levels. In this section, we look at various research efforts to
translate tests that were generated at higher abstraction levels in order to apply them at the lower
abstraction levels.



3.1 High-Level to Low-Level Refinement of Tests

Chen et al. proposed a methodology to generate RTL test vectors using TLM specifications [20].
The proposed methodology consists of three major steps as illustrated in Figure 14. In the first
step, SystemC TLMs were translated to SMV specifications. Then, following a fault model, a set
of properties were derived to facilitate the test generation. Finally, the TLM tests were translated
into RTL tests. The proposed TLM to RTL test translation procedures were independent of the
test generation process. Therefore, the tests that were generated on TLM using other methods
(or manually added later) could be translated into RTL utilizing the proposed test translation
techniques. A major challenge in test translation is to bridge the gap between high-level and
low-level abstraction levels. The authors utilized a set of rules (templates) for TLM-to-RTL test
translation using a Test Refinement Specification (TRS) language. They ensured that any missing
data required to fill the abstraction level gap was captured by the TRS.
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Fig. 14. Proposed test translation technique in [20]

Bombieri et al. proposed a method to generate test patterns at TLM level and translate them to
RTL level [13]. The authors started with the specification and constructed the TLM abstraction. They
then generated test vectors at the TLM level. Following this, they proposed an automated way to
synthesize TLM test patterns into RTL test patterns, taking advantage of the structural information
at the RTL level. These structural details were extracted during the RTL-to-TLM abstraction process.
The test pattern translation process involved the concepts of TLM transaction mapping and the
mapping of TLM transactions into RTL computational phases. Each TLM transaction generated a
TLM test pattern, and this pattern was utilized by the TLM design under verification to elaborate
and retrieve the corresponding result. The authors demonstrated that each of these TLM phases
corresponded to an input, elaboration, and output sub-phase in the RTL design. To finalize the
process, they introduced clocked transitions to form the RTL sub-phase of the test pattern. The
authors achieved a significant speedup (ranging from 6X to 68X) on various designs compared with
test generation on RTL models.

Farahmandi et al. proposed a test generation technique that facilitates post-silicon debugging
using TLM models in [37]. Observability is a key property that is important for post-silicon
debugging. The proposed approach is useful when a golden TLM design is available but RTL
implementation may be buggy. Therefore, generating tests using a buggy design can lead to useless
tests. In other words, the proposed approach aimed to create tests utilizing the golden (TLM)
models while integrating assertions and observability constraints taken from the RTL models. The
primary goals of the proposed methodologies were to transform RTL assertions (¢) and observability
constraints (i) to create modified observability-aware assertions (7). Then, 7 needed to be mapped
to TLM assertions () to generate TLM tests. Finally, the TLM tests were translated into RTL
tests. The authors demonstrated that their proposed method significantly outperformed the use of
random test generation techniques for bug detection.



3.2 Low-Level to High-Level Abstraction of Designs

There are promising approaches that have been explored to convert RTL designs to high-level
abstractions with the aim of reducing the overall validation effort [14]. For example, fault simulation
is a popular functional verification technique for RTL models. Bombieri et al. proposed techniques
to speed up the process of fault injection and simulation on RTL models, utilizing TLM models [14].
Figure 15 presents the overview of the proposed methodology. They started with fault-injected
RTL models. Next, fault-injected RTL models were abstracted into TLM models. Then, the test
patterns were generated using TLM models, and fault coverage was recorded. The test pattern
synthesis method proposed in [13] was utilized to translate the TLM tests to corresponding RTL
tests. The authors demonstrated that the proposed technique was significantly faster than direct
RTL fault-injection-based verification.

Test
Synthesis

Fault Model

RTL —TLM
Abstraction

TLM Tests

RTL Tests

RTL Design

Refinement Specification

Fig. 15. Proposed design translation technique in [14].

4 HARDWARE VALIDATION USING DIRECTED TESTS

We described various test generation as well as test translation techniques in the previous sections.
The generated test patterns can be used in a wide variety of application scenarios. In this section, we
focus on three usage scenarios for directed tests: (i) pre-silicon functional validation, (ii) post-silicon
validation and debugging, and (iv) validation of non-functional requirements.

4.1 Pre-silicon Functional Validation

Pre-silicon validation refers to the hardware verification effort prior to fabrication. For example, this
involves functional validation of TLM, RTL, and gate-level designs. The verification engineers utilize
different validation methods to ensure that the pre-silicon designs is bug-free prior to fabrication.
The validation methods differ based on the coverage metric (e.g., code coverage), abstraction levels
(e.g., RTL models), as well as design types (e.g., processor, memory, etc.). In this section, we describe
pre-silicon validation methods in four categories: coverage-based validation, processor validation,,
memory validation, and assertion-based validation.

4.1.1 Coverage-based Validation.

One of the important aspects during design validation is how to determine the validation progress.
Various coverage metrics, such as branch coverage and FSM coverage, are used during functional
validation. Random test vectors can cover easy-to-detect scenarios. Coverage-directed functional
verification focuses on the coverage of the designs with the directed test vectors. Specifically, it
focuses on generating directed tests to activate hard-to-detect corner cases such as rare sequences
of events, rare combinations of triggers and branches, complex and rare state transitions, etc.

