EFFICIENT APPROACHES FOR FUNCTIONAL VALIDATION OF SOC DESI GNS
USING HIGH-LEVEL SPECIFICATIONS

By
MINGSONG CHEN

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA
2010

¢ 2010 Mingsong Chen

To my parents for their love and encouragement

ACKNOWLEDGMENTS

Although four years passed in a twinkling, all the vivid snaphots are deeply engraved
in my memory. | always think that | was lucky to be a Gator in UF, not only because |
witnessed four National Championships, but also | achieveahother milestone in my life
here. | need to confess that the journey to get a Ph.D. is chaliging. It is impossible to
imagine completing it without the precious advice and helprém other people.

First of all, | really appreciate what my supervisor Dr. Prallhnat Mishra did for me.
His expertise and insights helped me to quickly capture theesearch direction and made
this dissertation come true. Throughout my Ph.D. study, he gve me enduring support,
guidance and encouragement which helped me to overcome oas problems. There is no
doubt that his attitude on research has deeply a ected me andill be helpful in my future
career. Finally | understood why he was always urging me to rka progress. His e orts
made my CV looks stronger which is bene cial to me.

| would also like to thank my Ph.D. committee members: Prof. &taj Sahni, Porf.
Jih-Kwon Peir, Prof. Tao Li and Prof. Raymond Issa. Their valiable suggestions at
di erent stages of my research were constructive and thougprovoking. Their criticisms
enhanced the quality of my research. Colleagues and frienalee an important part in
my graduate life. | am very grateful for the friendship of althe members in my research
group - Kanad Basu, Hadi Hajimiri, Heon-Mo Koo, Chetan Murtly, Kartik Shrivastava,
Xiaoke Qin and Weixun Wang. | really enjoyed the harmoniousteosphere of our lab and
the experience of collaborating with them.

Last but not least, | sincerely thank my parents, who uncondionally gave me the
love and encouragement. Without their support, | won't reals this far. | dedicate this
dissertation to them.

This work was partially supported by grants from Intel Corpwation and NSF

CAREER award 0746261.

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS e e e e e e 4

LIST OF TABLES e e s e 9

LIST OF FIGURES e e e e e e e 11

ABSTRACT . . . e 13
CHAPTER

1 INTRODUCTION . . . e e e e e 14

1.1 SoCDesignFlow. 15

1.2 Functional Validation of SoC Designs 16

1.2.1 Overview of Functional Validation Methods 17

1.2.2 Potential Improvement Opportunities 18

1.23 Challenges. 20

1.3 Dissertation Contributions oo 21

2 FORMAL MODELING OF SOC SPECIFICATIONS 23

2.1 Specicationusing SystemC TLMs 24

2.1.1 Formal Modeling of SystemC TLMs 25

2.1.2 Transformation from SystemC TLMtoSMV. 27

2.1.2.1 Structure Extraction 28

2.1.2.2 Behavior Extraction 30

2.1.3 A Prototype Tool For TLM to SMV Translation 32

2.2 Specication using UML Activity Diagrams 32

2.21 Notations 33

2.2.2 Formal Modeling of UML Activity Diagrams 36

2.2.3 Transformation from UML Activity Diagrams to SMV 40

2.2.3.1 Static Information Extraction 40

2.2.3.2 Dynamic Information Extraction 42

2.2.4 A Prototype Tool For UML to SMV Translation 44

23 CaseStudy 45

2.3.1 Example 1: ARouter. 45

2.3.2 Example 2. AMIPS Processor 46

2.3.3 Example 3: An Alpha Processor. a7

2.3.4 Example 4. A Control System. 48

2.3.5 Example 5: A Stock Exchange System. 48

2.4 SUMMANY o e e e e 49

COVERAGE-DRIVEN AUTOMATIC GENERATION OF DIRECTED TESTS 50

3.1 Coverage-Driven Property Generation 51
3.1.1 FaultModels 52
3.1.1.1 Generic Fault Models for Graph Based Models. 52

3.1.1.2 Fault Models for SystemC TLM Speci cations 53

3.1.1.3 Fault Models for UML Activity Diagrams 54

3.1.2 Functional Coverage Based on Fault Models. 55

3.2 Test Generation using Model Checking Techniques. 56
3.2.1 Test Generation using Unbounded Model Checking 56
3.2.1.1 Unbounded Model Checking 56

3.2.1.2 Test Generation Algorithm 57

3.2.2 Test Generation using Bounded Model Checking. 57
3.2.2.1 SAT-Based Bounded Model Checking. 57

3.2.2.2 Test Generation Algorithm. 58

3.2.2.3 DeterminationofBound. 59

3.3 CaseStudies 60
3.3.1 AControl System. 61
3.3.2 A Stock Exchange System (OSES). 62

34 SUMMAry e e 63
PROPERTY CLUSTERING FOR EFFICIENT TEST GENERATION 64
41 Related Work e 65
4.2 Background: SAT Solver Implementation 66
4.2.1 DPLL Algorithm 67
4.2.2 Conict Clause Based Learning 67

4.3 Property Clustering. e 70
4.3.1 Similarity based on Structural Overlap 72
4.3.2 Similarity based on Textual Overlap. 73
4.3.3 Similarity based onlnuence. 74
4.3.4 Similarity based on CNF Intersection. 76
4.3.5 Determination of Base Property. 76

4.4 E cient Test Generation using Learning Techniques. 77
4.4.1 Conict Clause Forwarding Techniques. 77
4.4.2 Name Substitution for Computation of Intersections. 80
4.4.3 Identi cation and Reuse of Common Conict Clauses. 81

45 Case StudieS 83
45.1 AVLIW MIPS Processor. i 84
45.1.1 Structure-based Clustering 84

4.5.1.2 Clustering based on Textual Similarity. 87

45.1.3 Inuence-based Clustering. 88

4.5.1.4 Intersection-based Clustering. 89

4.5.1.5 Comparison of Clustering Technqiues. 91

45.2 A Stock Exchange System. L. 92

4.6 SUMMANY o ot e e e e 95

DECISION ORDERING BASED INTRA- AND INTER-PROPERTY LEARNI NG 96

51 Related Work 97
5.2 Decision Ordering Based Learnings 97
521 OVerview. o e 98
5.2.2 BitValueOrdering 99
5.2.3 Variable Ordering. 101
5.2.4 Conict Clause based Decision Ordering (Hybrid). 102

5.3 Test Generation using Decision Ordering 103
5.3.1 Test Generation for a Single Property. 104
5.3.1.1 Heuristic Implementation 105

5.3.1.2 TestGeneration 106

5.3.2 Test Generation for a Cluster of Similar Properties. 107
5.3.2.1 Heuristic Implementation 108

5.3.2.2 TestGeneration, 110

54 CaseStudy 111
5.4.1 Intra-Property Learning 111
5.4.2 Inter-Property Learning., 115
5421 AMIPSProcessor. 115

5.4.2.2 A Stock Exchange System 118

5.5 Summary 119
EFFICIENT PROPERTY DECOMPOSITION TECHNIQUES 120
6.1 Learning-Oriented Property Decomposition 122
6.1.1 Potential Learnings for Complex Properties 122
6.1.2 Spatial Property Decomposition. 124
6.1.3 Temporal Property Decomposition 127

6.2 Decision Ordering Based Learning Techniques 130
6.3 Test Generation using Our Methods 132
6.4 An lllustrative Example 133
6.4.1 Spatial Decomposition. 0oL 133
6.4.2 Temporal Decomposition. 135

6.5 EXxperiments. 135
6.5.1 AVLIW MIPS Processor. 136
6.5.2 A Stock Exchange System. 138

6.6 Summary e e e 139

REUSE OF VALIDATION EFFORT FOR ASSERTION-BASED EQUIVALEN CE140

7.1 Related Work e 142
7.2 A Framework for Checking TLM-to-RTL Functional Equivalence. 144
7.2.1 Automatic Transaction Level Validation. 144
7.2.1.1 Generation of TLM Assertions 145

7.2.1.2 Generatonof TLMTests 146

7.2.2 Renement of TLM Assertionsand Tests. 147

7.2.21 SymbolMapping. 148

7.2.2.2 Assertion RenementRules. 148

7223 TestRenementRules. 150

7.2.3 A Prototype Tool for TLM-to-RTL Validation Re nement 151

7.23.1 TLM2SMV e 152

7.2.3.2 TLM Test Generation 153

7.23.3 TLM2RTL e 153

7.2.4 Assertion-Based Functional Equivalence. 154

7.2.4.1 Assertion-Based Functional Coverage. 154

7.2.4.2 Assertion Ordering. 155

7.2.4.3 Assertion Based Functional Equivalence. 157

7.3 CaseStudy 159
7.3.1 ARouter Example 159

7.3.2 A Pipelined Processor Example. 164

7.4 SUMMANY o o o e e e e e e e e e e e e 165

8 CONCLUSIONS AND FUTURE WORK 166
8.1 ConcClusions. 166

8.2 Future Research Directions 167
REFERENCES e 169
BIOGRAPHICAL SKETCH e e e e 176

LIST OF TABLES

Table page
1-1 A comparison for four optimizations 20
2-1 Break downofatokeninFigure 2-8. 36
2-2 Condition onthe ow edgesinFigure2-8 36
3-1 Comparison of two methods. 61
3-2 Implementation level coverage of the control system. 61
3-3 Comparison of three methods. 62
3-4 Implementation level coverage of OSES. 63
4-1 \Veri cation results for a structure-based cluster. 85
4-2 Structure-based clustering results for MIPS processor. 86
4-3 Verication results for atextual cluster 0oL 87
4-4 Textual clustering results for MIPS processor. 88
4-5 \Veri cation results for an inuence-based cluster. 89
4-6 In uence-based clustering results for MIPS processor 90
4-7 \Veri cation results for an intersection-based cluster. 91
4-8 Intersection-based clustering results for MIPS proces 91
4-9 Property clustering and veri cation for MIPS processor. 92
4-10 Structure-based clustering results for OSES. 93
4-11 Textual clustering results for OSES. 93
4-12 In uence-based clustering results for OSES. 94
4-13 Intersection-based clustering results for OSES 94
4-14 Property clustering and verication for OSES 94
5-1 Test generation results using intra learnings. 113
5-2 Test generation result for MIPS processor. 117
5-3 Test generation result for stock exchange system 118
6-1 Test generation result for MIPS processor. 136

6-2
7-1
7-2
7-3

Test generationresult for OSES 138
Assertion re nement for the routerexample 161
RTL coverage for the router example. 163
Assertions re nement for the Alpha AXP processor. 164
RTL coverage for the Alpha AXP processor. 164

10

LIST OF FIGURES
Figure page

1-1 SoC design and validation ow 15

1-2 Comparison of functional validation between speci cain and implementation . 18

1-3 Top-down validation of SoC architectures 21
2-1 Mapping from a SystemC structure to corresponding graptmodel 26
2-2 An example of data type transformation., 28
2-3 An example of SystemC TLM module 29
2-4 An example of SMV module. Lo 30
2-5 Anexample of TLM process. i i i i i 31
2-6 Anexample of SMV process 32
2-7 UML activity nodes e 33
2-8 The UML activity diagramofan ATM 35
2-9 The generated skeleton after structure extraction. 42
2-10 Translation rules for state and data transitions 43
2-11 The TLM structure of the router 45
2-12 Graph model of a VLIW MIPS processor 46
2-13 TLM of the Alpha AXP processor. v i v i it i i i e 47
2-14 The activity diagram for a control system 48
2-15 The activity diagram for a stock exchange system 49
3-1 Test generation using model checking. 50
3-2 Fault model examples 55
4-1 Our test generation methodology. 64
4-2 Conict analysis using an implicationgraph 68
4-3 An example of name substitution. oL oL 81
4-4 An example of conictclausereuse. 84
5-1 Two examples of SAT search. 99

11

5-2

5-4
5-5

5-7
5-8
5-9
5-10
5-11
6-1
6-2

6-4
6-5
6-6

6-8
7-1
7-2
7-3
7-4
7-5
7-6

A scenario where bit-value ordering works. Lo 100

A scenario where bit value ordering fails. 101
An example of bit-value and variable ordering. 101
An example of con ict clauses based variable ordering. 102
Learning techniques for a single property 106
Statistics for two properties 108
Con ict statistics using various intra-property learrings. 114
Implication statistics using various intra-learnings. 115
Con ict statistics for MIPS processor. v 116
Implication statistics for MIPS processor. 118
Two property decomposition techniques. 120
Our test generation framework 121
The COlofadesignblock. 123
A functional scenario with three transactions 124
ADAGof eventrelation 128
Learning statistics applied on decisiontrees. 131
Event implication graph for property P. 135
Property checking result for MIPS processor 137
Our equivalence checking framework. 144
The structure of our prototype tool 152
An example of assertion equivalence. oL 159
The packet format of the routerin TLMand RTL 160
The I/O interface of the router example 161
An example of TLM-to-RTLrenement 162

12

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Ful Iment of the
Requirements for the Degree of Doctor of Philosophy

EFFICIENT APPROACHES FOR FUNCTIONAL VALIDATION OF SOC DESI GNS
USING HIGH-LEVEL SPECIFICATIONS

By
Mingsong Chen
August 2010

Chair: Prabhat Mishra
Major: Computer Engineering

Increasing complexity coupled with time-to-market presse create a critical need
to raise the abstraction level for System-on-Chip (SoC) dems. Functional validation
is widely acknowledged as a major bottleneck due to lack of tamated techniques and
limited reuse of validation e orts between abstraction legls. Simulation is the most widely
used form of validation using random or constrained-randontests. Directed tests are
very promising for simulation since only fewer directed tés are required compared to
billions of random tests to achieve a coverage goal. Curréntdirected test generation is
performed manually which is time-consuming and error-pr@n This dissertation presents
a novel top-down methodology for automatically generatingirected tests from high-level
speci cations and reuse them across di erent abstractiorelels. The objective is to reduce
the overall functional validation e ort. My research has farr major contributions: i) it
proposes a method that can extract formal models from higlevel SoC speci cations; ii) it
presents an approach that can automatically derive propdds based on fault models; iii) it
proposes e cient clustering, learning and decompositionetchniques to reduce the directed
test generation time; and iv) it provides validation re nenment approaches to enable reuse
of the system-level validation e orts for low-level implenentation validation as well as to
check the consistency between di erent abstraction layer©ur experimental results using
both software and hardware benchmarks demonstrate that theroposed approaches can

signi cantly reduce the overall validation e ort.

