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Abstract— This honors thesis deals with the analysis of using 

automatic test pattern generation (ATPG) and model checking 

approaches for hardware Trojan detection.  Specifically, I 

investigate their effectiveness in full-scan and partial-scan designs. 

A novel approach based on combining these two techniques is 

introduced in dealing with designs in which ATPG and model 

checking are expected to fail when applied alone. The approach 

works best in designs with partial-scan chain insertion. Using 

model checking on non-scan and ATPG on full-scan partitions 

avoids common pitfalls of running the full design using any one of 

these techniques.  The resulting test vectors generated by 

combining these approaches can then be used to detect Trojans. 

I. INTRODUCTION 

Designing today’s system-on-chips (SoC) is a highly 
complex process that involves many time-to-market constraints.  
It is common practice to integrate third-party IPs in the 
production of SoCs in order to remain competitive in today’s 
global market.  However, interfacing with third-party IP raises 
concerns, as now an integral part of the SoC’s design process is 
no longer under complete scrutiny. An adversary within these 
third-party facilities can tamper with the design or insert 
malicious IP, also known as a Trojan. Hardware Trojan attacks 
range from information leakage to complete chip malfunction. 
Detection of Trojans inserted at the pre-silicon phase of the 
fabrication process is extremely difficult and often missed 
during testing.  Furthermore, with the introduction of partial-
scan designs, it becomes even harder to detect Trojans with 
common verification techniques alone [1] [2] [3]. 

This paper investigates the use of ATPG and model checking 
tools on soft IP in an effort to detect hardware Trojans in scan-
chain inserted designs. A novel approach that combines the 
strengths of two common design verification techniques, already 
a part of the normal verification design flow, is introduced to 
increase the detection rate of Trojans in partial-scan designs. The 
rest of this honors thesis is presented in the following manner: 
Section II describes the background and related work. Section 
III introduces the combined approach of using ATPG and model 
checking. Section IV describes the experimental setup, analysis, 
and results. Finally, Section V concludes the thesis and suggests 
future work. 

II. BACKGROUND AND RELATED WORK 

A. Design For Testability 

Design for Testability (DFT) is a technique employed in 

designing ICs for the purposes of reducing test costs and time 

[1]. A very common technique for DFT is scan-chain insertion. 

The idea here is to replace flip-flops (FFs) in the design with 

scan flip-flops – a flip-flop with a multiplexer attached to the 

input. The two inputs to this multiplexer are the original input 

and a new scan-in input. A select line, scan enable (SE), chooses 

between these two inputs; when SE is high, scan-in values are 

selected, else the original input is sent to the FF. Scan FFs can 

be chained together as shown in Figure 1 to form a scan-chain. 

The purpose of these scan-chains is to reduce the loading time 

when testing sequential elements of a design, increasing a 

circuits controllability and observability.  

While including a complete scan-chain is ideal, it may not 

be possible due to the incurred area overhead or delays that 

invalidate various design constraints.  Partial-scan chain 

insertion is used as a cost-effective alternative [4] to achieve 

acceptable test coverage, while maintaining design constraints. 

In partial-scan designs, not all FFs are included in the scan-

chain. However, these non-scan FFs introduce branches in the 

circuit with low controllability and observability, which can be 

exploited as a rare trigger condition by a malicious attacker. 

B. Automatic Test Pattern Generation (ATPG) 

ATPG is a verification methodology used to generate test 

vectors that allows designers to identify faulty design behavior 

in a timely manner [1]. The goal of ATPG is to create a set of 

test patterns that achieve a desired test coverage, TC, and fault 

coverage, FC, through fault simulation:  

𝑇𝐶 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑎𝑏𝑙𝑒 𝑓𝑎𝑢𝑙𝑡𝑠
 

 

𝐹𝐶 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑢𝑙𝑡𝑠
 

With the use of DFT, ATPG can efficiently generate test 

vectors by treating the any design as combinational logic. This 

is no longer the case in partial-scan designs. ATPG tools must 

now consider a set of test vectors that will activate a target fault. 

The worst-case complexity (cyclic sequential designs) of 

sequential ATPG becomes 9𝑁𝑓𝑓 , where 𝑁𝑓𝑓 is the number of 

flip-flops [5]. 

1) TetraMAX 

Synopsys’ TetraMAX is a verification tool used for 

automatic test pattern generation [6]. Figure 2 describes the tool 

flow for TetraMAX ATPG. TetraMAX reads in a gate-level 

netlist along with its corresponding libraries which are used to 

build the design locally. A Standard Test Interface Language 

(STIL) file generated by the DFT compiler is read and used in 

the design rules checking phase (DRC). The DRC process 

verifies that the physical layout of the design meets fabrication 

constraints. After the DRC phase is passed, ATPG can begin. A 

fault list, either produced internally or provided through an 

external file, is specified by the user in preparation for ATPG.  

