

Hardware Trojan Detection using ATPG and Model

Checking

Jonathan Cruz

Department of Computer and Information Science and Engineering

University of Florida, Gainesville FL 32611-6120, USA

Bachelor of Science in Computer Engineering, Spring 2017

Summa Cum Laude

Advisor: Prof. Prabhat Mishra

Abstract— This honors thesis deals with the analysis of using

automatic test pattern generation (ATPG) and model checking

approaches for hardware Trojan detection. Specifically, I

investigate their effectiveness in full-scan and partial-scan designs.

A novel approach based on combining these two techniques is

introduced in dealing with designs in which ATPG and model

checking are expected to fail when applied alone. The approach

works best in designs with partial-scan chain insertion. Using

model checking on non-scan and ATPG on full-scan partitions

avoids common pitfalls of running the full design using any one of

these techniques. The resulting test vectors generated by

combining these approaches can then be used to detect Trojans.

I. INTRODUCTION

Designing today’s system-on-chips (SoC) is a highly
complex process that involves many time-to-market constraints.
It is common practice to integrate third-party IPs in the
production of SoCs in order to remain competitive in today’s
global market. However, interfacing with third-party IP raises
concerns, as now an integral part of the SoC’s design process is
no longer under complete scrutiny. An adversary within these
third-party facilities can tamper with the design or insert
malicious IP, also known as a Trojan. Hardware Trojan attacks
range from information leakage to complete chip malfunction.
Detection of Trojans inserted at the pre-silicon phase of the
fabrication process is extremely difficult and often missed
during testing. Furthermore, with the introduction of partial-
scan designs, it becomes even harder to detect Trojans with
common verification techniques alone [1] [2] [3].

This paper investigates the use of ATPG and model checking
tools on soft IP in an effort to detect hardware Trojans in scan-
chain inserted designs. A novel approach that combines the
strengths of two common design verification techniques, already
a part of the normal verification design flow, is introduced to
increase the detection rate of Trojans in partial-scan designs. The
rest of this honors thesis is presented in the following manner:
Section II describes the background and related work. Section
III introduces the combined approach of using ATPG and model
checking. Section IV describes the experimental setup, analysis,
and results. Finally, Section V concludes the thesis and suggests
future work.

II. BACKGROUND AND RELATED WORK

A. Design For Testability

Design for Testability (DFT) is a technique employed in

designing ICs for the purposes of reducing test costs and time

[1]. A very common technique for DFT is scan-chain insertion.

The idea here is to replace flip-flops (FFs) in the design with

scan flip-flops – a flip-flop with a multiplexer attached to the

input. The two inputs to this multiplexer are the original input

and a new scan-in input. A select line, scan enable (SE), chooses

between these two inputs; when SE is high, scan-in values are

selected, else the original input is sent to the FF. Scan FFs can

be chained together as shown in Figure 1 to form a scan-chain.

The purpose of these scan-chains is to reduce the loading time

when testing sequential elements of a design, increasing a

circuits controllability and observability.

While including a complete scan-chain is ideal, it may not

be possible due to the incurred area overhead or delays that

invalidate various design constraints. Partial-scan chain

insertion is used as a cost-effective alternative [4] to achieve

acceptable test coverage, while maintaining design constraints.

In partial-scan designs, not all FFs are included in the scan-

chain. However, these non-scan FFs introduce branches in the

circuit with low controllability and observability, which can be

exploited as a rare trigger condition by a malicious attacker.

B. Automatic Test Pattern Generation (ATPG)

ATPG is a verification methodology used to generate test

vectors that allows designers to identify faulty design behavior

in a timely manner [1]. The goal of ATPG is to create a set of

test patterns that achieve a desired test coverage, TC, and fault

coverage, FC, through fault simulation:

𝑇𝐶 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑎𝑏𝑙𝑒 𝑓𝑎𝑢𝑙𝑡𝑠

𝐹𝐶 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑢𝑙𝑡𝑠

With the use of DFT, ATPG can efficiently generate test

vectors by treating the any design as combinational logic. This

is no longer the case in partial-scan designs. ATPG tools must

now consider a set of test vectors that will activate a target fault.