13

CHAPTER 1
INTRODUCTION

Functional validation ! is widely acknowledged as a major bottleneck in System-oriip
(SoC) design methodology { up to 70% of the overall design tenand resources are spent
on functional validation. In spite of such extensive e orts majority of the SoC designs
fail at the very rst time (silicon failures) primarily due t o functional errors [f9]. The
functional validation complexity is expected to increaseufther due to the combined
e ects of increasing design complexity and recent paradigshift from single processor SoC
designs to heterogeneous multiprocessor architectur@§)[

Traditional SoC validation adopts a combination of simulaibn-based approaches and
formal methods. Random testing is widely used for SoC simti@n. In general, random
tests can not guarantee the coverage and it may exercise thase functional scenario for
several times because of randomness. Thus directed tests arbetter alternative since
only a small number of tests are required to achieve a functial coverage goal compared
to random or constrained-random tests. However, due to ladd automated tools to
generate directed tests, human intervention is necessarurihg the test generation. All
these scenarios can lead to time-consuming and error-provadidation. My research
targets to reduce the overall functional validation e ort by automating various steps in the
the validation ow as well as by developing e cient learning and reuse techniques.

The rest of the chapter is organized as follows. Sectidnl presents the SoC design
ow. Section 1.2 surveys the existing SoC functional validation methods. Rally,

Section1.3 presents the contributions of this dissertation.

! The term \validation" generally refers to simulation-base approaches, while
\veri cation" is used for both simulation-based and formalmethods. This dissertation
focuses on directed test generation for simulation, so it &s the term validation.

14

1.1 SoC Design Flow
SoC integrates all components of a computer into a single egrated circuit (chip). It
consists of both hardware (such as processor, memory andipkerals) and software (such
as application programs). SoC may perform a variety of compations including digital,
analog and mixed-signal functions. Thus it is widely used ithe eld of embedded and
hybrid systems.
SoC is becoming increasingly complex since new applicasorequire more features.
As a result, extensive system-level simulations are reqed to make the right architectural
trade-o0 s. To e ciently and quickly make the decision on these trade-o s, design
architects increasingly leverage system-level speci ¢ahs instead of implementations
to perform such analysis.
Specification Validation

Al

Specification
(TLM/UML)
HW/SW Partitioning Hardware Software
- ~
VHDL/Verilog ‘ [C/IJAVA }

Implementation
. :

Implementation Validation

Figure 1-1. SoC design and validation ow

Figure 1-1 presents a SoC design and validation ow. Various hardwarend software
modeling paradigms are used for SoC speci cations. Two of@éhmost widely used
speci cations are Transaction Level Modeling (TLM) L6, 78 and Uni ed Modeling
Language (UML) [69]. They establish a standard to enable fast simulation speethd easy

model interoperability for hardware/software co-designGenerally, TLM is promising for

15

hardware modeling and UML focuses on software modeling. TLMainly allows modeling
of communication between di erent hardware components of system and data processing
in each component. UML can capture both structural and behaoral information of
a software system. Validated speci cation can be used as alden reference model for
validation of software and hardware implementations. Altbugh speci cations can capture
most important functional scenarios (system behaviors) osne implementation details can
be still missing. For example, TLM provides two kinds of modimg styles: loosely-timed
models can be used to model the system behavior with less tilgiinformation and
approximately-timed models can enable timing analysis ofstem behavior. Although
TLM is promising for system-level modeling and simulationit is still hard to accurately
describe the hardware behavior because it lacks many degallinformation such as timing
details. So Register Transfer Level (RTL) is needed to mod&ie implementation-level
behavior after the system-level simulation. In Figurel-1, the hardware part will be
implemented using a RTL language such as VHDL or Verilog, anthe software will be
implemented using a programming language such as C or JAVAig8i cant amount of
validation work is needed to check the speci ed functionalcenarios as well as to check the
consistency between the speci cation and implementation.
1.2 Functional Validation of SoC Designs

Speci cation validation is extremely important to ensure hat the speci ed design is
correct and can be used as a golden reference model for thelenpentation. According to
[79], there are two key contributors to the SoC failures (siliao respin): speci cation errors
and implementation errors. As expected, 82% of the designsthwrespins resulting from
functional aws had implementation errors. Interestingly almost 47% of the designs with
respins resulting from functional aws had also incorrect mincomplete speci cations 9.
Therefore, it is necessary to validate speci cations befervalidating the implementation.

This section rst surveys existing functional validation nethods, and then describes

several improvement opportunities to reduce the overall fctional validation e ort.

16

1.2.1 Overview of Functional Validation Methods

Simulation is the most widely used SoC validation method. Qopared to random
testing methods which use billions of random and pseudo-rdom tests in the traditional
design ow, directed tests are very promising in reducing # overall validation e ort since
a signi cantly smaller number of directed tests can achievihe same coverage goab]].
However, a major problem in current directed test generatioapproach is that it is mostly
performed by human intervention. Hand-written tests entdilaborious and time consuming
e ort of veri cation engineers who have deep knowledge of thdesign under veri cation.
Due to the manual development, it is infeasible to generatdl airected tests to achieve a
comprehensive coverage goal in a short time. Automatic doted test generation based on
a comprehensive functional coverage metric is an alternedi to address this problem.

Model checking 21] is one of the most widely used formal methods for automate@sgt
generation to validate software/hardware designs]. In the context of test generation, a
design speci cation is described using a formal model. Thequired functional scenarios
are described in the form of temporal logic formulas. When ebking a false property
using a model checker, one counterexample is reported tosié} the property. Because
this counterexample is a sequence of variable assignmeritssan be used as a directed test
to validate the functional scenario of the speci cation. Haever, model checking based
techniques do not scale well for large designs due to the \taspace explosion .

Simulation based methods are fast but cannot guarantee themvergence of functional
coverage. Model checking based methods can automaticalgngrate directed tests but
cannot deal with large designs. Currently, most SoC validain approaches use a hybrid

method which incorporates both techniques. The hybrid metid rst performs the

2 The number of states generated for verifying a property is lye and can not be
handled due to the memory capacity of computers.

17

random simulation to get as much functional coverage as pdsde. Then the uncovered
functional scenarios and corner cases are activated usirfgetdirected tests.
1.2.2 Potential Improvement Opportunities

Since system-level speci cation is treated as the goldenfeeence model in the
SoC design ow, a logic error in the system-level speci cain certainly will cause
the malfunction in the implementation. Because implementaéons are more complex
than system-level speci cations, nding an error in implenentations will be more
time-consuming. So it is necessary to guarantee that systdevel speci cation validation
can cover as many functional scenarios as possible. In adul, the di erences between
speci cation and implementation limit the degree of validéion reuse. In the absence
of signi cant reuse of validation e orts between di erent abstraction levels, the overall
functional validation e ort will increase since designer$ave to verify the speci cation as

well as its implementation.

> | A i}
= T
Q@ S
2 I:Spec g
8 TSpec g 3
2 F L | o
g Imp g
T :
> Imp 2

v

a) Validation Complexity b) Functional Scenarios

Figure 1-2. Comparison of functional validation between gei cation and implementation
Figure 1-2 compares speci cation and implementation levels. Assuméadt a

designD has a total Frqy number of functional scenarios that need to be checked.

For speci cations, there areFspec Number of functional scenarios that need to be checked,

and each speci cation level test generation need an averag@e of Tgpec. 1N addition

to Fspec functional scenarios, there aré |, functional scenarios need to be checked in

implementations, and each implementation test needs an aege time of T,,, . Figure 1-2

18

a) indicates that when checking a functional scenario, im@mentation validation is more
di cult than speci cation validation. Figure 1-2b)shows that speci cations cover majority
of the overall system functional scenarios (e.g., 70%), amtplementations inherit all
such scenarios with its own new additional functional scerias (e.g., 30%) due to the
introduction of implementation details. In this dissertaion, the complexity of validating
a functional scenario is equivalent to generating and apphg a directed test. So test
generation and corresponding simulation time is used to ifghte the functional scenario
validation e ort.

In order to achieve a 100% functional coverage as well as tonimize the overall
speci cation and implementation test generation time, it § necessary to nd a method to

optimize the Equation (1{1).

Minimize : FSpec TSpeC fFSpec+ Flmpg Tlmp

(1{1)

+

8

% I:Spec‘l' I:Imp = Frota
Subject to: E

For directed test generation, there are four feasible optis. Table 1-1 compares these

approaches.

No optimization: Speci cation level test generation and implementation lesl test
generation are independent, and in each level there are notiopzations.

Speci cation level optimization: Speci cation level test generation and
implementation level test generation are independent. Theverall speci cation
test generation time can be reduced by certain optimizatiomethods.

Reuse between speci cation and implementation: No optimization for
speci cation and implementation level test generation, buthe speci cation tests
can be reused for implementation level validation.

Speci cation level optimization + reuse between speci cat ion and imple-

mentation: Optimizations reduce the overall speci cation level test gneration time,
and the speci cation level tests can be reused for implemextton level validation.

19

Assume that in system validation we can nd a speci cation lgel test generation
optimization that can produce times (> 1) speedup, and we can obtain another
times (> 1) speedup due to validation reuse. According to the compaan shown in
Table 1-1, the last option can achieve the best possible performancéhe goal of this
dissertation is to develop e cient techniques to reduce theverall validation e ort using

the fourth (last) option.

Table 1-1. A comparison for four optimizations

Optimization Time

None Fspec Tspect Frota Timp

Speci cation level Fspec Tspec= + Frota Timp

Reuse Fspec Tspect Fspec Timp= * Fimp Timp

Speci cation level + Reuse Fspec Tspec= + Fspec Timp= + Fimp Timp

1.2.3 Challenges

Each of the components (such as IP cores, processors and measd in a SoC
design can be veri ed using existing validation approachesiowever, the validation of
the overall system is extremely complex due to exponentigllarge number of possible
interactions that are extremely hard to model, analyze andalidate. Although the
potential improvements proposed in the previous sectionems promising, there are four
fundamental problems in automated generation of directecests for SoC architectures.
The rst challenge is to decide speci cation models for SoCrehitectures and how
to verify the speci cation to ensure that it can be used as a daen reference model.
The next challenge is to identify a comprehensive functiohaoverage metric to enable
coverage-driven generation of properties and associateigttlevel tests. The third and
most important challenge is how to signi cantly reduce the ¢st generation complexity
to avoid state space explosion problem. Finally, due to sigoant di erences between
speci cations and implementations, a major challenge is koto e ciently reuse the

speci cation-level properties and tests for validation o5oC implementations.

20

1.3 Dissertation Contributions
My research employs a top-down validation methodology ugina combination of
simulation based approaches and formal methods to addresgetfour challenges mentioned
in Section1.2.3 The objective of my research is to develop tools, technigsi@nd
methodologies to enable automatic generation of directedrfctional tests to drastically

reduce the overall veri cation e ort as well as to improve the quality of SoC designs.

Coverage Model Property RTL Assertions
(fault models) Reflnw

A

A4
4

SOC Architecture Property ™\ Properties - property Property SOC Design
(System-level Models) Generation Clustering Clusters (Implementation)
1

A v RTL Tests

Specification ¢ ¥ /I'_est_ Test
Validation System-level Tests Generation /1y Tests \Refinement

Figure 1-3. Top-down validation of SoC architectures

Figure 1-3 outlines the proposed validation methodology for SoC ardieictures using
system-level speci cation. It consists of four major conibutions as follows:

Formal modeling of SoC designs: Since most existing SoC speci cations are
not formal enough to enable automated test generation, thdissertation proposes
an approach for automatic speci cation analysis. It can exact formal models from
semi-formal hardware and software speci cations.

Coverage-driven property generation: Functional coverage plays an important
role to determine the adequacy of functional validation. Tis dissertation de nes
various fault models for SoC speci cations. Based on thesault models, we can
automatically derive properties to validate the speci ed dinctional scenarios.

E cient directed test generation: To reduce the overall test generation time
for the same design with a large set of properties, this dissgion proposes various
clustering methods which can cluster the similar propertgetogether to share the
learnings during test generation. The proposed frameworkvestigates two kinds

of learnings based on con ict clause forwarding as well asaigon ordering. Such
learnings can be used to avoid repeated validation e orts beeen similar properties.
For complex properties without learning opportunity, thisdissertation proposes two
decomposition techniques that can actively achieve the leang to reduce its test
generation time.

Automated re nement of validation e orts: This dissertation develops a
prototype tool which can automatically convert TLM level tests and properties into

21

RTL tests and assertions to enable implementation level vdation. Based on this
validation e ort reuse, this dissertation proposes a methaology which can check the
assertion-based functional equivalence between spectioms and implementations.

The rest of this dissertation is organized as follows. Chagt?2 describes how to
extract formal models from system level speci cations of &designs. Chapter3 describes
how to generate properties based on our proposed fault mosleChapter 4 to 6 discuss
how to e ciently generate tests to enable functional validaion. Chapter 4 describes
how to divide the properties into several groups such that el group contains similar
properties that can bene t from each other during test genation. Chapter 5 presents the
decision ordering based learning techniques which can diaally reduce the overall test
generation time. Chapter6 proposes various decomposition techniques to actively nd
the learnings for a complex property. Chaptei7 presents the methodology for automated
property and test re nements. It also describes how to utilie the validation re nement for
functional equivalence checking. Finally, Chapte8 concludes the dissertation and outlines

several future research directions.

22

CHAPTER 2
FORMAL MODELING OF SOC SPECIFICATIONS

Modeling plays a central role in design automation of SoC dritectures. It is
necessary to develop a speci cation language that can mod®implex systems at a higher
level of abstraction and also enable automatic analysis amgneration of e cient reference
models. The language should be powerful enough to capturaeghilevel description of a
wide variety of SoC architectures as well as should be simmeaough to allow correlation
of the information between the speci cation and the architeture/system manual.

As a system level speci cation, SystemC TLMT8| establishes a standard to enable
fast simulation speed and easy model interoperability forandware/software co-design.