This list contains information on the types of fault to be tested 

[1] and their locations in the design. ATPG can then be 

performed in one of three modes: basic-scan, fast-sequential, 
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and full-sequential.  In basic scan, TetraMAX operates as full-

scan combinational ATPG tool resulting in high test coverage. 

Designs run in basic scan mode must be full-scan. Both fast and 

full sequential ATPG modes provide support for partial-scan 

designs by executing capture procedures in between scan chain 

load and unload phases. The difference between fast and full 

sequential ATPG modes is that all clock and reset signals to 

non-scan elements must be controlled at the primary input in 

fast-sequential ATPG. 

As with any ATPG tool, sequential test pattern generation is 

a complex process [5] [7]. While scan-chains are implemented 

to mitigate the complexity, designs with a significant amount of 

non-scan cells can greatly reduce ATPG performance, resulting 

in ATPG-untestable faults [9] that an attacker can exploit.  

C. Model Checking 

Model checking is a formal method used to verify a design 

against functional properties (expected design behavior). Given 

a design and a list of properties expressed in temporal logic, a 

model checker will either verify the design property or generate 

a counter-example that shows why the property isn’t satisfied 

[18].  This approach can be extended for use in verifying design 

security [19]. Properties can be written and verified with 

security features in mind, such as monitoring the primary output 

for leaking secret keys [10]. However, a common problem of 

the model checking approach is state explosion caused by the 

exponential nature of exploring a design’s state space.  This fact 

limits the practicality of model checking on larger designs.  

 

1) Symoblic Model Verifier 

Symbolic Model Verifier (SMV) is a model checking tool 

developed by Ken McMillan for verifying FSMs using Linear 

Temporal Logic (LTL) or Computation Tree Logic (CTL) [11]. 

SMV’s algorithm uses ordered binary decision diagram 

(OBDD) and bounded model checking (BMC) in an effort to 

reduce state explosion while exploring the state space of the 

design.  

To verify a design, users must first either manually, or 

through the use of a program, translate their design into a model 

specification language understood by the tool. Design 

properties are then described in CTL or LTL.  Once the tool has 

both the design and properties to be verified, it begins to unroll 

the state space. A Boolean satisfiability assignment is extracted 

from the unrolled states and checked using an internal SAT 

solver. If unsatisfiable, the model checker produces a 

counterexample computation path. 

D. Trojan Detection 

Both Wolff et al. and Zhang et al. propose Trojan detection 

approaches that incorporate ATPG tools for generating test 

patterns [12] [20].  Yet, with the introduction of partial-scan 

designs the effectiveness of full-sequential ATPG for 

generating test patterns is greatly reduced due to the complexity 

of full-sequential ATPG on non-scan FFs.  

The method proposed in [8] utilizes N-detect full scan 

ATPG and SAT solver for Trojans detection. However, this 

approach also fails to effectively consider designs that have a 

significant non-scan portion which will limit the effectiveness 

of ATPG.  

III. TROJAN DETECTION USING ATPG AND MODEL CHECKING 

I explore the suitability of using ATPG and model checking 

for hardware Trojan detection.  Two types of designs are 

considered in my analysis: full-scan and partial-scan designs. In 

both situations, analysis must be performed at the RTL level to 

determine suspicious gates in the design.  Suspicious gates are 

identified through rare branch coverage. More specifically, in a 

design, rare branches are branches that are not covered after 

running random tests up to millions of cycles. These branches 

identified as ‘rare’ will be used in model checking property 

generation and ATPG stuck-at faults. The rationale here is that 

a Trojan will be activated as a result of a rare sequence of inputs 

and/or state transitions; otherwise, the malicious insertion 

becomes a triviality that can be detected during design testing 

and verification [12]. Other statistical methods for determining 

rare branches are also suitable such as FANCI [13] and MERS 

[14]. 

A. Full-Scan Designs 

In designs with a full-scan chain, all sequential gates not 

assumed any sequential logic that is inserted as part of the 

Trojan circuit is non-scan in order to reduce its detectability 
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through conventional test methods. For ATPG analysis, test 

vectors are generated from stuck-at faults that are tested at all 

gates in the design identified from the set of rare branches. Yet 

even 100% fault coverage cannot guarantee complete detection 

of hidden Trojans [1]. 

With model checking, properties for triggering the 

suspicious branches are expressed in LTL and run through the 

model checking tool.  The negation of the rare branch trigger is 

defined as a property, therefore the model checking tool will 

generate a counter-example to trigger each branch.   

 

B. Partial-Scan Designs 

As previously discussed, designs in which not all sequential 
elements are included in the scan-chain are considered partial-
scan designs.  The non-scan FFs can be ideal candidates for 
embedding Trojans due to the low controllability and 
observability.  

Similar to full-scan designs, the partial-scan designs are run 
through ATPG and model checking tools to generate test vectors 
for activating rare branches. ATPG is expected to fail in most 
partial-scan designs with significant sequential depth, as 
previously detectable faults can be unintentionally rendered 
undetectable with the removal of scan FFs.  Model checking still 
suffers from state explosion.  