In Section 2.2, we discussed different concolic testing methods. There were research efforts where
concolic testing had been used to cover the corner cases in the designs [2, 3, 74, 76, 79, 107, 110]. The
coverage-directed concolic testing worked well on control-intensive designs. A coverage-directed
approach was necessary since control-intensive designs usually contained complex state machines
that random and constrained-random test generation techniques might not have covered. Based
on the coverage analysis, it was observed that the quality of the heuristic directly affected the
coverage, and the complexity of computing the heuristic directly affected the scalability of the



Table 1. Summery of coverage directed test generation with concolic testing methods.

Framework Heuristic Low C(;\‘/;:lageHigh Notes

[42] Register Transitions | v Path explosion problem

[74] Path Exploration v Path explosion problem

[75] Branch Coverage v Path explosion problem

[76] Symbolic State v No path explosion problem

[110] Trace Analysis v Support dynamic array references
[2] Basic Block Distance v Activates specific targets
[3] Branch Counter v Uniform coverage

[84] Target Clustering v Transfer learning to next target

test generation framework. Table 1 illustrates the summary of the coverage results from different
concolic testing methods discussed in Section 2.2.

4.1.2 Processor Validation.

Functional verification of processors is a major challenge due to the increasing complexity of
modern processors. There were promising validation techniques proposed to overcome differ-
ent inherent problems associated with the validation of processor architectures. Benjamin et al.
conducted a functional verification case study on superscalar microprocessors using test cases
generated with the help of formal methods [8]. In these case studies, the authors managed to achieve
a 50% improvement in transition coverage with less than a third of the test vectors compared to
implementation verification tests.

There were efficient test generation techniques for validating pipeline processors utilizing
property decomposition combined with SAT-based bounded model checking [63, 65, 66]. The
authors first extracted properties from the processor model. Next, they decomposed the original
properties into the smallest possible sub-properties. Then, they utilized SAT-based bounded model
checking for generating test vectors, as shown in Figure 6. The authors also discussed various
issues related to composing the generated test vectors to construct the test vector corresponding to
the original property.

Dang et al. presented a test generation technique to cover all possible processor pipeline scenar-
ios [28]. The authors first defined a processor model based on communicating extended FSMs. They
generated test vectors by covering all possible states and transitions. For test generation purposes,
they first constructed the global FSM. Next, the test generation algorithm traversed through the
global FSM while generating test vectors for individual paths. The proposed algorithm constructed
the FSM and generated the test vectors on the fly without storing the global FSM in advance.

There were also approaches to generate test vectors based on processor specifications. Mishra and
Dutt described a specification-driven directed test generation technique for validation of pipelined
processors [89]. They utilized model checking-based test generation using the functional fault
model and the graph model of the architecture. For each fault in the fault model, they generated
a property. Next, the test vectors were generated from the property using model checking. The
authors showed 100% coverage in different fault models of register read/write, operation execution,
execution path, and pipeline execution.

The concept outlined above has been extended for the validation of multi-core architectures [109].
The test generation procedure followed the same steps outlined in [89], but the properties con-
sidered here were related to multi-core architectures. The authors derived properties that should
adhere when several processor cores share the same communication bus and a shared memory sub-
system. This approach enabled the reuse of the knowledge learned from one core to the remaining
cores in multi-core architectures (structural symmetry), from one bound to the next for a given
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property (temporal symmetry), as well as from one property to other properties (spatial symmetry).
Experimental results revealed that the proposed test generation framework outperformed existing
multi-core validation techniques.

Table 2. Summary of different test generation techniques to validate processor designs.

Technique | Test generation Method Notes
[8] Formal methods Imporved test compaction
[63, 65, 66] Model checking Focused on pipelined processors
[89] Model checking Use property decomposition
[28] Constraint Random Using FSM to construct tests
[109] Model checking Focused on multicore processors

Table 2 illustrates the summary of different processor validation techniques proposed in the
literature. It can be observed that most of these methods rely on formal verification for test
generation, such as SAT-based bounded model checking.

4.1.3 Memory Validation.

Memory and cache protocol validation is an important and expensive process during hardware
validation [34, 84, 108]. Elver and Nagarajan presented a fast memory verification technique for a
full system design implementation under simulation [34]. Usually, memory operations are non-
deterministic and there are an exponential number of possible scenarios. The authors tackled both
non-deterministic behavior and the exponential complexity by using Genetic Programming (GP).
The proposed framework identified small memory operations that could happen separately. Using a
crossover function, the authors prioritized the operations that led to non-determinism. As a result,
the memory controller bugs got activated. Next, the design under test was simulated with the
generated test vectors while observing the coverage of the design. The authors evaluated various
memory designs using the gem5 cycle-accurate simulator [77]. The proposed method outperformed
pseudo-random test generation on different memory designs.