It mainly focuses on the communication between di erent fuctional components of a
system and data processing in each component. Although UMk being used as a de facto
software modeling tool, UML Pro le for SoC B8] is proposed as an extension of UML

2.X to enable SoC hardware modeling. It can be used to captutiee system behavior

for both SoC software and hardware componentg9, 65, 77]. However, both SystemC

TLM and UML diagrams are not formal enough for automatic testgeneration using model
checking techniquesy]. Consequently, the ambiguity, incompleteness, and comidiction in
speci cations can lead to di erent interpretations. Therdore it is necessary to formalize
the semantics of SoC speci cations.

This chapter introduces two widely used SoC speci cationsSystemC TLMs for
hardware modeling, and UML activity diagrams for software mdeling. Next, it describes
how to automatically extract the formal models from speci ations to enable subsequent
validation steps. The rest of the chapter is organized as folvs. Section2.1 introduces the
formal modeling of SystemC TLMs. Sectior2.2 proposes the formal modeling techniques
of UML activity diagrams. Section 2.3 presents the case studies using both SystemC TLM

designs and UML activity diagrams. Finally, Sectior2.4 summarizes the chapter.

23

2.1 Speci cation using SystemC TLMs

As a framework built on C++, SystemC [70] deliberately mimics the hardware
description languages such as VHDL and Verilog. With an evedriven simulation
kernel, SystemC can be used to simulate the behavior of con@nt processes which can
communicate with each other using procedure calls or otherathanisms o ered by the
SystemC library. Generally, SystemC is often associated tiiTransaction-Level Modeling
(TLM) [16, 78], because SystemC TLM provides a wrapper to facilitate therpcess of
communication modeling. Since SystemC TLM provides a rapiprototyping platform for
the architecture exploration and hardware/software integation [30], it is widely used to
enable early exploration for both hardware and software diggs. It can reduce the overall
design and validation e ort of complex SoC architectures.

To enable automated analysis, various researchers haveettito extract formal
representations from SystemC TLM speci cations. Abdi et al[2] introduced Model Alge-
bra, a formalism for representing SoC designs at system levelh& work by Kroening et
al. [48] formalized the semantics of SystemC by means of labeled pke structures. Moy
et al. [64] provided a compiler front-end that can extract architectue and synchronization
information from SystemC TLM designs using HPIOM. Karlssoret al. [4]] translated
SystemC models into a Petri-Net based representation PRES-his model can be used
for model checking of properties expressed in a timed tempbtogic. Habibi et al. [34]
proposed a method that adopts the formal model AsmL. A state athine generated from
AsmL can be veri ed, and then can be translated to both Syste@ code and properties
for low level validation. All these modeling techniques fars on the formal modeling of
SystemC speci cations. However, none of them investigatéé automated test generation
for transaction validation. This section discusses how tax&act the formal models from

SystemC TLM speci cations to enable automated test genergn.

24

2.1.1 Formal Modeling of SystemC TLMs

As a high level speci cation, SystemC TLM emphasizes the fationality of the data
transfers instead of actual implementation. A SystemC TLM dsign interconnects a set of
processes communicating with each other using transactiolata token (i.e., C++ objects).
The initial process starts a communication, and the target qpcess passively responds
to the communication. Similar to the producer/consumer moels, each process does the
following tasks: consuming data, processing data and procing data.

Since SystemC is based on C++, it supports various programimg constructs (e.g.,
template, inheritance, etc.). Although the concept of som&LM components (signals,
ports, etc.) is easy, their C++ implementation details are eally complex. Therefore,
directly translating their behaviors to enable automated alidation is di cult. In our
framework, we abstract such SystemC components and hide thmeplementation details
using the pre-de ned SMV constructs. Furthermore, the unddying complex SystemC
scheduler aggravates the modeling complexity. For Systemld-M, to mimic the parallel
execution of processes, the SystemC scheduler activates tbady-to-run processes in a
\non-deterministic" way. However, since SMV is parallel inessence, it is not necessary to
model the SystemC scheduler explicitly.

For TLM, two most important factors are the transaction datatoken and the
transaction ow. So the extracted formal model of TLM specications should re ect
both information. In our test generation framework, it is rguired that the extracted
models can not only guide the generation of SMV speci catigrbut also can be used to
automatically derive the properties for TLM test generatio. De nition 1 gives the formal
model of SystemC TLM designs.

De nition 1. The formal model of a SystemC TLM design is an eight-tuple (, P, T,

A, E, M, |, F) where
is a set of transaction data tokens.

P=fpp;:::;pngis a set of places.

25

A f P Tg[f T Pgisa setofarcs between places and transitions.

E = fe;;e;:::;6&Q0is a set of arc expressions. The mapping Expressian(= €
(&2A,1 i Kk)gives the enable conditior for a. A token can pass ar@; only
wheneg is true.

M ;2P T ! 2P s a function that describes the internal operations on inpu
transaction data and output transaction data of a transitio.

| 2 27 species the initial state.

F 2 speciesthe nal states. m
In our framework, we use the graph model as an immediate forro tapture the

execution as well as interconnection of processes.

I tl t5
] M1 M5 — Q/ . O\ O

" o,
= Qﬁ ~
\:4
M4 Q/V

a) Interconnection of modules b) Graph model of the module interconnections

Figure 2-1. Mapping from a SystemC structure to corresponalj graph model

Figure 2-1a) shows an interconnection of six modules. Each arrow indies a
port binding between two modules. Figure-1b) shows the graph representation of its
corresponding formal model. In the formal model, each ciecls called aplacethat is used
to indicate the input or output bu er of a module. It can temporarily hold the transaction
data for later processing. The vertical bars ar&ransitions which are used to indicate
modules which contain processes to manipulate input and quit transaction data tokens.

The places without incoming arcs arénitial places which start a transition. The places

26

without outgoing arcs aretarget places A transaction data token ows from the initial
places to the target places and token values may change inmsitions when necessary.
The internal logic of a transition determines the ow of the tansaction.
2.1.2 Transformation from SystemC TLM to SMV

Model checking techniques are very promising for directe@gt generation in hardware
and software domainsg, 9, 71]. In our framework, we adopt SMV 56| as the formal
speci cation to describe both the structure and behavior iformation of SystemC TLMs
because of the following reasons. First, the underlying santics of SMV is similar to
the semantics of SystemC scheduler. So we can mimic most Tls\Wbehaviors using SMV
without modeling complex scheduler behavior. Second, SM\hé TLM have the similar
structure hierarchy. Each processing unit encapsulated iy TLM module corresponds to
a SMV module. The interconnections (e.g. channels, ports drsockets) between TLM
modules can be abstracted by using module parameters in SMVhird, like SystemC,
SMV provides a rich set of programming language constructsich asif-then-else case-
switch and for loop statements. Fourth, SMV main module connects, similar to $gemC,
each component of the system. Finally, SMV supports variodgnds of data types and
data operations. Especially users can de ne their own datgpe. All of these SMV
features facilitate the translation from TLMs to SMV speci cation. It is important to
note that, due to the expressiveness of the SMV language, cemtly our framework just
supports loosely timed modeling. We are planning to use théed automata checker
(such as UPPAAL [8])) in our framework to enable the timing veri cation of transactions.

As an intermediate form for TLM to SMV translation, the graph model provides
both structure and behavior information. Such informationneed to be collected for a
translation to a SMV representation to enable automated dected test generation. The
structure information includes the data type de nition and connectivity between modules.
It corresponds to the description of transaction data tokems well as interconnection

of transitions and places in the graph model. The behavior fiormation contains token

27

processing and token routing. In the formal model, it represits the internal processing
of a transition. This section discusses how to extract bothrsictural and behavioral
information and transform it to a SMV speci cation. We use the example shown in
Section2.3.1to illustrate how to extract the formal model from a router example.
2.1.2.1 Structure Extraction

In TLM, the content of a transaction data token indicates thetransaction ow and
the output of each component. So it consists of the key part GiLM tests. Generally a
transaction token consists of several attributes with di eent types. Because data type
determines the size of the speci ed variable which in turn gcts the model checking
performance, it is necessary to gure out the data type of a ten. Besides all native C++
types, SystemC de nes a set of data type classes within the ma&spacesc_dt to represent
values with application-speci ¢ word lengths applicabled digital hardware. SMV also
supports various data types such as array, Boolean, integestruct and so on. Such data
type de nitions facilitate the mapping of data types betwea SystemC TLM and SMV
speci cation. During the transformation, the word lengthsof user-de ned type need to be
considered. Figure2-2 gives an example of the routepacketin the form of SystemC TLM
and SMV respectively. For examplesc.uint < 2> has 2 bits and will be transformed to a

range 0:3 in SMV.

class packet{ typedef packet struct{

public:
SC_uint<2> to_chan; to_chan : 0..3;
SC_uint<6> payload_sz; payload_sz : 0..63;
SC_uint<8> payload[4]; payload : array 3..0 of 0..255;
SC_uint<8> parity; parity : 0..255;

h }

a)packet in SystemC TLM b) packet in SMV

Figure 2-2. An example of data type transformation

Derived from the base classc.module TLM modules are the main processing units
for the transaction data. Generally eaclsc. modulecontains the de nitions of processes

whose types ar6SsC.METHOD or SC. THREAD . Modules communicate with each other

28

by sending and receiving transaction data tokens via outpuand input ports. SystemC
provides a communication wrapper for the system componenfsodules). In SystemC,
there exists various binding mechanism (e.g. port to expotiinding, export to export
binding and port to channel binding) to establish interconection between modules.
Usually each binding corresponds to a channel such as a nst-rst-out (FIFO) channel

to temporarily hold transaction tokens.

class router : public sc_module{

public:
sc_export<tim_put_if<packet> > packet_in;
sc_export<tim_fifo_get_if<packet> > packet_outO;
sc_export<tim_fifo_get_if<packet> > packet_outl;
sc_export<tim_fifo_get_if<packet> > packet_out2;

router(sc_module_name module_name);
void route();
private:
tim_fifo<packet> chanO, chanl, chan2, input_;
packet tmp_packet;

k

Figure 2-3. An example of SystemC TLM module

Figure 2-3 shows the TLM module structure of a router. The classc export can be
used as a port to communicate with other modules. Because theerface type of port
packetin is tim _put_if<packet> , it is an input port. In contrast, packetoutx (x=0,1,2)
have the interfacetim fifo _getif<packet> , so they are output ports. During the router
communication, each connection between a port and an exparses a FIFO channel to
temporarily hold a packet.

Structurally similar to SystemC TLMs, SMV speci cation is aso modularized
and hierarchically organized. So the extraction of structe information needs to map
the TLM constructs into the right place of the SMV speci cation. Figure 2-4 shows
the SMV module skeleton corresponding to example in Figu 3 after the structure
extraction. In SMV, a module uses the parameters as the inpatnd output ports to both
communicate with other modules and con gure the system stas de ned in the main

module. In the example of Figure2-4, the SMV module has one input port and three

29

output ports. The type of the input and output ports is packet All the declarations of
member variables except for the FIFO channels are declaredthe SMV speci cation.
Because a FIFO channel together with its port pairs are absdcted as a SMV parameter,
it is not necessary to create a variable in SMV explicitly. Bsed on context during the
elaboration, some of the declared variables will be initiged. In SMV speci cation, each
output ports and local variables need to be initialized. Foexample,packetoutO is a
parameter which refers to an output port, so it will be initidized with a value \0". In our
framework, it is required that all such module connectionsheuld be de ned in the module

sc_top.

module router(packet_in, packet outO, packet outl, pack et_out2){
input packet_in : packet;
output packet _outO, packet outl, packet_out2: packet;
tmp_packet : packet;

init(packet_out0):=0;
init(packet_outl):=0;
init(packet_out2):=0;
init(tmp_packet):=0;

Figure 2-4. An example of SMV module

2.1.2.2 Behavior Extraction

TLM behavior describes the run-time information of TLM incuding transaction
creation, transaction manipulation and module communic&n. Transaction creation
initializes a transaction by creating a data token (i.e. a C+ object) with proper values.
Transaction execution describes the transaction ow amonthe modules. A module is
a container which has a cluster of relevant processes. Sucggesses will handle the
incoming transaction tokens and decide where to send themcacding to the speci ed
conditions. Thus di erent value of a token will lead to di erent transaction ows. In
our current prototype release, there are two kind of procesommunication supported in
transaction ows: 1) direct procedure call from one proceg® another process, and 2)

channel-based events triggered by the procedure call. Foraenple, in the blocking mode,

30

a process can fetch a transaction data token from the speadenput port only when the
corresponding channel is not empty. Otherwise, the operati \get" will be blocked until

there is an event triggered by the \put" operation by other pocesses.

router::router(sc_module_name mname): sc_module(mname){
packet_in(input_); packet_outO(chanO);
packet outl(chanl); packet out2(chan2);
SC_METHOD(route);
sensitive << input_.ok_to_get();
dont_initialize();
}
void router::route() {
input_.nb_get(tmp_packet);
if(tmp_packet.to_chan == (sc_uint<2>)0)
chan0.nb_put(tmp_packet);
else if(tmp_packet.to_chan == (sc_uint<2>)1)
chanl.nb_put(tmp_packet);
else chan2.nb_put(tmp_packet);

}

Figure 2-5. An example of TLM process

Figure 2-5 gives the module processoute of the router example. The process receives
a packet from the driver via channeinput_, and then it decides where to send data based
on the packet header informatiorto_chan.

TLM modeling provides some synchronization mechanism fohé communications
between modules. As shown in Figurg-5, the router can fetch the data from the FIFO
gueueinput _ only when the driver put a package and the FIFO channel everik to_getis
triggered. Thus the synchronization between two modules implicitly achieved.

SMV supports many constructs similar to the common programing language
such asif-then-else switch-caseand for loop. So these constructs facilitate the behavior
modeling of processes from TLM to SMV speci cation. Figur@-6is the translated SMV
speci cation of the TLM example presented in Figure2-5. During the translation from
TLM to SMV, we abstract a channel as an implicit bu er betweentwo ports. So a SMV
module will get the input data from its input ports. There is o mapping of the channel in
transformed SMV speci cation. For example, theemp_packetis assigned the value of the

packetin instead of the value ofinput _ shown in the TLM example in Figure2-5.