Combining ATPG and model checking shows promising 
results.  Figure 3 describes the method for combining the two 
techniques. First, a design is compiled with partial-scan 
insertion. The design is then divided into its full-scan and non-
scan partitions. But before the non-scan partition is run through 
a model checking tool, security properties must be written using 
temporal logic. These security properties are simply trigger 
conditions for rare branches identified in the design from the rare 
branch marking phase. Properties are then written to activate the 
rare branch using LTL statements [18].  

The model checking tool will then generate a set of counter-

examples that activate the rare branches from the input of the 

non-scan partition. Each counter-example is translated into a 

combinational stuck-at fault circuit inserted into the full-scan 

design, creating what I refer to as a full-scan* design.  This at 

most adds an overhead of N+3 gates [17], where N is the 

number of primary outputs from the non-scan design. 

Afterwards, the full-scan* design is run using an ATPG tool to 

generate test vectors that trigger the stuck-at faults.   

The main advantage of using this approach is circumventing 

the downsides of ATPG and model checking.  With only the 

full-scan partition, the ATPG tool experiences a much faster 

execution time as the complexity of non-scan full-sequential 

ATPG is removed.  Likewise, because the model checking tool 

is only given a subset of the design, the state space explored is 

smaller mitigating the problem of state explosion. However, the 

state space in the non-scan portions can still be significant. 

Dividing the non-scan partitions even further can help in such 

cases. 

C. Golden Model 

The test vectors resulting from the ATPG tool, model 
checker, or the combined approach are translated into test 
benches.  Both the golden and suspicious designs are run under 
the testbench and their outputs compared (XOR) to detect the 
presence of a functional Trojan.  

IV. EXPERIMENTS 

A. Experimental setup 

In my investigation, only rare-event triggered Trojans are 

considered. Therefore, AES-128 and RS232 benchmarks from 

Trust-Hub benchmark suite are used. More information on the 

Trojan circuits and their implementation can be found on Trust-

Hub [15] [16]. Additionally, two modified AES benchmarks 

(cb_aes) are used to showcase the limitations of model checking 

and ATPG. 

A machine with Intel Core i5-3470 CPU @ 3.20GHz and 8 

GB of RAM is used for testing. The benchmarks are 

synthesized using design compiler with DFT scan insertion.  

For full-scan designs, the original RTL design is synthesized 

with full-scan insertion. With partial-scan designs, a subset of 

the FFs is selected for scan in such a way that maintains a high 

test coverage. The purpose of these scan insertion techniques is 

to simulate a scenario in which an adversary would insert a 

Trojan in hard to detect areas after scan-chain insertion and 

during integration with third party IP. The SMV tool [11] is 

used for model checking and Synopsys TetraMAX [6] for 

ATPG. Some constraints were imposed on the design due to 

tool limitations. For example, in SMV results are not accurate 
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in designs with multiple clock domains and in TetraMAX 

sequential elements with multiplexed clocking are not allowed.  

 

B. Results 

My experimental results from full-scan designs are shown 

in Table 1. Column 2 reports the calculated test coverage from 

the scan design. Column 3 shows the number of rare branches 

identified from the rare branch calculation on the RTL.  In 

columns 5 and 7, the CPU time in generating test vectors for 

each approach is reported.  Columns 4 and 6 show whether the 

test vectors detected the Trojan in the testbench. As expected, 

ATPG performs well in designs with full-scan insertion and 

model checking experiences a BDD Out of Memory limit when 

running the custom benchmarks due to the significant state 

space unrolled.  

Results from partial-scan designs are described in Table 2. 

Columns 2 and 3 describe the percent of FFs that are included 

in the scan-chain and the corresponding test coverage. Table 2 

shows the same metrics as Table 1, but now also includes data 

for the combined approach.  The CPU times for model checking 

in column 8 are less than the times from full-scan (Table 1, 

Column 7), likely due to increased area and input from the scan-

chains. Yet, despite the amount of partial-scan, ATPG still finds 

a test vector for the AES benchmarks due to the nature of the 

Trojan, which is controlled by the primary input. The custom 

benchmarks with partial-scan exploit the weaknesses in ATPG 

and model checking through a significant non-scan sequential 

depth. The combined approach’s results provide comparable 

times in most cases or better times in the case of the custom 

benchmarks where significant sequential depth and width are 

introduced.  

For AES benchmarks, while the Trojan is activated by the 

test vector, it is not detected by the testbench.  The AES Trojan 

introduces a new output that leaks the key over several cycles, 

which isn’t directly comparable with the golden model.  

V. CONCLUSION 

 

In this honors thesis, I investigated the suitability of using 

ATPG and model checking for hardware Trojan detection in 

full-scan and partial-scan designs. Experimental results 

demonstrated the merits and weaknesses in both approaches 

and the effectiveness of combining them in partial-scan designs. 

Future work will include investigating more partial-scan 

benchmarks with significant sequential depth to further explore 

the effectiveness of the proposed approach. 
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