While formal methods were explored for cache coherence validation [117, 124, 134], they either
used a formal (abstracted) model of the protocol or could lead to state space explosion when
dealing with complex RTL implementations. Simulation-based methods could handle memory
designs at different abstraction levels. There were promising efforts for generating directed tests
for the validation of cache coherence protocols [84, 108, 126]. Wagner and Bertacco designed the
MCjammer that could achieve higher state coverage compared to constrained-random tests [126].
Qin and Mishra developed a directed test generation technique that analyzed the possible state space
of the global FSM of the cache coherence protocol [108]. They developed graphical representations
of the state space for several commonly used cache coherence protocols, which could be viewed
as compositions of simple structures. Next, they presented an on-the-fly directed test generation
algorithm based on Euler tour [32], which required linear space with respect to the number of
cores [108]. This approach could reduce the number of tests by half compared to the tests generated
by breadth-first search [108]. However, it could still be impractical to verify all possible transitions
in the presence of a large number of cores. Lyu et al. extended the test generation method using
quotient state space [84]. They tried to select important transitions by utilizing equivalence classes
and omitted only similar transitions. Experimental results demonstrated an interesting trade-off
between the transition coverage and validation effort of cache coherence protocols.

4.14 Assertion-based Validation.

Assertions are widely used in the industry to verify the functionality of hardware designs.
Assertions can be viewed as checkers, implanted inside the design, that monitor certain functional
behaviors. If the expected behavior is not observed, the assertion will get triggered with warnings
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or error messages. This message can lead to an easier debugging process and faster bug localization.
There are two key challenges in assertion-based validation: (i) how to generate a set of important
assertions, and (ii) how to ensure that the generation assertions are valid. Witharana et al. provided a
survey of assertion generation techniques [131]. Directed test generation proved useful for checking
the validity of the generated assertions. Specifically, it offered a framework to find counter-examples
that violated the assertions [132]. Figure 16 provides an overview of directed test generation for
activating assertions.
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Fig. 16. Overview of directed test generation during assertion-based validation.

Directed test generation had been explored for assertion-based validation in diverse domains,
including System-on-Chip (SoC) and Network-on-Chip (NoC) designs [56, 99]. Jayasena et al.
presented a NoC validation framework using assertions [56]. The authors derived a set of assertions
from the NoC specification, embedding them into the implementation as pre-silicon checkers. They
validated the generated assertions by generating input vectors using bounded model checking as
well as concolic testing. Oddos et al. proposed a directed test generation framework for assertion-
based verification of SoC designs [99]. First, the assertions had been converted into PSL properties.
Next, a set of checkers was constructed from each of the properties. There could be multiple paths
that could satisfy the same property. In order to select one transition, a pseudo-random block was
utilized. Finally, the test vectors were constructed using Boolean satisfiability solving.

Tong et al. presented an assertion-based directed test generation framework with test compaction
capabilities [122]. The authors expected the assertions to be derived from the specification. Typically,
assertions could be explicitly denoted using expected sequences of events (expressed in terms of
temporal operators or regular expressions using Boolean expressions). The authors used assertions
as a coverage metric for the design under verification. For designs that didn’t have internal access
(such as IPs from third parties), the authors generated assertions by only referring to the design
input and output interface signals.

Assertion-based validation was also promising for checking the security and trustworthiness of
SoC designs [132]. In this approach, the assertions were derived based on structural and dynamic
analysis of designs. The authors outlined eight classes of vulnerabilities and generated assertions
to monitor the implementation for any security violation. The authors utilized concolic testing
to activate these assertions. Specifically, the authors first identified the assertion type and then
rewrote the assertions using branch statements. Next, they considered the generated branch as
the target for the concolic testing to activate. Once the concolic testing generates the test pattern,
the generated test could be used to activate the security assertion. The authors showed that the
generated test patterns could achieve 100% assertion coverage in diverse designs.

4.2 Post-silicon Validation and Debug

In spite of extensive efforts during pre-silicon validation, it is not feasible to capture all functional
bugs as well as electrical errors. The objective of post-silicon validation is to detect and fix these
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escaped bugs. Since we are dealing with integrated circuits (post fabrication), a major challenge
during post-silicon debug is the observability of the internal signals [90, 91]. Therefore, the test
generation techniques have to ensure that the effect of the generated test can be viewed at observable
points, such as trace signals or primary outputs. In this section, we survey directed test generation
methods in four application scenarios: validation of functional behaviors, error detection, fault
localization, and validation of soft errors.

4.2.1 Post-Silicon Validation of Functional Behaviors.

There are many efforts for functional validation of hardware components at the post-silicon
stage [1, 9, 26, 62, 103, 104, 116, 127]. In previous sections, we discussed pre-silicon validation and
using concolic testing based test generation. Cong et al. proposed a concolic testing framework for
post-silicon validation [26]. In a typical ASIC design flow, post-silicon tests are prepared before
the silicon prototype (integrated circuit) becomes available. Therefore, the proposed concolic
testing framework generated post-silicon test cases with virtual prototypes. The two major steps
(concrete simulation and symbolic execution) were identical to the corresponding steps discussed in
Section 2.2, except that they were applied to the virtual prototype implementation. The authors took
into consideration device transactions to generate the test vectors. They used the QEMU emulation
environment to emulate the virtual prototypes and generate test cases. Figure 17 illustrates the
major steps involved in the proposed test generation algorithm.
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Fig. 17. Concolic testing for post-silicon validation [26]

Wagner and Bertacco proposed a post-silicon processor validation technique Reversi [127] using
test generation. The author’s main objective was to maximize the performance potential of silicon
prototypes and bypass the costly simulation step typically needed for post-silicon validation. Reversi
generated tests that restored the initial state of the machine upon execution completion, thereby
eliminating the need for a simulation phase. The absence of a simulation step allowed for direct
test generation by hardware on the system board, reducing the need for expensive test-generation
servers, and thereby accelerating the testing process by 20x.