31

module router(packet_in, packet _outO, packet outl, pack et_out2){
next(tmp_packet) := packet_in;
if(tmp_packet.to_chan = 0){
next(packet_out0) := tmp_packet;
next(packet_outl) := 0;
next(packet_out2) := 0;
lelse if(tmp_packet.to_chan = 1){

next(packet_out0) := O;
next(packet _outl) := tmp_packet;
next(packet_out2) := 0;

telse{
next(packet_out0) := O;
next(packet_outl) := O;
next(packet_out2) := tmp_packet;

}
Figure 2-6. An example of SMV process

2.1.3 A Prototype Tool For TLM to SMV Translation

We developed a prototype tooll LM 2SMV which can transform SystemC TLM
speci cations to corresponding SMV models for automated iicted test generation. The
details of the implementation are described in Section.2.3.1

2.2 Speci cation using UML Activity Diagrams

Formal veri cation can be used to verify the correctness ofp®ci cations, so it can be
used to guarantee the quality of UML models84]. UML activity diagram adopts Petri-net
semantics which is promising to describe the concurrent bakor [18, 51, 88]. There are
several approaches that use model checking techniques toifyeUML activity diagrams.
Eshuis [79 presented a translation procedure from UML activity diagams to the input
language of NUSMV 20]. However, the translation is used to verify the consistegc
between UML activity diagrams and class diagrams. It focuseon checking the consistency
between two di erent models. Guel and Mammar B1] provided a formal de nition for
timed activity diagrams. They outlined the translation from the semantic speci cations
into PROMELA - an input language of the SPIN model checker. Daet al. 2] proposed

a method to deal with timing veri cation of UML activity diag rams. All these veri cation

32

work primarily focus on checking the consistency or corrasss of the model itself instead
of generating directed test cases.

In this chapter, we adopt UML 2.1.2 §9] as our speci cation. To reduce the
complexity of the testing work, we restrict our testing target and investigate a subset
of activity diagrams. The subset mainly contains action nogs, control nodes, object nodes
and control and data ow. Especially for the object node, we ssume that it can hold at
most one object at a time and it does not supportompetition and data store This section
rst gives the notations used in UML activity diagrams. Thenit presents the formal
de nitions of the UML activity diagrams. Finally, it descri bes the translation from UML
activity diagrams to SMV formal models.
2.2.1 Notations

UML activity diagram is used to coordinate the execution of etions. An action takes
a set of inputs and converts them into corresponding outputsAn activity (behavior)
consists of a set of actions and ow edges. The actions are neoted by object ow edges
to show how object tokens ow through and connected by contfoow edges to indicate

the execution order.

Action Node: Object Node:
O R ®

Initial Flow Final Activity Final
Control Nodes: I i I
Decision/Merge Fork Join

Figure 2-7. UML activity nodes

UML activity diagrams adopt the semantics like Petri-net [2]. It is a type of directed
graphical representation. Tokens which indicate controlradata values ow along the edges

from the source node to the sink nodes driven by the actions @éronditions. An activity

33

diagram has two kinds of modeling elements: activity nodesid activity edges. More
specially, there are three kinds of nodes in activity diagms:
Action Node : Action nodes consume all input data/control tokens when tay are
ready, generate new tokens and send them to output activitydges.
Object Node : Object nodes provide and accept data tokens, and may act as
bu ers, collecting data tokens as they wait to move downsti@m.
Control Node : Control nodes route tokens through the graph. The control ades
include constructs to choose between alternative ows (deston / merge), to split or
merge the ow for concurrent processing (fork / join).
Figure 2-7 shows the basic constructs of activity nodes. An action nods denoted
by round cornered boxes. It represents an execution of opBoams on input tokens, and
generated new tokens will be delivered to an outgoing edget object node denoted
using rectangle boxes is used to temporarily hold the datakens waiting to be processed
or delivered. For simplicity, we assume that object nodes dmot support competition
and data storefor test case generation. A ow in an activity starts from theinitial node.
When a token arrives at a ow nal node, it will be destroyed. The ow nal node has
no outgoing edges, so there is no downstream e ect. When ndems exist in an activity
diagram, the activity will be terminated. The activity nal nodes are similar to ow nal
nodes, except that when a token reaches one activity nal ned the entire ow will be
terminated. Decision nodes and merge nodes use the same ghapdiamond. Decision
nodes choose one of the outgoing ows according to the valueBoolean expressions
labeled on the outgoing edge. Merge nodes select only onengbiming ows to deliver to
the next activity node. Forks or joins are shown by multiple erows leaving or entering the
synchronization bar, respectively, to describe the conaent behavior of a system. When
a token arrives at a fork node, it will be duplicated across # outgoing edges. Join nodes
synchronize multiple ows. The tokens must be available onvery incoming edge in order

to be passed to outgoing edges.

34

Activity nodes are connected by activity edges along whiclokens may ow under

some condition. Activity edges include control and data owedges as follows:

Control Flow Edge

: Control ow edges indicate the execution sequence of aatie.

Object Flow Edge : Object ow edges indicate the relation of data token

transmissions. It provides the inputs to actions.

In our method, we simplify the syntax and semantics of UML actity diagrams. We

combine the control and data token together as a new kind of ken which contains both

control and data information. Such token can ow through adlvity edges. In other words,

we do not distinguish control ow edges and object ow edgesiour framework.

start
1

a
b

[incorrect]

t2
[correct] ¢ t3

Ask for amount

[resolved]

t4

[not resolved

Prepare to
print receipt

Generate receip
content

Finish transaction
and print receipt

ul

end ©~

Figure 2-8. The UML activity diagram of an ATM

Handle incorrect]
access code

Figure 2-8 shows an example which uses most of the elements shown in Feg2-7.

It describes the functionality of withdrawing money from anAutomated Teller Machine

35

(ATM) [26]. A user needs to enter the access code rst. In case of faduthe user can
input the access code again. The operation will abort if aceg code is wrong in both
cases. If the input access code is right, the user can enteetamount of money he wants
to withdraw. At the same time, the printer will be ready to print a receipt. Once the
ATM decides whether there is enough money the user can wittal, it provides the cash
and generates the information for this transaction. Finajl, the printer prints the receipt
and the transaction is complete.

The token for this example contains the ATM transaction infomation such as the
input access code and input cash amount, the context inforrtian such as the available
cash amount and correct access code. In general, a token mseall the data information
required for this activity. Table 2-1 shows the composition of a token of the ATM activity

diagram. It consists of 5 variables which will be used to makée decisions illustrated in

Table 2-2

Table 2-1. Break down of a token in Figure&-8
Variable Type Description
accesscode string user's access code

accesscodeinput string user access code input
accesscoderesolve string user access code input correction
amount_input integer user cash amount input
amount_available integer cash amount available

Table 2-2. Condition on the ow edges in Figure2-8

Activity Edge Condition Description
t2 incorrect accesscode = accesscodeinput
t3 correct accesscode= accesscodeinput
t4 resolved accesscode= accesscoderesolve
t5 not resolved accesscode = accesscoderesolve
t7 amount available amount_input < = amount_available
t8 amount not available amount_input > amount _available

2.2.2 Formal Modeling of UML Activity Diagrams
Without formalism, it is hard to describe and model the actiity diagrams accurately.

UML activity diagram itself is a semi-formal speci cation that cannot be directly mapped

36

to a model checker input (e.g., SMV models). We use Petri-neis an intermediate formal
model between activity diagrams and SMV model, because thetA-net formalism can
capture the major functional scenarios as well as guide theanslation.

De nition 2 describes the relation between the activity nodes and ow egs with a
Petri-net semantics. It does not model the full features ofdivity diagrams and formally
depicts the static abstracted structure of activity diagrans which can be used to describe
the scenarios that need to be tested.

De nition 2. An activity diagram is a directed graph described using eigtuple (A, T, F,
C,V, A a, a) where

F f A Tg[f T Agisasetof owedges between activity nodes and completion
transitions.

C = fc;¢5:i0; 69 is a nite set of guard conditions. Here,¢ (1 | n)is a
predicate (expression) based on the input variables. Thasea mapping fromf; 2 F

to ¢, referred asCond(f;) = ¢.

is a positive integer.
M:A V! Visa mapping that describes the value change of the input ahles
inside an activity node.
a 2 A is the initial node, andar 2 A is the nal node. There is only one completion
transition t 2 T and c2 C such that(a,;t) 2 F, and for anyt°2 T, (t%a) 2 F and
(ae;tY2F. m
In our formalization, a node can be an action node, an initiahode or a nal node.
We use thecompletion transition and ow edgeto model the behavior of the control
nodes. In the graph, the nodes are connected by ow edges agsated with a completion

transition. Because activity diagrams allow tokens to exisn the ows concurrently,

37

the completion transition can be used to synchronize the tek ows. If a completion
transition has multiple incoming ow edges, it will do the jan operation. If there are
multiple outgoing ow edges, then it will do the fork operaton. For each ow edge, there
may be a condition which can guide the token traverse. The gvh has one initial node
that indicates the start of control and data ows. Activity d iagrams have two kinds of
nal nodes: ow nal nodes and activity nal nodes. We combine them together and use a
join operation to get a new activity nal node. So in the de nition there is only one nal
node.
When analyzing dynamic behaviors of an activity diagram, weeed to use thestates
(a set of actions executing concurrently) to model the stagiof a system. Current state
(denoted by CS) of an activity diagram indicates the actions which are beig activated.
De nition 3. Let D be an activity diagram. The current stateCS of D is a subset ofA.
For any transition t 2 T,
t denotes the preset df, then t=1f aj(a;t) 2 Fg.
t denotes the postset df thent = faj(t;a) 2 Fg.
enabledCS) denotes the set of completion transitions that are assoadtwith the
outgoing ow edges ofCS, then enabledCS) = f t t CSag.
rable(CS) denotes the set of transitions that can be red bm CS , then rable(CS)=f tjt 2
enabled(CS)V t are all completedv 9n 2 A. Cond(t;n)) is satis ed v
(CS t)\'t = ;9. After somet is red, the new current state CS°= fire (CS;t) =
(Cs p[t. |
The current state of an activity diagram indicates which advity nodes are holding
the tokens. For example, wheri d; f g is the current state of the activity diagram in
Figure 2-8, two tokens are in the activity nodesd and f individually. At this time, only
the transition associated withtg is rable. If it is red, then the next state is fe;fg.
Because of the inherent concurrency, several transitionarcbe red at the same time.

For an activity diagram, all the rable transitions in a state form aconcurrent transition .

38

De nition 4. Let D be an activity diagram. For a stateCS of D, a concurrent transition
is a set of completion transitionsty;t,;:::;t, 2 firable (CS) where

1.8ij(1 i<j n), t\ t=;;

2. 812 (enabledCS) f ti;t,;:::;t,0), there existsi (1 i n) such that t\ t; 6 ;.
After ring from state CS, the current stateCS°= fire (CS;) = S L, (fire (CS;t)) =
S, S

L(es)). |

An instance of dynamic behavior of an activity diagram can beepresented by a
sequence of states and concurrent transitions. We call it@ath of the activity diagram.
Because a path may have cycles, during the model checkingjsthard to determine the
cycle numbers, so we neglect the cycles on a path. We call sachath askey path .

De nition 5. A path of the activity diagramD is a sequence of states and concurrent
transitions, let

Inl

1O gl b oot

= So Sn

wheresy = fa, g, s, = farg, and sj.; = fire (sj; i) foranyi (0 i<n). is akey path
T
if there is no state repetition in , i.e. 8i;j (0<i<]j n), s; S = . []
There are ve key paths in Figure2-8.
ftlg

ft2g ft5g

1=f start ¢f atf btf endg
=fstartd ftlg ad ftsg cd ftﬁg dummy;f d f”g d;fd ftgg e;fg!fiIlog ag !ffng endg,
s=fstartd fio ad froo cd freo dummy;f d froo e;fg (f§109 a9 (g endg,

ftlg ft?g d;f g ftQQ e;f g!fflog 99 ftllg

ft6g

4=fstartd ad ftzg bg f“’g cd dummy;f ¢

fendg,
s=fstartd fio ad free bg frae cd freo dummy;f d froo e;fg!fflog a9 (gt endg.
We insert adummy node here because we assume that outgoing edges of the fork
node must connect to an activity rather than a selection nodeFor a key path, when ring

transitions, we need to consider guard conditions. For clidy, in Figure 2-8 we did not

label the condition guards for each transition.

39

De nition 6. Let D be an activity diagram. An interaction of the activity diagam is a
set of activity nodes (actions) that can be activated simaheously. A \k-interaction” is a
set that contains k activity nodes.

In order to detect whether a concurrent state of an activity é¢agram is reachable
or can be activated, we use the ternmteraction ! to describe the scenario that a set
of actions can be activated simultaneously. For example, the Figure 2-8 fd;fgis an
example of \2-interaction™ in the ATM.
2.2.3 Transformation from UML Activity Diagrams to SMV

Our technique can extract both the control and data ows by pasing a UML activity
diagram. The translation consists of two parts: static infanation extraction and dynamic
information extraction. Static information extraction analyzes the structure of an activity
diagram and then generates a skeleton of the SMV input. The dgmic information
extraction analyzes the dynamic behavior of the system by dasing on control and data
ow analysis (i.e. the state change of activities, data mapuulation in activities and the
condition of the transitions).
2.2.3.1 Static Information Extraction

This step collects both the input data manipulated by the advities and the
predicates used as guard conditions of the transitions. Fexample in Figure2-8, there
are ve input data variables that determine the data and contol ows: accesscode
accesscodeinput, accesscoderesolve amountinput, and amount available Because there
may be a number of possible values for a variable, during mddecking it will cause the
state space explosion. In our approach, we adopt the modeledker SMV which does not

support complex data types (e.g., oat, double and etc.). Foeach variable, it is required

1 Unlike the interaction in UML Interaction overview diagram, the interaction here
means that several actions are actived at the same time.

40

that the value range should be speci ed explicitly. To avoicstate space explosion, we use
the following methods to reduce the complexity of data types
Scaling: Scaling is used to proportionally reduce the value range ofvariable.
Reduction: Reduction is used to reduce the cardinality of possible vads for a
variable.
Since it is hard to implement the above techniques automatdly, before the SMV
translation, the variable type information is tuned manualy for activity diagrams.