The worst-case complexity (cyclic sequential designs) of

sequential ATPG becomes 9𝑁𝑓𝑓 , where 𝑁𝑓𝑓 is the number of

flip-flops [5].

1) TetraMAX

Synopsys’ TetraMAX is a verification tool used for

automatic test pattern generation [6]. Figure 2 describes the tool

flow for TetraMAX ATPG. TetraMAX reads in a gate-level

netlist along with its corresponding libraries which are used to

build the design locally. A Standard Test Interface Language

(STIL) file generated by the DFT compiler is read and used in

the design rules checking phase (DRC). The DRC process

verifies that the physical layout of the design meets fabrication

constraints. After the DRC phase is passed, ATPG can begin. A

fault list, either produced internally or provided through an

external file, is specified by the user in preparation for ATPG.

This list contains information on the types of fault to be tested

[1] and their locations in the design. ATPG can then be

performed in one of three modes: basic-scan, fast-sequential,

Figure 1

and full-sequential. In basic scan, TetraMAX operates as full-

scan combinational ATPG tool resulting in high test coverage.

Designs run in basic scan mode must be full-scan. Both fast and

full sequential ATPG modes provide support for partial-scan

designs by executing capture procedures in between scan chain

load and unload phases. The difference between fast and full

sequential ATPG modes is that all clock and reset signals to

non-scan elements must be controlled at the primary input in

fast-sequential ATPG.

As with any ATPG tool, sequential test pattern generation is

a complex process [5] [7]. While scan-chains are implemented

to mitigate the complexity, designs with a significant amount of

non-scan cells can greatly reduce ATPG performance, resulting

in ATPG-untestable faults [9] that an attacker can exploit.

C. Model Checking

Model checking is a formal method used to verify a design

against functional properties (expected design behavior). Given

a design and a list of properties expressed in temporal logic, a

model checker will either verify the design property or generate

a counter-example that shows why the property isn’t satisfied

[18]. This approach can be extended for use in verifying design

security [19]. Properties can be written and verified with

security features in mind, such as monitoring the primary output

for leaking secret keys [10]. However, a common problem of

the model checking approach is state explosion caused by the

exponential nature of exploring a design’s state space. This fact

limits the practicality of model checking on larger designs.

1) Symoblic Model Verifier

Symbolic Model Verifier (SMV) is a model checking tool

developed by Ken McMillan for verifying FSMs using Linear

Temporal Logic (LTL) or Computation Tree Logic (CTL) [11].

SMV’s algorithm uses ordered binary decision diagram

(OBDD) and bounded model checking (BMC) in an effort to

reduce state explosion while exploring the state space of the

design.

To verify a design, users must first either manually, or

through the use of a program, translate their design into a model

specification language understood by the tool. Design

properties are then described in CTL or LTL. Once the tool has

both the design and properties to be verified, it begins to unroll

the state space. A Boolean satisfiability assignment is extracted

from the unrolled states and checked using an internal SAT

solver. If unsatisfiable, the model checker produces a

counterexample computation path.

D. Trojan Detection

Both Wolff et al. and Zhang et al. propose Trojan detection

approaches that incorporate ATPG tools for generating test

patterns [12] [20]. Yet, with the introduction of partial-scan

designs the effectiveness of full-sequential ATPG for

generating test patterns is greatly reduced due to the complexity

of full-sequential ATPG on non-scan FFs.

The method proposed in [8] utilizes N-detect full scan

ATPG and SAT solver for Trojans detection. However, this

approach also fails to effectively consider designs that have a

significant non-scan portion which will limit the effectiveness

of ATPG.