Threadmill [1], developed as a bare-metal, user-directable exerciser with a simple pseudo-random
test generation engine, aimed to support a unified post-silicon verification methodology. Threadmill
operated as an on-platform exerciser, continuously generating test cases [62], executing, and
checking tests. The proposed framework comprised an OS-like layer, data structures representing
the test template and model, and a fixed code for exercising the hardware. With a focus on multi-
threaded designs, Threadmill generated multi-threaded test cases, and authors have demonstrated
the effectiveness of Threadmill on the POWER?7 processor chip.

An overview of test generation techniques for identifying escaped bugs from the pre-silicon stage
was discussed in [9]. The authors discussed the challenges in post-silicon validation and elaborated
on the usage of Reversi [127] for processor core validation combined with the CoOSMA architecture
for the validation of the memory subsystem. CoOSMA was used to observe tests executing on the
testing platform and ensure data sharing adhered to the coherence protocol in use. Experimental
findings indicated that it enabled high coverage verification with minimal performance overhead
(less than 23%) and negligible area impact (approximately 1%).
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Papadimitriou et al. presented a comprehensive set of bug models for address translation mecha-
nisms (ATM), categorizing the impacts of functional errors and electrical bugs within the hardware
structures employed in address translation [103]. Then, the authors proposed a self-checking,
ISA-independent constraint random test generation methodology, which, when evaluated using
the developed bug models, minimized bug detection latency and maximized the utilization of the
silicon’s performance to achieve improved validation coverage. This concept was extended to
evaluate address translation caching arrays at the post-silicon stage [104]. The authors were able
to detect and achieve 100% post-silicon bug coverage in a simulation environment.

4.2.2 Detection of Post-Silicon Errors.

Error detection latency is a major consideration during post-silicon verification. The time elapsed
from the occurrence of an error to the detection of the error is known as the error detection latency.
Hong et al. proposed a Quick Error Detection (QED) technique by transforming existing post-silicon
test vectors to drastically reduce the error detection latency [51]. The proposed QED transformation
technique allowed tradeoffs between coverage, error detection latency, and complexity. This tech-
nique focused on electrical bugs since the detection of electrical bugs was more time-consuming,
and electrical bugs could be modeled as bit-flipping at flip-flops. The authors conducted experiments
with existing test vectors based on the ideas presented in fault-tolerant computing [78, 85, 100].
The proposed QED technique considered the following four factors: (i) post-silicon validation tests
did not need to care about containment and recovery, (ii) performance penalties introduced during
test transformation might be acceptable in post-silicon validation, (iii) post-silicon test vectors
might be developed at pre-silicon stages, and they could be optimized by QED transformation, and
(iv) QED transformation of test vectors should not affect the coverage. The authors presented two
complementary ways for the QED test transformation: (i) error detection by duplicate instruction
for validation, and (ii) redundant multi-threading for validation where both were extensions from
fault-tolerant computing. The authors claimed that the proposed QED could drastically reduce the
error detection latency with pre-generated test vectors.

Lin et al. proposed a quick error detection technique for identifying hard-to-detect post-silicon
bugs in hardware designs [73]. The test generation scheme was capable of quickly detecting bugs
in processor cores, cache controllers, memory controllers, network-on-chip components, and multi-
core network-on-chips during post-silicon validation. The proposed QED technique shortened
the error detection time from billions of cycles to several hundreds of cycles for most of the bug
scenarios. Similar to [51], the authors assumed that the initial set of test vectors were given to the
framework. Next, they utilized a statistical technique to transform given test vectors to overcome
the detection latency problem. The proposed statistical transformation used spatial Proactive Load
and Check (PLC) transformation. The difference between the proposed technique and [51] was
that the PLC transformation technique did not depend on the re-execution of instructions from
the original test. Instead, it modified the targeted instructions by adding PLC operations at finer
granularity across memory and input/output (IO). The main objective was to strategically perform
loads with all the threads present in all the processors from a selected set of variables while adding
self-consistency checks on those selected variables. As a result, the process enabled the detection
of bugs present in the processor cores within reduced detection latency.

4.2.3 Localization of Post-Silicon Faults.

While there are promising efforts to detect design faults in hardware implementations, localizing
those faults is an important task. There were several promising efforts for facilitating fault local-
ization with directed test generation. A mutation-based fault detection and localization technique
was presented [29]. Figure 18 illustrates the steps involved in the proposed test generation scheme.
Proposed procedures started with a hardware design with a set of initial failing patterns. The
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authors first generated an initial set of suspect statements utilizing effect clause analysis. Then,
alternate mutant statements were generated such that there were more mutant statements for
each suspect statement and fewer mutants for each non-suspected statement. From each generated
mutant statement, a diagnostic test pattern was then derived utilizing bounded model checking,
such that the generated test pattern was able to distinguish the mutated design from the original
design with error. The authors showed that ATPG-based mutation methods could localize faults
efficiently compared with existing methods.