In our translation, we assign each activity with astate variablewhich has three
possible state valuesunvisited (0), visiting (1) and visited (2). Unvisited indicates that
no token has passed through this activity nodeV isiting indicates currently the activity
is holding one or more tokensvisited indicates that some token has passed through
this activity node and currently there is no token in this acivity node. The extraction
procedure instantiates the activity state variables and asgns suitable values to them.
During initialization, the initial activity node is assigned visiting that means there is a
token ready at the initial state. Other nodes are initialize to unvisited. Also, we assign
each ow edge a state variable which has two possible valudsted (1) and unfired (0).
Fired means some tokens have owed from the incoming activity noddo its outgoing
activity nodes. Unfired means no token has passed through this activity edge. Initig
we set them with value 0.

Figure 2-9 shows the generated skeleton of Figu8in SMV format [20, 56|]. There
are 3 modules in this skeleton. The modulstate de nes the token information (described
in Table 2-1) as well as the state variable for activity nodes and ow edge For example,
verify _accesscodeis a state variable for an action with three states. Initiay it is
assigned the stataunvisited (0). Module ATM gives a static skeleton without dynamic
behavior information. In this phase, we just collect variales without any processing. The
missing state transition details will be described in Sean 2.2.3.2 The module main

creates the module instances and elaborates them togeth&or example,st is an instance

41

of state module andatm is an instance of ATM module. We bind thest and atm together,

becauseatm will handle the state changes of variables ist.

MODULE state
VAR
access_code: { Al, B1, C1 };
access_code_input: { Al, B1, C1, D1 };
start: 0..2;
syn_1: 0..2;
verify_access_code: 0..2;
t2_cond: 0..1;
t3_cond: 0..1;
ASSIGN
init(start):=1;
init(syn_1):=0;
init(verify_access_code):=0;
MODULE ATM(st)
ASSIGN
next(st.start):=
next(st.t2_cond):=

next(st.dispense_cash):=

next(st.t7_cond):=
MODULE main() {

st: state; atm: ATM(st);

p_print: prepare_print(st);

check: check_amount(st);

}
Figure 2-9. The generated skeleton after structure extraicin

2.2.3.2 Dynamic Information Extraction

After static information extraction, we need to extract boh data manipulations and
transitions of state variables, because they will determénthe data and control ows.

In our method, we de ne a set of rules that specify the state émsition for each
activity node and the value changes of each data. Figu&10shows the details of
the rules. In these rules, we use the preset and postset naotats. In these rules, the

assignment and constraint to a set means the assignment anghetraint to each element

42

Rule 1 : If nis an initial node
init (n) :=1;
next(n) :=2;

Rule 2 : If nis a nal node, and there are k incoming transitions ty; to:::tg:
init (n) :=0;
next(n) ;= case
((t1=1& cond(t)) j (t2 =1 & cond(tz))]
2 (tk=1& condty))): 2;
1l:n;
esag

Rule 3 : If n is an activity node (not join or fork), and there are k inc oming
transitions tq;to:ity.
init (n) :=0;
next(n) ;= case

n=1:2;

(t1=1& condty)) j (t2=1& cond(tz)) j

2 (tk=1& condty))) : 1;
1:n;
esag

Rule 4 : If n is a fork node, and the corresponding transition ist.
init (n) :=0;
next(n) ;= case

n=1&t >0:2;

t=1:1;
1:n;
esagq
Rule 5 : If n is a join node of transition t, and a;; a,:::ax are k elements of t.
init (n) :=0;
next(n) ;= case
n=1:2;
nN=0&(a;+ay+:x+a=2 k):1,
n=2&(a;+ay+:+a<2 k):0;
1:n;
esag
Rule 6 : If t is a transition which corresponds to the ow edges.
init (t) :=0;
next(t) := case
lcondit) & t=1:0;
condt) & t=1:1;
1:t;

esacDynamic Information

Rule 7 : If v is a variable whose new value is changed by expressi@xp; in
the activity act; (1 i n).
next(v) := case

act; =1 : exps;

act; =1 : expy;

act, =1: expn;
1:v;
esag

Figure 2-10. Translation rules for state and data transitios

43

in the set. For example, if t = fa;;a;:::&Q,then t = 1 meansa; = 1&a, =
1&::: &a =1 and condt) meanscond(a;;t)) &cond(ay;t)) & ::: &cond(ak;t)).

Rule 1 speci es the translation rule for the initial node. Tle token will be rst put
at the initial state and the node is marked agisited in the next step. Rule 2 species
the translation rule for the nal node. At rst, the state is unvisited, when one of the
incoming edges is activated, its state will becomesited. Rule 3 de nes the state changes
of an activity. Initially, the state of an activity is unvisited. If the incoming edge is
activated, the state will becomevisiting in the next step. If the current state isvisiting ,
the state will change tovisited in the next step. Rule 4 presents the state transition of
the fork nodes. When the incoming edge is activated, the forkode will maintain the
visiting status until all the outgoing edges are visiting or visitedRule 5 gives the state
transition of join nodes. The join node is used to synchrorezthe token ows. When all
the incoming ows are ready, the transition correspondingd the join node can be red. In
this rule, if we want to re the transition, we need to wait until all the activity nodes in
the preset of the transition are visited. Rule 6 shows how to amipulate the state change
of the transition when it is red. Rule 7 presents the transléion for value change of the
variables. If an activity performs some operation on the vaable, we can modify the value
of the variable only when the activity state isvisiting .
2.2.4 A Prototype Tool For UML to SMV Translation

Based on the framework proposed in Sectidh2.3 we developed a prototype tool
which can automate the process of test case generation. Thmot takes three inputs: type
de nition of the data which is used in the activity diagram, the context information which
set the parameters for the execution of an activity diagrame(g. when to trigger the initial
node and so on), and UML activity diagrams. The UML activity dagrams are stored in
the format of XML Metadata Interchange (XMI) les. The tool can parse the XMl les to

get the static and dynamic information for formal model traslation. Combined with the

44

context information and data type information, a formal mockl can be generated using the
proposed mapping rules.
2.3 Case Study

This section presents ve representative high-level specations for SoC designs.
First, it describes three TLM speci cations: router, MIPS pocessor and Alpha AXP
processor. Next, it presents two UML activity diagrams: a aarol system and a online
stock exchange system (OSES).
2.3.1 Example 1: A Router

Figure 2-11shows the TLM structure of a router design. The router condts of ve
modules: one master, one router and three slaves. The Sys@mrogram consists of 4
classes (one class for packet de nition, one class for thewr, one class for the router and
one class for the slave), 8 functions, and 143 lines of codéheTmain function of the router

is to analyze and distribute the packets received from the rsger to target slaves.

Router Slave 0
get_data
L
]
Master
route Slave 1

ut_data [get data |
O Plled O e -0 7Y

Slave 2
]\ get_data
0

Figure 2-11. The TLM structure of the router

At the beginning of a transaction, the master module creates packet. Then, the
driver sends the packet to the router for package distributin. The router has one input
port and three output ports. Each port is connected to a FIFO k er (channel) which
temporarily stores packets. The router has one processute which is implemented as a
SC.METHOD. The route rst collects a packet from the channel connected to the drer,

decodes the header of the packet to get the target address aflave, and then sends the

45

packet to the channel connected to the target slave. Finallghe slave modules read the
packets when data is available in the respective FIFOs. Theansaction data (i.e. packet)
ows from the master to its target slave via the router. The ow is controlled by the
addressto_chan in the packet header. By using our proposed approach in Semti2.1.2

the automatically generated SMV model contains four moduseand 145 lines of code.

Y ---» Data Transfer

| o e e e WriteBack — Instruction Flow

Figure 2-12. Graph model of a VLIW MIPS processor

2.3.2 Example 2: A MIPS Processor

Figure 2-12shows a simpli ed version of a single-issue MIPSY| architecture. It
has ve pipeline stages: fetch, decode, execute, memory (Ml and writeback. The
executestage has four parallel execution paths: integer ALU, 7 stagnultiplier (MUL1
- MULY7), four stage oating-point adder (FADD1 - FADD4), and multi-cycle divider

(DIV). The oval boxes represent units and dashed boxes regent storages. The solid lines

46

represent instruction-transfer paths and dotted lines ragsent data-transfer paths. After
TLM-to-SMV transformation, the SMV model has 1134 lines of @de.
2.3.3 Example 3: An Alpha Processor

Figure 2-13shows a simpli ed TLM speci cation structure of the Alpha AXP
processor. It consists of ve stages: Fetch (IF), Decode ()DExecute (EX), Memory
(MEM) and Writeback (WB). IF module fetches instructions from the instruction memory.
ID module decodes instructions and fetches the operand dafanecessary. EX module
does ALU operations as well as asserts whether the conditadror unconditional branch
happens. Memory module reads and writes data from (to) the tamemory. Writeback
module stores the result in speci ed registers. The commugation between two modules
uses the port binding associated with a blocking FIFO chanhe&vith only one slot. For
example, there is a binding from theport of IF module to the export of ID module, and
the export of ID module binds to a blockingFIFO channel for holding an incoming
instruction. So each time, the IF module can only issue onestruction to ID module;
otherwise it will be blocked. The whole TLM design contains 6lasses, 11 functions and

797 lines of code. After the TLM-to-SMV transformation, thegenerated SMV model has 6

Ty

modules and 821 lines of code.

F | o [ex [mem [ws

Figure 2-13. TLM of the Alpha AXP processor

a7

2.3.4 Example 4: A Control System
As shown in Figure2-14 the UML activity diagram representation of the control
system consists of 17 activities, 23 transitions and 6 key ths. It has a global integer

variable i which determines token ows. The generated SMV les have 3@tes of code.

Figure 2-14. The activity diagram for a control system

2.3.5 Example 5: A Stock Exchange System

The purpose of the on-line stock exchange system (OSES) ispicess three
scenarios: accept, check and execute the customer's ordgnsirket order and limit
order). The system uses the UML activity diagram as its behavr speci cation. Figure
2-15shows the speci cation of the stock system. It has 27 activés, 29 transitions and 18

key paths. The generated SMV model has 756 lines of code.

48

StockBroker

t VerigyOrderForm

DisplayOrderErrorinfo

t1

t2

t23

t28

addOrderFormList

t4
t5 t6

[tradeMarkderOrderSaI% [tradeMarketOrderBl}y

getOrderResult

trade_FAILURE

updateOrderDB_FAILURE

t29

updateOrderHashMap|

trade_SUCESS
124

updateStrockHoIderDB_SUCES%#/

updateStockDB_SUCES$
updateOrderDB_SUCESS
trade_ PARTEXE

updateStrockDB_PARTEXE]

‘\[updateStockHolderDB_PARTEXE
updateOrderDB_PARTEXE/

t20

t22 l t10

trade_NOMATCH

[updateOrderDB_NOMATCI-ﬂ

t27

Figure 2-15. The activity diagram for a stock exchange syste

2.4 Summary

This chapter introduced two high level design speci catios for SoC designs:

SystemC TLM to model the hardware bahavior and UML activity dagrams to describe

the concurrent software behavior. The main contribution ofhis chapter is to devise

mechanisms to extract both static and dynamic informationrbm speci cations and

then convert them to formal SMV models to enable automatic alysis and directed test

generation.

49

CHAPTER 3
COVERAGE-DRIVEN AUTOMATIC GENERATION OF DIRECTED TESTS

Figure 3-1 presents our methodology for speci cation driven test genation using
model checking techniques. First, a design is describedngsia speci cation language that
can capture both structure and behavior of SoC systems. Nexhe design speci cation is
translated to a formal model (described in ChapteR), and the properties in the form of
CTL or LTL formulas are generated based on the functiondhult models(see Sectior8.1).
Finally, the properties are applied on the formal model usgna model checker to generate
required tests (counterexamples). The model checker exIstively searches all reachable
states of the model to check if any state violates the propsttIf it nds a violation, it will
produce a counterexample. The counterexample contains ajgence of input assignments
from an initial state to a state where the speci ed property dils. If we assume that
the design is correct and the property is a false property, ehamodel checker will always
generate a valid counterexample unless it encounters statpace explosion problem. The

generated tests can be used for validating both speci catigs and implementations.

Fault
Models

N

Formal Model p i
(SMV) roperties

-------- »| SoC Specification

Model Checker

Counterexamples

L 4 .
Specification Implementation

"7 Validation | Test caseg ---- > Validation

Figure 3-1. Test generation using model checking

There are three major challenges in implementing this testegeration methodology in

practice: i) automatic extraction of formal models from SoGpeci cations, ii) development

50

of e cient functional fault models and associated coveragdriven property generation, and
iii) how to address state space explosion problem. We havesdussed the formal model
generation in Chapter2. Chapter 4 to 6 will present novel approaches for addressing
state space explosion problem. In the following sectionsewvill focus on the automatic
generation of properties and corresponding directed test$he rest of this chapter is
organized as follows. SectioB.1 presents the property generation using various fault
models. Sectior3.2 describes the test generation methods using both unboundetbdel
checking and bounded model checking. Secti@3 demonstrates two case studies based on
UML activity diagrams. Finally, Section 3.4 summarizes the chapter.

3.1 Coverage-Driven Property Generation

For model checking based testing, a test is derived from th@unterexample of
a false safety property. A safety property in the temporal lgic form F(p) asserts
that a speci ed scenario can not happen (i.e., propertp can not be true). Otherwise,

a counterexample which explains the reason of the error wile reported by a model
checker. In other words, such counterexample can then be ds&s a test to validate the
speci ed scenario. In our method, the quality of the generatl tests is determined by the
corresponding properties. During the property generatignt is required to guarantee that
the generated properties can su ciently validate the systm.