III. TROJAN DETECTION USING ATPG AND MODEL CHECKING

I explore the suitability of using ATPG and model checking

for hardware Trojan detection. Two types of designs are

considered in my analysis: full-scan and partial-scan designs. In

both situations, analysis must be performed at the RTL level to

determine suspicious gates in the design. Suspicious gates are

identified through rare branch coverage. More specifically, in a

design, rare branches are branches that are not covered after

running random tests up to millions of cycles. These branches

identified as ‘rare’ will be used in model checking property

generation and ATPG stuck-at faults. The rationale here is that

a Trojan will be activated as a result of a rare sequence of inputs

and/or state transitions; otherwise, the malicious insertion

becomes a triviality that can be detected during design testing

and verification [12]. Other statistical methods for determining

rare branches are also suitable such as FANCI [13] and MERS

[14].

A. Full-Scan Designs

In designs with a full-scan chain, all sequential gates not

assumed any sequential logic that is inserted as part of the

Trojan circuit is non-scan in order to reduce its detectability

Figure 2

through conventional test methods. For ATPG analysis, test

vectors are generated from stuck-at faults that are tested at all

gates in the design identified from the set of rare branches. Yet

even 100% fault coverage cannot guarantee complete detection

of hidden Trojans [1].

With model checking, properties for triggering the

suspicious branches are expressed in LTL and run through the

model checking tool. The negation of the rare branch trigger is

defined as a property, therefore the model checking tool will

generate a counter-example to trigger each branch.

B. Partial-Scan Designs

As previously discussed, designs in which not all sequential
elements are included in the scan-chain are considered partial-
scan designs. The non-scan FFs can be ideal candidates for
embedding Trojans due to the low controllability and
observability.

Similar to full-scan designs, the partial-scan designs are run
through ATPG and model checking tools to generate test vectors
for activating rare branches. ATPG is expected to fail in most
partial-scan designs with significant sequential depth, as
previously detectable faults can be unintentionally rendered
undetectable with the removal of scan FFs. Model checking still
suffers from state explosion.

Combining ATPG and model checking shows promising
results. Figure 3 describes the method for combining the two
techniques. First, a design is compiled with partial-scan
insertion. The design is then divided into its full-scan and non-
scan partitions. But before the non-scan partition is run through
a model checking tool, security properties must be written using
temporal logic. These security properties are simply trigger
conditions for rare branches identified in the design from the rare
branch marking phase. Properties are then written to activate the
rare branch using LTL statements [18].

The model checking tool will then generate a set of counter-

examples that activate the rare branches from the input of the

non-scan partition. Each counter-example is translated into a

combinational stuck-at fault circuit inserted into the full-scan

design, creating what I refer to as a full-scan* design. This at

most adds an overhead of N+3 gates [17], where N is the

number of primary outputs from the non-scan design.

Afterwards, the full-scan* design is run using an ATPG tool to

generate test vectors that trigger the stuck-at faults.

The main advantage of using this approach is circumventing

the downsides of ATPG and model checking. With only the

full-scan partition, the ATPG tool experiences a much faster

execution time as the complexity of non-scan full-sequential

ATPG is removed. Likewise, because the model checking tool

is only given a subset of the design, the state space explored is

smaller mitigating the problem of state explosion. However, the

state space in the non-scan portions can still be significant.

Dividing the non-scan partitions even further can help in such

cases.

C. Golden Model

The test vectors resulting from the ATPG tool, model
checker, or the combined approach are translated into test
benches. Both the golden and suspicious designs are run under
the testbench and their outputs compared (XOR) to detect the
presence of a functional Trojan.

IV. EXPERIMENTS

A. Experimental setup

In my investigation, only rare-event triggered Trojans are

considered. Therefore, AES-128 and RS232 benchmarks from

Trust-Hub benchmark suite are used. More information on the

Trojan circuits and their implementation can be found on Trust-

Hub [15] [16]. Additionally, two modified AES benchmarks

(cb_aes) are used to showcase the limitations of model checking

and ATPG.

A machine with Intel Core i5-3470 CPU @ 3.20GHz and 8

GB of RAM is used for testing. The benchmarks are

synthesized using design compiler with DFT scan insertion.