Fault Failing Mutant Fault

Design e . 6
Localization Patterns Generation Localization

Ranked Suspect
Suspect . .
Simulation Statements
Statement

Fig. 18. Fault localization using directed tests [29]

A framework for directed test generation with the ability of automated debugging was pre-
sented [36]. Figure 19 presents the major steps involved in the proposed test generation process.
The authors demonstrated that their proposed technique was capable of activating any bugs present
in arithmetic circuits using the generated test vectors. They first ran equivalence checking on the
implementation against the specification, representing both as polynomials. If the specification and
implementation were equivalent, the remainder would be zero. Conversely, a non-zero remainder
implied that the implementation was buggy. They then attempted to find the input assignment
that would make the remainder non-zero. There could be multiple assignments capable of making
the remainder non-zero, each of which could activate a bug. Since the test vectors were available,
they could be applied to the implementation to find the existing bug. To expedite bug localization,
the authors identified the regions that produced faulty outputs and their intersections with the
generated test vectors. Automated debugging was enabled by identifying specific patterns in the
remainder, and the authors showcased the effectiveness of their approach using various arithmetic
circuits.

Specification

Equivalence
Checking

Test
Generation

Bug

Remainder ..
Localization

Debugging

Implementatior

Fig. 19. Directed test generation for faster bug localization [36]

DeOrio et al. proposed a post-silicon bug localization technique called BPS [30] ("Bug Positioning
System"). It employed a two-part approach, initially logging compact signal activity observations
using an on-chip hardware component and subsequently conducting off-chip software post-analysis.
These observations were then condensed into a compact encoding for various test executions,
with slight differences between passing and failing runs. The authors used a statistical approach
to analyze collected data to identify variations in signal activity caused by bugs. As a result, BPS
could pinpoint the approximate clock cycle and the set of signals closely linked to the detected
error, and the proposed technique could be applied to existing hardware designs with less than 1%
of area overhead.

4.2.4 Post-Silicon Validation of Soft Errors.
In addition to detecting the functional errors escaped during pre-silicon validation, post-silicon
debug needs to detect soft errors, crosstalk faults, and glitches [31]. If the magnitude of this glitch
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is sufficient enough, this can flip the internal bit values of the design and may cause incorrect
functional output. This phenomenon is also known as single event transient. If the effect of the
bit flip is propagated to the design output, then it is called a single event upset. The framework
proposed by Basu et al. attempted to generate test vectors to detect all the single-event transient
situations that might have had the possibility of affecting the functional output of the design [7].
The authors utilized stuck-at-fault modeling for soft-errors. The authors generated the fault list
by analyzing the design. They then performed signal selection aware test generation and test
generation aware signal selection. The overview of the proposed approach is presented in Figure 20.
It illustrates the proposed procedure of test generation using the ATPG tool followed by signal
selection and trace selection. The authors conducted experiments with ISCAS benchmarks and
achieved a 58% improvement in detecting crosstalk faults compared to profile-based signal selection.

Design
\ Signal Selection Fault
ATPG
TraceBuffer Tool mi ¢ Coverage Signal Trace
Fault Coverage

Error Location

Fig. 20. Observability-aware test generation for detecting electrical errors [7]

Foutris et al. proposed an approach that aimed to identify failures in silicon prototypes, which
might signify potential silicon bugs [39]. A key feature of the methodology was the generation
of enhanced random instruction tests, enabling the detection of design bugs without the need
for golden responses. A lightweight hardware mechanism was proposed to record mismatches
between the results of two equivalent instructions, facilitating the identification of the offending
instruction and reducing the validation data forwarded to the debug process. The authors conducted
experiments and illustrated the effectiveness of the proposed methodology by identifying all injected
bugs. Although general solutions like QED [51] prove effective in the post-silicon validation process,
complex implementations require special attention as illustrated by research efforts specifically
focused on sub-components [36, 103, 104].

4.3 Security and Trust Validation

Given the growing complexity of modern systems, there are potential vulnerabilities that can
be exploited in hardware implementations. This section surveys various test generation-based
techniques for security and trust validation.

4.3.1 Trust Validation with Detection of Malicious Implants.

Malicious implants, popularly known as hardware Trojans, the threat model assumes that an
attacker can insert malicious implants such that they can be triggered by extremely rare conditions,
which can stay hidden during normal functional validation. The insertion of hardware Trojans
can happen at various phases in the supply chain [87]. In this section, we focus on proposed test
generation techniques to activate the stealthy triggers [16, 27, 52, 82, 96, 101]. Figure 21 illustrates
the steps involved in proposed hardware Trojan detecting techniques under this threat model.
First, the designs were simulated with thousands of random test vectors. Next, the suspicious (e.g.,
rare) signals were calculated by observing the signal values during the simulation. The following
step was directed test generation with the objective of maximizing the likelihood of activating the
trigger conditions. To evaluate the quality of the generated test vectors, Trojans were injected into
the designs and simulated with the generated test vectors to observe the Trojan coverage.