The coverage metrics32] play an important role in testing to indicate the testing
adequacy. Test generation using model checking techniguesjuires that the automatically
generated properties can cover as many desired scenarioshiem design as possible. In our
approach, properties are derived from &ault modelwhich represents a complete set of
speci ¢ errors. Eachfault in the fault model indicates a potential \design error" whid
can be described by a temporal logic property. The test geraged from such a property
can be applied on the design to check the speci ¢ scenario {agion of the fault). For
example, when validating a desired scenario described by alLformula p, we use the

negation p as a fault. By checking the property F(p), we can derive a test to check

51

the scenario where propertyp holds. Since in this dissertation we focus on only safety
property generation for above fault models, majority of theoroperties will be in the form
of F (p)or G(p). However, other forms of safety properties are also pdsie and
allowed in our framework.
3.1.1 Fault Models

Fault model [28 plays an important role in directed test generation. Eachaiult model
represents a kind of \false functional scenarios”. The e @ncy of directed tests is directly
related to the generated properties which in turn are relateto the associated fault model.
The following three subsections present the generic faultadels for graph model as well
as its two variants: fault models for SystemC TLM designs anthult models for UML
activity diagrams. It is important to note that these fault models are by no means the
\golden" model rather it is a representative model which care re ned or modi ed for
improved veri cation methodology.
3.1.1.1 Generic Fault Models for Graph Based Models

For a simple graph model, there is only node and edge infornab. By investigating
the status of the nodes and edges we can infer various systeghaviors. There are four

widely used fault models for graph models as follows.
Node Fault: Each node is faulty. For example, a node cannot be activated.

Edge Fault: Each edge is faulty. For example, the respective nodes cahbe
activated in that order.

Path Fault: Each execution path is faulty. For example, the associatedodes and
edges are either faulty or their behavior cannot be composedrrectly to activate the
path.

Interaction Fault: Each interaction is faulty. For example, an interaction inwlving
a set of nodes cannot be activated simultaneously.

We generate one property for each fault in a fault model. So ¢htransformation from

the fault model to the properties in the form of temporal logi is a one-to-one mapping.

52

Because a fault is already a negation of the system requireeHtavior, it can be directly
used to derive a property for test generation.
Let's consider Figure2-12in Chapter 2 as an example of a graph model. The

following example shows four properties (one for each fauytpe) for the graph model.

Property 1: The node Fetch cannot be activated.
LTL formula: ~ F (fetch_active = 1)
Property 2: The edge between node MUL4 and MUL5 cannot be actrated.
LTL formula: ~ F(mul4_active = 1 -> X(mul5_active = 1))
Property 3: The path of FADD cannot be activated.
LTL formula: ~F (fetch_active = 1 & decode_active = 1 & faddl_ active = 1
& fadd2_active = 1 & fadd3 active = 1 & fadd4_active = 1 & mem_a ctive = 1
& writeback_active = 1)

Property 4: DIV, FADD4 and MUL7 cannot be activated at the sam e time.

LTL formula: ~ F(div_active = 1 & fadd4 _active = 1 & mul7_acti ve = 1)

Depending on the design, the generated properties may leaw redundant tests.
Therefore, property compaction can be employed to reduceegmumber of properties
without a ecting the coverage goal £#5|.
3.1.1.2 Fault Models for SystemC TLM Speci cations

In TLM, transaction data, transaction ow and events are three most important
factors. They re ect both the structure and behavior information of system level hardware
designs. In addition to the fault models presented in Sectio3.1.1.], in our framework we

have de ned another three fault models based on transactieras follows.

Transaction data fault model investigates the content of the variables relevant to
the transaction. For each variable, it is assumed that a spec value can/cannot be
assigned in some scenario.

Transaction ow fault model investigates the controls along the path where the
transaction ows. For each branch condition along the transction path, it is assumed
that it can/cannot be activated in some scenario.

Transaction event fault model investigates the event occurrence within a
transaction. For each event, it is assumed that it can/canriobe activated.

53

Transaction data fault model deals with the possible valuessignment for each part
of the transaction data. However, during property generatin, due to the large size of
value space, trying all possible values of a data is time-cauming and impractical. By
checking each bit of a variable (data bit fault) separatelythe data content coverage can
be partially guaranteed. Transaction ow fault model dealswith the controls along with
the transaction ow. To ensure transaction ow coverage, o@ can cover branch conditions
which exist in if-then-elseand switch-casestatements. The goal is to check all possible
transaction ows. Transaction event indicates the executin stage of a transaction or the
interaction between processes. The activation and the ondef transaction events is an
important issue. Section7.2.1.1gives an example for each type of TLM transaction faults.
3.1.1.3 Fault Models for UML Activity Diagrams

In traditional software testing, the de nition of testing adequacy is given in 32|
as a measurement function. The case of UML activity diagranis di erent because it
is in the form of model instead of code. Especially the coveya of activity diagram is
more complex because of the concurrency. We create four famlodels for UML activity
diagrams (AD) which are similar to the generic fault models i@sented in Sectior3.1.1.1

as follows.

Activity Fault Model . For each activity of AD, the model assumes that such
activity is not reachable.

Transition Fault Model . For each transition of AD, the model assumes that such
transition can not be red.

Key Path Fault Model . For each key path ofAD, there is no corresponding
executablepath.

Interaction Fault Model . For each interaction ofAD, the activities associated with
the interaction cannot be activated at the same time.

From these four di erent models, we can generate various grerties to validate
activity diagrams. The activity fault model can be used to ckck the reachability of each

activity. So it can be used to check whether there exists inite loops in the system. The

54

transition fault model can be used to check the execution oed of the activities. It can
also be used to check whether the condition guard of the traitisn can be satis ed. We
also need to check all the dynamic behaviors of the system, lggy path fault model is
preferable in this case. The interaction fault model can besed to check whether several
activities can be activated simultaneously. In general, #ll the interactions have only one
activity, the interaction fault model is the same as the actiity fault model.

The following example shows four properties (one for eachufatype) for the UML

activity diagram shown in Figure 2-8.

Property 1:The activity dispense_cash is not reachable.
LTL formula: ~ F (st.dispense_cash = 2)
Property 2:The transition with condition [amount availabl e] can not be fired.
LTL formula: ~ F(st.t7_cond = 1)
Property 3:The key path 4 can not be covered.
LTL formula: ~F (st.start = 2 & st.verify_access_code=2 & st .handle_access_code = 2
& st.ask_for_amount = 2 & st.prepare_print_receipt = 2 & st. dispense_cash = 2
& st.generate_receipt_content=2 & st.finish_transactio n_print_receipt = 2
& stend = 2 & st.t2_cond=1 & st.t4_cond=1 & st.t7_cond=1)
Property 4:The activities dispense_cash and prepare_to_p rint_receipt can not
be activated simultaneously.
LTL formula: ~ F(st.dispense _cash = 1 & st.prepare_to_prin t receipt =1)

Figure 3-2. Fault model examples

3.1.2 Functional Coverage Based on Fault Models

The functional coverageof a system level design is de ned based on the overall faults

of a fault model and the faults activated by the derived tests

De nition 7. For a designD, we are given its fault modeF and a test suiteT. F is a
complete set of same type faults. Each fault indicates thegagon of a required functional
behavior ofD. T is a set of directed tests which is derived frof. By applyingT on D,

the functional coverageDr using T can be calculated as:

D. = # of exercised F type functional scenarios
F — —
JF)

55

3.2 Test Generation using Model Checking Techniques

Model checking 21, 56] is a formal method that can enumerate all the possible state
to check whether a nite state systemM satis es a property p in the form of temporal
logic (e.g. LTL or CTL [21]), i.e., M F p. When the property fails at some state, it will
report a counterexample to falsify the speci ed propertyp. Let's consider a test generation
example for a pipelined processor. To activate a fault in thstall functionality of a decode
unit (i.e., the decode unit can never be stalled), the systemvill generate the property
\ F(decstall = 1)". Taking the property and the processor model as inputs, the odlel
checker will generate a counterexample to stall the decodeitiwhich can be used as a
test to activate the stall functionality of the decode unit. The counterexample contains a
sequence of instructions from an initial state to a state whe the property fails. In this
section, we brie y introduce two kinds of test generation mdods based on di erent model
checking techniques.
3.2.1 Test Generation using Unbounded Model Checking

This section introduces the preliminary knowledge of the drounded model checking
and gives a general algorithm for test generation.
3.2.1.1 Unbounded Model Checking

Symbolic Model Veri er (SMV [21]) is a widely used model checker. By taking model
of the design and temporal logic properties as inputs, SMV paletermine whether the
design satis es the property. During the veri cation, SMV &stracts the given model into
a formal Kripke structure which consists of a set of states, set of transitions between
states, and a function that labels each state with a set of pperties that are true in
this state. Then SMV does the state space search on this Kripkstructure. The model
checking algorithm stops because: i) it encounters a falsate for the property, then
the counterexample which leads to this state will be generd, or ii) all the states have

been explored and no error is detected. Generally, the implentation of the state search

56

adopts the data structure based on BDDs. However, they are hsecalable to handle large
practical systems in practice.
3.2.1.2 Test Generation Algorithm

Algorithm 1 outlines the general test generation approach using unboded model
checking (UBMC) [47, 59, 60]. The algorithm takes a SMV modelM and a set of false
propertiesP (based on coverage) as inputs and generates a test suite agted from
counterexamples. For each propertf;, one test is generated. The algorithm iterates
until all the properties are checked. For each iteration, anproperty is handled and the
corresponding test will be generated. In this dissertatigrwe focus on the generation of

safety properties which assert that the speci ed scenari@annot happen.

Algorithm 1 : Test Generation using UBMC
Input : i) SMV Model, M, and ii) A set of false propertiesP

Output : Testsuite
TestSuite =

for each property P; in the setP do
test; = ModelChecking(P;, M);

TestSuite = TestSuite [test;;
end

return TestSuite;

3.2.2 Test Generation using Bounded Model Checking

This section introduces the preliminary knowledge of the SAbased Bounded Model
Checking (BMC). It also describes how to pre-determine thedunds of properties. Finally
a BMC based test generation algorithm is presented.
3.2.2.1 SAT-Based Bounded Model Checking

For complex designs and properties, BDDs based methods udy@ause the state
space explosion problem. As an alternative, Boolean satahility (SAT) based approaches
have emerged, especially for the bounded model checking (BM SAT-based BMC

[11] is a promising method which can prove whether there is a cagnexample for the

57

property within a given bound. Given a modelM , a safety propertyp, and a bound
k, SAT-based BMC will unfold the model k times and encode it usg the the Boolean
formula Equation (3{1).

o 1 k
BMC (M;p;k) = I(so)* T(si;siea)™ :p(si) (3{1)
i=0 i=0

Here, | (sg) means the initial state of the system,T (s;; Si+1) describes the state
transition from state s; to state sj.+1, and p(s;) tests whether property p holds on states;.
Then this formula will be transformed to a Conjunctive Norm& Form (CNF) and checked
by a SAT solver. If there is a satis able assignment, the progrty is false and a satis able
variable assignment will be reported, i.eM = p. Otherwise, it implies that the property
is true within the speci ed time steps. In other words, therds no counterexample with
length k for this property, written M [p. Test generation using BMC is similar to
model checking based approach except that it needs to detana the bound for each
property. SAT-based BMC takes modeM , negated propertyp;, and bound as inputs and
generates a counterexample (test).
3.2.2.2 Test Generation Algorithm

Algorithm 2 describes the widely used test generation procedure usinyylB [46, 62].
This algorithm takes the model M generated from a design moldand properties as inputs
and generates test suite extracted from the counterexampleFor each propertyP;, one
test is generated. The algorithm iterates until all the progrties are covered. In each
iteration, the bound k; of each propertyP; is decided. SAT-based BMC takes modell ,
negated propertyP;, and boundk; as inputs and generates a counterexample (test).

During the test case generation, bound determination playan important role. If it
can be known a priori, SAT-based BMC can be more e ective thaBDD based model
checking techniques. However, any incorrect bound detemmaition will increase test case
generation time as well as memory requirement. Thereford)d techniques of deciding

property bounds determine the e ciency of test case generan using SAT-based BMC. In

58

our method, because the property is derived from models, thund can be derived from

the structure of the models.

Algorithm 2 : Test Generation using BMC
Input : i) Design Model, M and ii) A set of false propertiesP (based on fault models)

Output : Testsuite
TestSuite = ;

for each property P; in the setP do
bound = DetermineBound(M, P;);

test; = BoundedModelChecking(P;, M, bound);

TestSuite = TestSuite [test;;

end

return TestSuite;

3.2.2.3 Determination of Bound

Biere et al. [L(] described several ways to determine the bound. M = p for all k
within the bound, then M = p. However there is no deterministic way of computing the
bound of the system. In fact, determining the minimal bounddr a property is as hard as
the model checking itself. So bounded model checking is prising only when the bound
can be pre-determined and is shallow.

According to the de nition of the diameter in [10], the bound for each node error
instance is decided by the temporal distance between the tawode and the node under
veri cation. For example, in UML activity diagrams, the bound for the key path error is

determined by the activities and transitions along the path In Figure 2-8, the length of

the key path 4 = fstartg!fflg ag!ffzg bg!fimgJ cg!theg dummy;fg!flE7g d;fg!ftgg
fe;fg fo gg! fe endg is 9. The property derived for this key path is shown in the

Figure 3-2 In our translation rules, an activity state transition neals one step delay. Fork
node needs one step delay, and join node needs two steps delaye step delay at the
start node is also required. The bound size willbe 9+ 1+ 2+ 1 = 3. The bound of the

activity error or transition error is determined by the delg of activities and transitions

59

on a valid shortest path from thestart node to the activity or transition which need to be
veri ed in the UML activity diagram. For example, when we wart to check the activity
error model instance prepare_to_print _receipt can not be activated”, the system will
generate the property F(st:prepare_print _receipt = 2). The shortest path from start

to such an activity is = fstartg!ff1g ag!ff3g cg!ffGg dummy;f g. In a similar way,
the bound for this property is 4+1+1=6. Sometimes in the systm, there is a counter that
acts like a clock which counts the execution steps. Such \alie in a property will a ect
the bound of the property. For example, because of the intradtion of a counter, the
property F(clk =10 & st:prepare_print _receipt = 2) has a bound of 10 instead of 6.

Di erent properties based on di erent fault models have di erent methods to compute
the bounds. Assume that there is no counter variables, the @emination of the bound of
a graph based model can use the following rules:

Node or edge based faults . Extract all the paths without loops from the initial
node to the target node or edge. Calculate the bound for eackteacted path and
choose the shortest one as the property bound.

Path based faults . Calculate the bounds for the path based on the delay of nodes
and edges on the path.