For full-scan designs, the original RTL design is synthesized

with full-scan insertion. With partial-scan designs, a subset of

the FFs is selected for scan in such a way that maintains a high

test coverage. The purpose of these scan insertion techniques is

to simulate a scenario in which an adversary would insert a

Trojan in hard to detect areas after scan-chain insertion and

during integration with third party IP. The SMV tool [11] is

used for model checking and Synopsys TetraMAX [6] for

ATPG. Some constraints were imposed on the design due to

tool limitations. For example, in SMV results are not accurate

Figure 3

in designs with multiple clock domains and in TetraMAX

sequential elements with multiplexed clocking are not allowed.

B. Results

My experimental results from full-scan designs are shown

in Table 1. Column 2 reports the calculated test coverage from

the scan design. Column 3 shows the number of rare branches

identified from the rare branch calculation on the RTL. In

columns 5 and 7, the CPU time in generating test vectors for

each approach is reported. Columns 4 and 6 show whether the

test vectors detected the Trojan in the testbench. As expected,

ATPG performs well in designs with full-scan insertion and

model checking experiences a BDD Out of Memory limit when

running the custom benchmarks due to the significant state

space unrolled.

Results from partial-scan designs are described in Table 2.

Columns 2 and 3 describe the percent of FFs that are included

in the scan-chain and the corresponding test coverage. Table 2

shows the same metrics as Table 1, but now also includes data

for the combined approach. The CPU times for model checking

in column 8 are less than the times from full-scan (Table 1,

Column 7), likely due to increased area and input from the scan-

chains. Yet, despite the amount of partial-scan, ATPG still finds

a test vector for the AES benchmarks due to the nature of the

Trojan, which is controlled by the primary input. The custom

benchmarks with partial-scan exploit the weaknesses in ATPG

and model checking through a significant non-scan sequential

depth. The combined approach’s results provide comparable

times in most cases or better times in the case of the custom

benchmarks where significant sequential depth and width are

introduced.

For AES benchmarks, while the Trojan is activated by the

test vector, it is not detected by the testbench. The AES Trojan

introduces a new output that leaks the key over several cycles,

which isn’t directly comparable with the golden model.

V. CONCLUSION

In this honors thesis, I investigated the suitability of using

ATPG and model checking for hardware Trojan detection in

full-scan and partial-scan designs. Experimental results

demonstrated the merits and weaknesses in both approaches

and the effectiveness of combining them in partial-scan designs.

Future work will include investigating more partial-scan

benchmarks with significant sequential depth to further explore

the effectiveness of the proposed approach.

ACKNOWLEDGMENT

This research work is supported by NSF REU Supplement

#1642267. Without the mentorship and guidance of Dr. Mishra

and his PhD students, Farimah Farahmandi and Alif Ahmed,

this research would not be possible.

REFERENCES

[1] M. Tehranipoor and C. Wang, "Introduction to Hardware Security and
Trust", Springer, August 2011.

[2] S. Bhunia, M. Hsiao, M. Banga, and S. Narasimhan, "Hardware Trojan
attacks: threat analysis and countermeasures", Proceedings of IEEE, vol.
102, pp. 1229-1247, 2014.

[3] M. Tehranipoor and F. Koushanfar, "A survey of hardware Trojan
taxonomy and detection", IEEE Design and Test of Computers, vol, 27,
pp. 10-25, 2010.