As discussed in Section 2.3, MERO [16] utilized the N-detect principle [105] to generate test
patterns that were likely to activate the trigger if the N was sufficiently large. Saha et al. improved
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Fig. 21. Overview of hardware Trojan detection techniques proposed in the literature.

MERO [16] using a genetic algorithm and Boolean satisfiability (Section 2.1) [114]. The authors
provided the negation of the Trojan trigger condition to the SAT solver, and the relevant test
pattern to activate the trigger was generated by the SAT solver. Further, the authors proposed a
test compaction technique to select the test vectors that would activate the most sampled trigger
conditions using genetic algorithms. Pan and Mishra presented a test generation framework that
outperformed existing methods [16, 114] using reinforcement learning [101] (Section 2.4).

Banga and Hsiao presented a region-based Trojan detection concept [6]. The proposed approach
consisted of two stages. First, they identified appropriate regions from the circuit (region-based
partitioning), and then they derived input test vectors to maximize the relative power consumed by
each selected region. The determination of regions was done by flip-flop radius. For a one flip-flop
radius, it contained one flip-flop and all the transitive fan-in and fan-out gates. All the regions were
within the clock boundaries. Once they identified the regions, the authors created activity peaks
on a per-region basis. They simulated the design with test vectors and isolated the test vectors to
maximize the activity in a given region while minimizing the switching activity in other regions.

Lesperance et al. presented a Trojan detection approach by exhaustively searching through
a k-bit subspace [71]. The authors demonstrated that in cryptographic IPs, n plain text bits are
ideal Trojan triggers for attackers. Since the plain text was an input to the system, each bit would
have similar observability and controllability values, which made the existing Trojan detection
algorithms fail during the initial filtering of rare signals. The proposed test generation approach
assumed that the trigger width was k and attempted to trigger all possible combinations of k out of
n inputs. Furthermore, the authors proposed heuristics to determine k and validated the proposed
technique on an AES cryptographic core.

Sabri et al. presented a SAT-based test pattern generation technique with path delay analysis
for the detection of combinational Trojans [113]. The authors employed MUX-based debugging
techniques to localize the problem with generated test patterns. They generated test cases using an
automated SAT-based test generation scheme with path delay analysis. To measure the accurate
path delay, the authors utilized a clock-sweeping technique. For the test generation, potential trigger
signals were determined by sequentially sticking each net to ‘1’ and ‘0’. The authors demonstrated
a Trojan coverage resolution of around 99.6% with a Trojan localization resolution of 99.6%.

SAT-based test generation and ATPG were utilized for detecting malicious implants [27, 82].
Lyu et al. utilized SAT solving to identify clusters of rare signals in hardware designs. They then
used these clusters to find the largest clique, and employing SAT solvers, they generated the test
vectors to activate the largest clique of rare signals in the design. On the other hand, Cruz et al.
utilized model checking to generate constraints for activating rare signals in hardware designs [27].
The outputs from model checking were transformed into constraint structures for ATPG tools,
facilitating the generation of test vectors to activate rare signals using ATPG tools.

Methods that were discussed so far require a golden model for security validation. Directed
tests from these methods are provided as the inputs to the golden model as well as the suspicious
implementation, and then outputs are compared against each other. If there is any malicious
implant in the implementation, the output will differ. A practical problem arises when we do not
have the golden reference model (the designer only has the implementation). Narasimhan et al.
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proposed a two-step, golden design-free methodology for detecting malicious implants [96]. Instead
of comparing the output with a golden design, the proposed methodology involved comparing the
side-channel signatures of similar components within the implementation. First, they decomposed
the design into components with similar structures. For each module, they utilized MERO [16]
to generate tests. Finally, they applied the generated tests to self-similar components (e.g., two
identical ALUs in a processor) and compared the respective side-channel signatures.

Vulnerable Signals
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Fig. 22. Summary of test generation for activation of hardware Trojan triggers with different techniques.

Figure 22 summarizes different test generation techniques for Trojan detection. All these methods
considered suspicious (rare) signals in the designs. They then utilized different test generation
techniques (as discussed in Section 2) to activate Trojan triggers. As illustrated in Figure 22, there
were methods that aimed to activate each suspicious signal once, N times, or even attempted to
activate all possible Trojan triggers at once. Note that while the Trojan coverage improved, the test
generation effort also significantly increased when the discussed methods attempted to activate all
possible Trojan triggers.

4.3.2 Security Validation with Side-Channel Analysis.

There were promising research efforts that tried to maximize the side-channel sensitivity for
improved Trojan detection. For example, they generated test vectors to maximize switching in
suspicious regions while minimizing switching in the rest of the design [52, 83, 96, 98].

Narasimhan et al. improved the idea proposed in [96] by introducing more side-channel pa-
rameters into consideration [95]. Dynamic currents and maximum operating frequencies have an
intrinsic relationship and this relationship was considered when introducing more side-channel
parameters. In addition to the current signature which had been considered in [96], the authors
considered quiescent currents, dynamics, and leakage currents which could directly affect the
process variations with an implanted Trojan.