Interaction faults . Calculate the bound for each element (node or edge) in the
interaction. Choose the largest bound as the property bound

If a property contains a counter variable. Then bound of the iperty is the larger
one of the counter value and the bound calculated using the ae rules. Therefore, the
complexity of bound determination is polynomial to the nods in the graph-based models.
In general, it is more e cient to use BMC for shallow counter&les when the bound
can be pre-determined.

3.3 Case Studies
In this section, we demonstrate two case studies for UML agtty diagrams: a control

system and a on-line stock exchange system. We do not give ttese study for TLM

60

designs since Sectioi.3 will give the details of automated directed test generatiofor
TLM designs. We compared our model checking based approaclthathe random test
based method $1], which is the best known result in the category of test genation for
UML activity diagrams. The experimental results indicate hat our method can drastically
reduce the overall validation e ort by producing fewer tes$. Furthermore, for UML
activity diagrams, the generated high-level test can be dictly applied on the low-level
implementations (e.g. Java code). Therefore it can be used theck the consistency
between UML activity diagrams and its low-level implementaons. We used Cadence SMV
model checker %6] in our study. All the experiments were conducted using 2.0 i Intel
Core2 Duo CPU with 1 GB RAM.
3.3.1 A Control System

The rst case study is a small control system. This case studig based on the

example presented in Sectiog.3.4

Table 3-1. Comparison of two methods

Coverage (%) Time
Method activity transition path (second)
random 30 90 85 50 1.33
random 50 95 93 67 2.35
random 100 100 100 83 5.13
random 150 100 100 100 8.83
Our Approach (UMC) 100 100 100 0.91

Table 3-1 shows the comparison between our approach and the randomttbased
method [b1]. For generating tests with highest coverage, the random itted requires 8.83
seconds to run 150 random tests, however our approach usingbounded model checking
method (UMC) just needs 0.91 seconds. In this case study, UM&pproach improves the

test generation time by an order of magnitude.

Table 3-2. Implementation level coverage of the control sigsn

Package Class Method Block Line
100% 100% 90% 88% 93%

61

We applied the generated tests to the Java implementation a@lie control system.
Table 3-2 shows the coverage of the Java code. The generated tests aied 100%
packageas well asclass coverage. However, thenethod, blockand line coverage are
around 90%. Our analysis showed that the Java implementatichave many \try"
and \catch" blocks to handle exceptions whereas the specation does not have any
information on the exception scenarios. As a result, the gerated tests did not activate
any of the exception blocks which resulted in low coverage wiethods, blocks as well as
lines. Clearly, this is an issue of incomplete speci catiorBased on this observation, we
added exception information at the speci cation level and gnerated tests which led to the
required coverage in all the categories of the implementati.

3.3.2 A Stock Exchange System (OSES)

The stock exchange system is based on the example presente@éction2.3.5 It uses

the UML activity diagram as its behavior speci cation. The ystem is implemented in

JAVA and consists of 7 packages, 39 classes, 372 methods ahti02lines.

Table 3-3. Comparison of three methods

Coverage (%) Time
Method activity transition path (minute)
random 800 96 83 89 19.06
random 1000 96 86 94 24.26
random 1500 100 100 100 30.25
Our Approach (UMC) 100 100 100 3.47
Our Approach (BMC) 100 100 100 0.15

In Table 3-3, the rst three rows depict the results by using 800, 1000, D® random
tests respectively. The result by our method is shown in theast two rows. In the case of
random 800, two key paths are missing due to the randomness. So the@@ge metrics
are not 100%. If we increase the number of the random tests t6d0, one key path is still
missing. Based on our observation, in the random method, i$ ihard to determine what
is an appropriate upper bound for the number of required rammn tests. As a result, it
is hard to obtain 100% speci cation coverage using the randotests. The result of the

UMC shows that we can get an order of magnitude improvement egared to the random

62

method. Because the bounds of the properties of OSES system ahallow and can be
pre-determined, we applied SAT-based BMC in this situationThe result shows that BMC
method can be an order of magnitude faster than UMC method. €hrly, BMC approach
reduces the validation e ort by two hundred times comparedd the best known result $1]
in this category.

Table 3-4. Implementation level coverage of OSES

Package Class Method Block Line
100% 100% 58% 55% 51%

Table 3-4 presents the coverage of the implementation by applying thgenerated
tests. The coverage of method, block and line are not su cigrbecause the activity
diagram does not consider all the scenarios of the systemglsias the registration of the
customers and so on. In this case, we needed to add the missilegails in the speci cation
to obtain the required coverage.

3.4 Summary

In this chapter, we presented a framework to automatically @nerate directed tests
from SoC speci cations. Our experimental results demonsited that the generated tests
can produce the required functional coverage and also can kaaa signi cant reduction
in validation e ort for speci cations as well as implementdions. Model checking based
test generation is promising for automated test generatiobut it can lead to state space
explosion in the presence of complex designs and properti&» in the following chapters,
we will present various optimization techniques to reducehe overall test generation

complexity.

63

CHAPTER 4
PROPERTY CLUSTERING FOR EFFICIENT TEST GENERATION

Although model checking techniques are promising for autaated directed test
generation, it is costly for complicated designs due to thdate space explosion problem.
Especially for a complex design, there will be a large numbef properties to be validated.
When validating a speci ¢ system component, it is common thaseveral properties have a
large overlap on sub-functionalities. Validating the proprties individually will be a waste
of time due to the repeated validation e orts on the same furtonal scenarios. Potentially
these redundancy can be avoided and consequently the ovketast generation time can be

signi cantly reduced.

. »| Design Specification Fault
(Graph Model) Models

[Formal Model] Property
Generation
[Properties]

Property
Clustering
Test
Generation

Counterexamples

Specification Implementation

" validation | Test caseg ---- > Validation

Figure 4-1. Our test generation methodology

64

The target of property clustering is to reduce the overall t& generation time
by exploiting the similarities among properties. Figured-1 shows the test generation
framework using our property clustering approach. The prapsed methodology has three
important steps: coverage-driven property generation, w$tering of similar properties,
and test generation using learning techniques. It is impaat to note that each of these
three steps can be independent. For example, our method ugbke coverage of our fault
models to derive properties. The other two steps will prodecbene cial results even
if other fault models are used to generate properties. Desgys can even add various
properties manually to the set of generated properties withut a ecting the usefulness of
our approach.

This chapter makes two primary contributions: i) it propose novel methods to
cluster similar properties; and ii) it utilizes the conict clause based learning to reduce
the overall test generation time for a cluster of similar prperties. The rest of this chapter
is organized as follows. Sectiof.1 presents related work on e cient model checking
techniques. Sectiort.2 introduces the implementation details of state-of-the-drSAT
solvers. Sectiom.3 proposes our property clustering approaches. Sectidm presents
how to e ciently generate tests using property clustering ad con ict clause forwarding
technques. Sectiort.5 demonstrates case studies on both hardware and software iges.
Finally, Section 4.6 summarizes the chapter.

4.1 Related Work

Due to the scalability issues of conventional Binary Dec@n Diagram (BDD) based
methods, SAT-based BMC is proposed as a complementary sadut for large designs.
Many studies in both software and hardware domaingl] show that BMC has better
capacity and productivity over unbounded model checking faeal designs. Currently,
various techniques based on con ict clause forwarding andable ordering p3| are

proposed to further improve the e ciency of BMC based test geeration.

65

As a promising learning based approach, incremental SARQ, 67, 89, 92 tries to
leverage the similarity between the elements of a sequendeSAT instances { most do so
by re-utilizing learned knowledge based on con ict clause®Vhen many closely related
instances need to be solved, caching solutior&3] and incremental translation [7] can also
be e ective. If a SAT instance is obtained from another by augenting some clauses (as
in [3§)), all con ict clauses of the rst can be forwarded to the seand. Therefore, when
clauses are only added through a sequence of instances, ¢hisrno need to screen con ict
clauses to determine which ones can be forwarded. This, oretbther hand, is necessary
when arbitrary clauses are both added or deleted to create &w instance. A common
approach for such a general case is to have incremental SATvsos keep track of whether
a con ict clause depends on some removed clauses. Majoritiytbe existing approaches
exploit incremental satis ability to improve the test genaation time involving only one
property with di erent bounds. There are very few approachge such as17] where both
static and dynamic learning are used across test generatiorstances for path-delay fault
model by dynamically excluding the untestable path duringest generation. Since the
learning is employed across all test scenarios without e ent clustering methods, the
improvement in test generation time is small (6% on average)nd has a wide variation
(-7% to 27%) on di erent ISCAS circuits.

To the best of our knowledge, our approach is the rst attempto cluster similar test
generation instances involving multiple properties and iltze shared knowledge across
similar instances in the context of directed test generatio

4.2 Background: SAT Solver Implementation

This section introduces the preliminary knowledge of SAT $eer implementation. In

the context of directed test generation, we describe how SAFased BMC can be used to

improve test generation time by employing learning techniges.

66

4.2.1 DPLL Algorithm

Most modern SAT solvers such as GRASR§| and Cha [63] adopts the Davis-
Putnam-Logemann-LovelandDPLL) algorithm [52, 53].

Algorithm 3 : DPLL search procedure of zCha

while TRUE do
run _periodic_functions ();

if decidenext_branch() then

while deduce() == CONFLICT do
blevel = analyze_conflicts ();

if blevel< 0 then
| return UNSAT;

end

end

else
| return SAT;

end

end

Algorithm 3 shows the DPLL implementation in zCha . It contains three pats:

Periodic function updates the SAT con guration triggered ly some speci ed events,
such as updating the scores of literals after a certain numbef backtracks.

Boolean Constraint Propagation (BCP) is implemented irdeduce It gures out all
possible implications by previous decision assignment.

Con ict analysis does a proper backtrack when encountering con ict. It analyzes
the reason for the conict and make it as a con ict clause to avid the same con ict
in future processing.

Studies in B3] show that modern SAT solvers spend approximately 80% of tiento
carry out BCP. In addition, during the con ict analysis, long distance backtracks will
increase the burden of SAT solvers.

4.2.2 Conict Clause Based Learning
As shown in Algorithm 3, SAT solvers use the con ict analysis technique to trace the

reason for a conict. The con ict analysis contains two part con ict-driven back-tracking

67

and con ict-driven learning. Con ict-driven backtrackin g enables the non-chronological
backtracking up to the closest decision which caused the cmt. Con ict-driven learning
learns some knowledge and save them in con ict clauses anddadhem to the original
clauses, in order to avoid the same con ict in the future. Bdt techniques can drastically
boost the performance of the SAT solvers.

The kernel of the con ict analysis technique is the implicabn graph [39, 91]. The
graph keeps the current state and the implication history ofhe search during the SAT
solving by recording the dependence of the variable assigants. The implication graph is
a directed acyclic graph where each vertex represents anigasnent to a variable and each

edge implies that all the in-edges implicate the assignmenf the vertex.

x6'@ 1

Clauses:
Cl: X2 +X4' + X6
C2: X3 +X7' +X8'
C3: X1' +X4 + X5
C4: X3' + X4'

x1@ 3

C5: X2' + X3 + X8

Conflict Clauses:

C6: X1' +X5+X6+ X7 @4
Conflict Reason:

(X8, X8

Implicate

A Decision Vertex .O Implication Vertex O Conflicting Vertex ~ -------- Cut

Figure 4-2. Con ict analysis using an implication graph

Figure 4-2 shows a small example of con ict analysis using an implicath graph. As
shown at the left of the gure, there are ve original clausesC1-C5. The right part is
a scenario of implication graph foIC1-C5. In this example, x4@4 means variabl&4 is
assigned value 1 at decision level 4. The node has a correspog clause(x1'+x4+x5) ,

we call it the antecedent clause of4, i.e., the assignmentxl = 1 and x5 = 0 imply

68

x4 = 1. Only the implication vertex (non-decision vertex) hasan antecedent clause. A
con ict happens when there are two nodes in the implicationrgph that have di erent
value assignments for the same variable. For example, thepititations in the graph lead
to the ambiguous assignment to variablX 8 (X8 = 0 and X 8 = 1). When encountering a
con ict, con ict analysis will trace back along the implication relations to nd the reason
for the con ict and encode the reason using a con ict clauseA con ict clause can be
found by a bipartition of the implication graph. The side comaining the con icting vertex
called con ict side, and the other side is called reason siaghich can be used to form the
conict clause. In Figure 4-2, CUTL1 is a cut that divides the implication graph into two
parts. The con ict analysis stops atCUT1. The left part of CUT1 in the implication
graph is the reason side, and the right part is the con ict sid. From the reason side, we
can get thecon ict cluase C6=(X1 + X5' +X6' +X7) . That means, the assignment of
variablesX1 =1, X5=0, X6 =0 and X7 = 1 will always lead to a con ict because of
the clausesC1-C5 Lemmal indicates that the generated con ict clauses during the SAT
search can be added to original clause set as an assignmemtst@int. Therefore we can
add the clauseC6 to the original clause set to avoid the same con ict in the fuure.
Lemma 1. Given a set of CNF clause$1 and is a conict clause derived during the

\%
con ict analysis, then S1 is satisable i S1 is satis able.

Proof. BecauseSlV is a super set ofS1, so ifSlV is satis able then S1 is satis able.

According to the de nition of the con ict clause, the assigments that make the clause
false will make the clause se$1 false. IfS1 is satis able, then there exists a variable

assignment that makesS1 true. This assignment should make true. So the assignments

V
will make S1 true. O

For two SAT instances, if one instance is a subset of the oth&AT instance,
according to Theoreml, the con ict clauses generated from the smaller SAT instarc

can be forwarded to the larger SAT instance. In other wordshe local learning can be

69

forwarded as a knowledge for global searching. Usually theeaage cost of locally learned
con ict clauses is much cheaper than the globally learned ract clauses.

Theorem 1. Given two CNF clause set§1 and S2, whereS1 S2, and is a con ict
clause derived from the clauses i1, written S1 "~ |, then S2 is satis able i SZV is

satis able.