Full-Scan

Benchmarks
Test Coverage # Rare branches

ATPG Model Checking

Detected CPU Time Detected CPU Time

AES-T1000 99% 2 X* 0.02s X* 140.8s

AES-T2000 99% 5 X* 0.95s X* 333.35s

RS232-T400 99% 2 √ 0.02s √ 1 hour

RS232-T800 99% 1 √ 0.02s √ 636.533s

cb_aes_15 99% 1 √ 0.27s X BDD limit

cb_aes_20 99% 1 √ 0.27s X BDD limit

Partial-Scan

Benchmarks

% FFs in

scan-chain

Test

Coverage

Rare

branches

ATPG Model Checking Combined

Detected CPU Time Detected CPU Time Detected CPU Time

AES-T1000 93% 99% 2 X* 0.02s X* 85.86s X* 8.8s

AES-T2000 91% 99% 5 X* 0.90s X* 216.5s X* 22s

RS232-T400 51% 97% 2 √ 0.24s √ 1 hour √ 0.52s

RS232-T800 45% 97% 1 √ 0.06s √ 7.233s √ 0.12s

cb_aes_15 85% 99% 1 √ 8 hours X BDD limit √ 7.85s

cb_aes_20 93% 99% 1 √ 8 hours X BDD limit √ 38.3s

*activated not propagated
Table 1: Comparison of ATPG and model checking techniques for Trojan detection in full-scan designs

Table 2: Comparison of our approach (combined) with ATPG and model checking for Trojan detection in partial-scan designs
*activated not propagated

[4] V. Chickermane, J. H. Patel, “An Optimaztion Based Approach to the
Partial Scan Design Problem”, Proceedings. International Test
Conference 1990, Washington, DC, 1990, pp. 377-386.

[5] M. Bushnell , Vishwani Agrawal, Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits, Springer, 2013

[6] Synopsys Inc. TetraMAX ATPG User Guide Version H-2013.03-SP4,
September 2013

[7] T. E. Marchok, A. El-Maleh, W. Maley, J. Rajski, “Complexity of
Sequential ATPG” Proceedings of European Design and Test Conference,
1995.

[8] M. Banga and M. Hsiao, ‘‘Trusted RTL: Trojan detection methodology
in pre-silicon designs,’’ in Proc. IEEE Int. Workshop Hardware-Oriented
Trust Security, 2010, pp. 56–59.

[9] I. Pomeranz and S. M. Reddy, "On Undetectable Faults in Partial Scan
Circuits", in Proc. ICCAD-02, pp. 82-86.

[10] J. Rajendran, A. Dhandayuthapany, V. Vedula, and R. Karri, "Formal
security verification of third party intellectual property cores for
information leakage", International Conference on VLSI Design, pp. 547-
552, 2016.

[11] K.L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[12] F. Wolff, C. Papachristou, S. Bhunia, R. S. Chakraborty, “Towards
Trojan-Free Trusted ICs: Problem Analysis and Detection Scheme”
Proceedings of the conference on Design, Automation and Test

[13] A. Waksman, M. Suozzo, and S. Sethumadhavan, "FANCI: identification
of stealthy malicious logic using boolean functional analysis", ACM
Conference on Computer and Communications Security, pp. 697-708,
2013.

[14] Y. Huang, S. Bhunia, P. Mishra, "MERS: statistical test generation for
side-channel analysis based Trojan detection", ACM Conference on
Computer and Communications Security, pp. 130-141, 2016.

[15] H. Salmani, M. Tehranipoor, and R. Karri, "On design vulnerability
analysis and trust benchmark development", IEEE Int. Conference on
Computer Design, 2013.

[16] M. Tehranipoor, D. Forte, R. Karri, F. Koushanfar and M. Potkonjak,
"Trust-Hub benchmark suite", Available: https://www.trust-hub.org.

[17] Y. C. Kim, V. D. Agrawal, K.K. Saluja, “Multiple Faults: Modeling,
Simulation and Test”, 15th Int. Conf. on VLSI Design, 2002, pp. 1-6

[18] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, MIT Press,
1999

[19] P. Mishra, S. Bhunia, M. Tehranipoor, Hardware IP Security and Trust,
Springer, 2017

[20] X. Zhang, M. Tehranipoor, “Case Study: Detecting Hardware Trojans in
Third-Party Digital IP Cores”, Hardware-Oriented Security and Trust
(HOST), 2011 IEEE International Symposium, June 2011, pp. 67-70.