A directed test generation framework using delay-based side-channel analysis was presented [81].
The proposed technique was composed of three important components. First, the authors proposed
a test generation scheme by changing the critical path to maximize the observable path delay.
Next, the authors utilized the SAT-based test generation algorithm to generate test patterns for
delay-based side-channel analysis. Finally, the authors proposed a hamming-distance-based test
reordering technique to reorder the generated tests. Here, a distance evaluation method was utilized
to increase the likelihood of building the critical path from the Trojan trigger to the payload.

To improve the delay-based side-channel analysis, Pan et al. presented a directed test generation
framework using delay-based side-channel analysis for Trojan detection [102]. The primary inten-
tion of the proposed method was to generate a set of test vectors such that for every consecutive
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pair of vectors, the delay-based side-channel sensitivity was maximized. The authors first generated
an initial set of test vectors using SAT solving. Next, the authors used a reinforcement learning
agent trained with a stochastic learning scheme to increase the probability of activating rare signals.
The machine learning algorithm continued to optimize the test vectors to sensitize the path delay
iteratively until it generated the desired test patterns.

Table 3 summarizes different side-channel parameters considered for hardware Trojan detection
using directed test generation.

Table 3. Summary of side-channel based Trojan detection with directed test generation

Side-Channel parameter Test .
. . Trojan
Technique | Path Power Current generation Coverage
delay Dynamic | Leakage method

[96] Vv Statistical medium
[95] v v Statistical medium
[52] v v Statistical medium
[80] v Statistical medium
[118] v Statistical medium
[83] v v Statistical high
[98] v v Statistical high
[102] v Machine Learning high
[81] v Formal methods high
[113] v Formal methods high

4.3.3 Test Vector Leakage Assessment on Cryptographic Implementations.

The concept of test vector leakage assessment (TVLA) for hardware implementations aims to
ensure that the execution of an implementation does not expose confidential information through
power side-channel signals at the early stages of the design lifecycle. There were various proposed
techniques to perform test vector leakage assessment at the pre-silicon stage [50, 55, 106, 135].
TVLA process involves several key stages, as illustrated in Figure 23. The initial step is a hamming
distance or hamming weight-based test generation phase with the intention of inducing power
signature discrepancies. Subsequently, the design undergoes simulation with generated inputs (such
as key pairs and a fixed plaintext), from which the power signature is constructed utilizing the value
change dump from the simulation. Statistical techniques like the t-test and KL-divergence are then
applied to calculate the distinction between two power signatures. Ultimately, the implementation
is classified as secure or vulnerable to side-channel threats based on a predefined threshold.

Cryptography Power
Module Analysis

Simulation Leakage Assessment

Input

Power

Generarion Estimation

Fig. 23. Major steps of Test vector leakage assessment of pre-silicon hardware cryptographic implementations.

A framework designed for the automatic assessment of power side-channel vulnerability at the
RTL level was presented in [50]. The framework conducted comprehensive analysis considering
inter-block/module relations and offered fast power estimation based on RTL transition counts. With
an average evaluation time of 35 minutes on different symmetric cryptography implementations,
the framework provided hardware designers with ample flexibility to address PSC vulnerabilities at
the RTL level. Zhang et al. introduced the PSC-TG, a framework designed for efficient and precise
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assessment of power side-channel leakage (PSCL) at the RTL level [135]. The proposed method
consists of an RTL-level information tracking methodology for tracking the information flow of
inputs. The authors generated test patterns for maximum PSCL using bounded model checking
and introduced a new metric called SCV score to quantify pre-silicon PSCL using simulation power
profiles. The authors showed the effectiveness of the proposed side-channel evaluation technique
using several asymmetric key algorithm hardware implementations. As an extension to [50], Pundir
et al. proposed a test vector leakage assessment that supported post-quantum supported hardware
implementations of symmetric key algorithms [106]. Further, the authors proposed mitigations
that could be applied to implementations that were vulnerable to power side-channel leakage.

Power side-channel evaluation of hardware implementations of asymmetric key cryptosystems
requires a completely different methodology for performing test vector leakage assessment. Jayasena
et al. proposed a test vector leakage assessment technique TVLA” [55], which primarily targets
public key cryptography implementations. The proposed technique utilized constraint random
test generation to generate input pairs and performed evaluations using statistical techniques.
The authors performed experiments on hardware implementations of elliptic curve cryptography
modules and RSA and were able to detect power side-channel vulnerable implementations at the
pre-silicon stage.

Table 4. Summary of proposed techniques to perform test vector leakage assessment on hardware implemen-
tations of cryptographic algorithms at the pre-silicon stage.

TVLA | Cryptosystem | Technique | Evaluarted on Features
[50] Symmetric KL-Divergence AES Flexibility
[135] Symmetric Welch’s t-test AES Information flow tracking
[106] Symmetric KL-Divergence AES Countermeasures
[55] Asymmetric Welch’s t-test ECC, RSA Countermeasures

The contributions of various proposed techniques for test vector leakage assessment are summa-
rized in Table 4. It becomes apparent that different cryptographic implementations demand specific
analysis methods, depending on the collisions that might streamline the key recovery procedure.

4.4 Validation of Non-Functional Requirements

The test generation techniques discussed in the previous sections focus on the validation of expected
(functional) behaviors. In this section, we review test generation methods for validation of non-
functional requirements, such as timing, energy, and temperature constraints.

4.4.1 Validation of Timing Constraints.

Krishnamachary et al. developed a directed test generation approach to validate the timing and
delay of a design by utilizing the design hierarchy [68]. Usually, timing verification is done at the
module level. The critical path of a module may get changed when it is integrated with the final
system. Therefore, the authors first determined the critical paths inside the fully integrated design
using fault injection. Next, they tried to generate test vectors to activate stuck-at-fault in the critical
paths of the module. Since ATPG tools were not capable of handling complex hierarchical designs,
the authors utilized a hierarchical test generation approach where all non-relevant modules were
abstracted to simplify the process. After the critical paths were identified, the relevant tests were
generated such that they could be applied at different implementation levels. The results showed
that most of the module-level critical paths were no longer critical paths at the chip level.

Savir discussed delay test generation techniques for hardware designs [115]. This research work
summarized different generator circuits to be used for delay-based test generation. Using plain linear
feedback shift registers, plain cellular automata (a cascade of spatial type of FSMs), delay tests using
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two independent generator circuits, double-size generator circuits, input separation, and pseudo
input separation were some of the techniques discussed related to delay-based test generation. The
authors conducted extensive experiments to identify which techniques were beneficial for different
instances.

4.4.2 Validation of Temperature and Energy Constraints.

There were promising attempts to validate temperature and energy consumption using directed
test generation techniques [111, 130]. The proposed methods tried to find suitable processor
frequency assignment test cases using formal methods on extended timed automata of the thermal
and energy constrained multitasking environment. Validating a design against its thermal and
energy budget is a challenging task due to the possibility of considering too many paths during
the execution. This leads to path explosion problem with regular model-checking methods. Wang
et al. calculated the extended timed automata for a particular configuration by the valuation of
clock variables [130]. This resulted in a sequence of states from the source to the destination.
Next, the authors generated properties in Computation Tree Logic (CTL) based on the temperature
and energy budget. The test cases were generated using symbolic model checking. Due to the
exponential number of states, model checkers tended to fail. The authors eliminated the path
explosion problem by converting the problem into a Pseudo-Boolean Satisfiability problem. Qin
et al. solved the path explosion problem by using an approximation algorithm [111]. The proposed
approximation algorithm tried to generate a table for each state which contained information about
the time consumption of all execution paths from that state. This value was proportional to the
energy consumption and temperature value. Then, the authors utilized dynamic programming to
approximately calculate the execution path and generate the test cases based on the calculated
path.

Test generation is also promising for interconnect and voltage regulator design as well as from
cooling perspectives. Since peak power determines interconnect dimensions and voltage regulator
configurations, it is important to find the worst-case peak power scenario, popularly known as the
power virus. A naive approach is to try all possible inputs to find the input sequence that creates
the power virus. Unfortunately, finding such a sequence is infeasible due to an exponential number
of input variations. There were research efforts to efficiently activate the power virus using test
pattern generation [35, 40, 48, 67, 128, 129]. The common technique followed by these methods
was that they sorted the circuit gates based on their fanout (output capacitance) and generated a
test vector such that it assigned a transition to the gate with the highest fanout [35, 94, 128, 129].
Hajimiri et al. showed that it is required to consider the fanin cones of the gates which might
block beneficial transitions in future iterations [48]. Therefore, in addition to sorting the gates by
fanouts, the authors considered the potential negative impact of selecting a gate that could hinder
transitions for other gates in subsequent iterations. The authors illustrated the effectiveness of
the proposed approach with a significant 64% increase in switching activity compared to existing
power virus generation techniques.

5 CONCLUSION

Hardware design complexity is increasing rapidly over the years. Efficient, fast, and affordable
design verification techniques can save a considerable amount of design and validation effort by
eliminating functional and non-functional bugs from hardware designs. Simulation based validation
using random test patterns can capture a vast majority of easy-to-detect bugs. A major challenge is
how to detect the remaining bugs (uncovered scenarios). Manual development of directed tests
can be time consuming, error prone, and infeasible for large designs. Automated generation of
directed tests is ideal for activating hard-to-detect bugs and corner case scenarios. In this paper, we
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presented a comprehensive survey of different techniques for directed test generation. Figure 24
provides a summary of different test generation techniques with respect to their scalability, coverage,
effort taken to generate tests, and validation guarantee. We have also reviewed promising test
translation techniques across different abstraction levels. Finally, we explored the use of directed
tests in different validation scenarios, such as pre-silicon validation, post-silicon validation, security
validation, and validation of non-functional requirements.

Despite their demonstrated potential, directed test generation remains underutilized in the
semiconductor industry for various reasons. (1) There are too many directed test generation
approaches, such as using model checking, bounded model checking, satisfiability solving, and
concolic testing. (2) There are also different application domains with diverse requirements, such as
observability-aware test generation in case of post-silicon validation, testing of functional behaviors
versus security vulnerabilities, testing the validity of assertions, etc. (3) The traditional industrial
frameworks rely heavily on hardware validation using random and constrained-random tests due to
the inherent simplicity of the test generation methods. The future research and development efforts
should focus on enhancing the user-friendliness and interoperability of hardware test generation
frameworks, thereby facilitating seamless integration into diverse industrial environments.
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