\Y \Y
Proof. SinceS2 is a super set 0fS2, if S2 is satis able then S2 is satis able.
BecauseS1~ andS1 S2,then s also a conict clause ofS2. According to Lemma

\V
1, S2 is satisablei S2 is satis able. O

According to the Equation (3{1), similar properties share a large part of the
CNF clauses. Regardless of the cone of in uence, the equatishares the system part
(transition relation T(s;;si+1)) and the part of property testing (i.e., p(si)). Sharing a
large part of CNF clauses indicates that when checking the st property, the learned
knowledge (con ict clauses) can be forwarded to the secondoperty without a ecting the
truth assignment of the CNF clauses of the second property.
Theorem 2. Assume that we have two sets of CNF clausg$ and S2, and let! =
SlT S2 be the common clauses shared by b&h and S2. is a conict clause derived

\Y
only by the clauses in , written ! = . Then S2is satisable i S2 is satis able.

Vv Vv
Proof. BecauseS2 is a super set 0fS2, s0S2 is satis able then S2 is satis able.
Becaused = and! S2,thenS2 ° . According to Lemmal, S2 is satis able i

V
S2 is satis able. O

4.3 Property Clustering
Given a set of properties, a clustering method determines \wdo divide the properties
into several groups such that each group contains similar gperties that can bene t from
each other during test generation. The similarity can be strctural or behavioral but the
assumption is that there is a signi cant overlap between theounterexample generation

traces involving a set of similar properties.

70

Algorithm 4 : Property Clustering
Input : i) A set of properties, P

i) Similarity strategy CS, and threshold Wy,

Output : Clusters consisting of similar properties
PropertyClusters = ;

1. Construct a graph, G where each node is a property;

for each pair of nodes (i, n;) in G do
Weight w{ = ComputeSimilarity CS(n;, n;);

if(wi W) Create an edge betweem; and n; with weight W{ ;
end

2. k =1; /* rstcluster */ while G is not empty do
Basex = Node with highest overall edge weight;

Cluster = all the nodes connected toBasey;
G = G - Clustery;

PropertyClusters = PropertyClusters [Clustery;

k=k+1;
end

return PropertyClusters;

Algorithm 4 outlines the major steps in property clustering. The rst sep constructs
a property grapht where the properties are nodes and edges represent simiyarAn edge
is added between two properties (nodes) when they are similé&Each edgeg includes
weight information (w;, 0 w 1) to quantify the similarity. An edge with weight O
or 1 is not possible since an weight of 0 means no similaritynéian weight of 1 implies
same (identical) property. To compute the weight informaton for each edge we propose
four methods { structural, textual, in uence and CNF intersection based similarity. Each

method will use a similarity threshold for clustering. In oher words, there will be no edge

LIn this chapter, we use three di erent types of graphs for thee di erent purposes.
The graph model of the design (odesign graphin short) is used to model the design. The
implication graphis used to store the dependence of variable assignments th&used for
con ict analysis. The property graphmodels the similarity between properties and used for
clustering.

71

between two properties when the weight value is below cenathreshold. The second step
determines the clusters based on the base property. The bgseperty is the property
(node) with highest weight (summation of weights of all edgeconnected to that node).
The cluster is formed by adding all the adjacent nodes with #hbase property. All the
nodes selected for a cluster are deleted from the propertyagh for the next iteration. The
remainder of this section describes four di erent ways of ogputing similarity between
properties.
4.3.1 Similarity based on Structural Overlap

A simple and natural way to cluster properties is to exploit he structural information
of the design model and its properties. The intuition is thatwo similar properties will
share similar variable assignments (global and local vakies) in the counterexamples.
In fact, a con ict clause is a constraint on the assignment ahe variables. Therefore,
properties with similar structural information will share a lot of con ict clauses.

As mentioned earlier, in the context of directed test genetian, properties are
generated based on functional coverage of the design. Theseperties try to cover
di erent parts of the design (e.g., all computation nodes, arious interactions, etc.).
Therefore, we can cluster the properties that try to cover apeci ¢ functionality or
interactions. For example, in an SoC environment, the proptes can be clustered based
on whether they are related to verifying the processor, copcessor, FPGA, memory, bus
synchronization, or controllers. Each cluster can be furdr re ned based on structural
details of each component. For example, the processor r@dtproperties can be further
divided based on which execution path they activate such asLA pipeline, load-store

pipeline etc.

2 In a graph model, a local variable is de ned locally in a node hereas the scope of a
global variable is valid across nodes.

72

In the pipelined processor example in Figurg-12 there are four execution pipelines:

IALU , MUL, FADD and DIV . The corresponding paths are as follows.
1=FET! DEC! IALU ! MEM ! WB
»=FET! DEC! MUL1 ! MUL7! MEM ! WB
3= FET! DEC! FADD1 ! FADD4! MEM ! WB

4= FET! DEC! DIV! MEM ! WB

Consider two propertiespl = F(fadd3.active = 1) and property p2 =
F (fadd4_active = 1). They share the same path 3, and the bound ofpl is just one
smaller thanp2. So we can cluster them together. Also for the interactionrpperty
p3 = F(fadd4.active = 1 & mul3.active = 1) and p4 = F(fadd3._active =
1 & mul4_active = 1), the two interactions are related to the same set of paths, and 3
and have similar bounds. Therefore, clustering them togeth is a good choice.

4.3.2 Similarity based on Textual Overlap

Another simple way to quantify similarity is to measure the extual di erences

between two properties. For example, the similarity betwee F(a & b& c) and
F(b& c & d) is 67% since they share a common sub-expression consistiigwo
variablesb and c.

In this section, we focus on bounded model checking of invamts (safety properties)
such as the property in the form F(p). Informally, BMC (M; p; k) is true means from
cycle 0 to cycle k, the property will be false. So the invaridrcannot always be true and
one counter example will be reported. Because the pdr{sy) * VikzolT(si;sHl) comes
from the design, so for di erent properties this part is sameThe part W:‘zo . p(si) usually
determines the di erence among the properties.

The negative format of each literal in the conict clause is dalse assignment for the
logic formulaBMC (M; p; k). In fact, the con ict clause can be regarded as a constraint
for the variable assignment. LetP and Q be two properties of the model, the properties

P,P”~QandP _ Q can be expanded as follows:

73

V W,
BMC1(M;P;k) = 1(so) ™ 1o T(si;Sis1) ™ 1ot P(Si)

BMC (M A Qi) = 1 (s " ol T(Sii5) A o2 (P A Q)(s)

=1(s0) " 1o T(sisin) N (G P(s) _ Q1))

BMC(M:P _ Q1K) = 1(s0)~ * g T(sis) ® o P(s) 7 Qs)

In the expanded CNFs above, we assume that the same variabterespective
expansion has the same meaning. Lét be a partial assignment of the CNF variables
that can make the whole CNF false, thetA = BMC;, implies A = BMC3;, A = BMC,
implies A = BMC,, and A = BMC, implies A = BMC3;. In other words, the con ict
clauses oBMC ; can be forwarded toBMC 3, and con ict clause ofBMC , can be
forwarded to bothBMC,; and BMC ;.

In most existing BMC tools, the variables in the generated CN le do not have
speci ¢ meaning. The con ict clauses of the stronger propsr cannot be directly
forwarded to some weaker properties. For example, some cam clauses of property
P ~ Q cannot be forwarded to check property? _ Q. However, when properties have
the relation of implication, and their textual similarity i s high, clustering them together
will have a positive e ect. If two properties are in the samedrmat and have a signi cant
(more than 50%) textual overlap, the two properties can berntefrom each other.

Textual clustering is very fast but it may not be very accurae. For example, the
properties F(a) and F(c) have no overlap, however, it is possible that both variabse
are very closely related in the design model (such as actiestthe same path), and
therefore they are good candidate for clustering. Unfortuately, in the absence of such
structural information, pure textual clustering may not generate signi cant savings in test
generation time. Textual clustering is bene cial when infomation regarding the design or
original fault model are not available and/or when there aréoo many properties.

4.3.3 Similarity based on In uence
An assignment to a global variable determines the state traition of various

components in the design (graph) model. For example, in the IS model, when the

74

instruction bu er contains only division instruction, only the components inDIV path
will be activated. However, it is time consuming to analyzelbthe global and local
variables of the model since it need to consider the state trsition of each component.

Based on the graph model structure, we can determine variogause-e ect relations.
For example, the state change dfAUL 6 will be one clock cycle later tharMUL5. That
means the execution oMULS5 has an in uence on the execution oMUL 6. The in uence
nodes indirectly re ect the assignment of the global varides, since the assignment of
global variables is relevant to the variable assignment irhe counterexample.

Prior to clustering, we need to gure out the in uence node sefor each node in the
graph model. We can compute the in uence node set for each redsing Depth First
Search DFS) algorithm. If there is a path starting from the start node tothe current
node, then all the nodes on this path are in uence nodes for ¢hcurrent node.DF S can
explore all the paths (except the paths with loops) from thetart node to the current

node. For example the in uence node sets faMUL 2, FADD 3 and WB are as follows:
Influence (MUL2) = fFET; DEC; MUL 1, MUL 2g
Influence (FADD 3) = fFET; DEC; FADD 1, FADD 2; FADD 3g

Influence (WB) = fnj nis a node in the MIPS graph modelg

A property corresponds to several nodes (modules) in the grtamodel. So the
in uence node set of a property is the union of the in uence oéll relevant nodes. When
comparing the similarity of two properties, we need to compga the intersection of
in uence sets. For example, the in uence set of property F(mul2.active=1 &
fadd3._active = 1) is S;= fFET, DEC, MUL1, MUL2, FADD 1, FADD 2, FADD 3g
and the inuence set for F(mul3.active =1 & fadd3. active =1) is S,= fFET,
DEC,MUL1, MUL2, MULS3, FADD 1, FADD 2, FADD 3g. The two sets share a large
intersection. For setS,, the similarity with S, is 7=7 = 100%. For setS, the similarity

with S; is 7=8 = 87:5%. Based on our experience, when the overlap of in uence setre

75

larger than 70%, forwarding con ict clauses is bene cial. A this example,S; and S, can
be clustered together.
4.3.4 Similarity based on CNF Intersection

One obvious, but costly, way to determine property similaty for clustering is to
compute intersections of CNF clauses between properties.eWan cluster properties that
have a relatively large number of clauses in the intersectio Based on our experience,
a threshold of 0.9 is bene cial. In other words, when two pragrties share at least 90%
common clauses, it is bene cial to forward con ict clausesdiween two instances.

This method is very time consuming because it require3(n?) intersections for
n properties. Whenn is large, this method is not feasible, because the calculai of
intersection of irrelevant properties may waste more timehtan actual SAT solution time.
Moreover, in certain scenarios, forwarding con ict clausemay not improve the overall
test generation time for a cluster, since it may change vatie ordering and searching
heuristics. CNF based clustering is a good choice when themioer of properties is small
or when other methods fail to nd bene cial clusters.
4.3.5 Determination of Base Property

Determination of base property in a cluster is crucial for t& generation using
learning techniques. The base property is solved rst andstcon ict clauses are shared by
the remaining properties in the cluster. Although, any proprty in the cluster can be used
as the base property for that cluster, our studies have showhat certain properties serve
better as base property and thereby generate better overaavings for the cluster. We
need to consider two important factors while choosing a bageoperty for a cluster. First,
the base property should be able to generate a large numberooin ict clauses. In other
words, a weak base property may nd the satis able assignmémuickly without making
mistakes (generating con ict clauses). In this scenariohe remaining properties have
nothing to learn from the base property. Moreover, the SAT abcking time for the base

property should be relatively small. This will ensure that he overall gain is maximized

76

by reducing the solution time of the properties which takesohger time to solve. None
of these requirements can be determined without actually sing them. Based on our

experience, we have observed that the following heuristiegorks well most of the time.

Choose a property that has signi cant variable and/or sub-gpression overlap with
other properties in the cluster.

If bound for each property is known, choose the property whesound is closest to
the remaining properties.

Compute intersection of every pair of properties in the clisr, and choose the one
that shares the most with the remaining properties.

4.4 E cient Test Generation using Learning Techniques

Incremental SAT-based BMC $4] is very promising to reduce the test generation
complexity. However, existing approaches are restrictedrfa test generation scenario
consisting of one design and only one property (with varyingounds). Many properties
generated from the design speci cation share a lot of similanformation. If the shared
information can be exploited and re-utilized across the sitar properties, many repeated
veri cation e orts can be avoided. In other words, the knowedge learned during the
execution of one property can benet other similar properés. Therefore, knowledge
sharing can reduce complexity and improve the overall vecation e ort. Although each
test generation instance requires a di erent property, s&ral properties related to testing
speci ¢ functionalities are similar or have a signi cant oerlap. Reuse of learned knowledge
(e.g., constraints) derived from such overlap can avoid theepeated state space search. In
this section, we discuss two kinds of learning techniques iwh can drastically reduce the
overall test generation time in a cluster of similar properés.
4.4.1 Conict Clause Forwarding Techniques

The basic idea is to learn from solving one property and shalearning (through
con ict clauses) for solving the similar properties in the luster. While solving the
rst property (base property), the SAT solver may have takenmany wrong decisions

(lead to conicts) and therefore needs long time to nd a couterexample. Forwarding

77

con ict clauses ensures that these wrong decisions are al@i while solving the similar

properties. An important question is whether all the wrong dcisions of the rst property

are relevant to all the other properties in the clusters? Sae the properties are similar but

not the same, some of the decisions are not relevant. In our@pach, we determine the

common CNF clauses by computing the intersection of clausasd use this intersection

information to exactly identify the con ict clauses that are relevant to solving the

respective properties.

Algorithm 5

. Test Generation using Learning Techniques

Input : i) Design model D and ii) Clusters of similar properties

Output : Tests

for each cluster,i, of properties do

end

end

end

end

1.

2
3.
4

6.

Generate CNF for the base propertyP], CNF;

for j is from 2 to the size; of clusteri do
I* P! is the j™ property in the i™ cluster */;

Generate CNF, CNF; = BMC (D; P{';bound);

. Perform name substitution on CN Fji;

INT, = Computelntersection(CNF{, CNF/);

. Mark the clauses ofCNF{ using INT /;

[* Generate a counterexample and record con ict clauses */;
5. (ConflictClauses j, test}) = SAT(CNF});
Tests = ftestig;

for j is from 2 to the size; of clusteri do
/* Find relevant ones for Pji from con ict clauses */;

CC| = Filter (ConflictClauses , j);

for j is from 2 to the size; %f clusteri do
7. testJi = SAT(CN Fji ccji);

Tests = Tests[test!;

return Tests,

78

Algorithm 5 describes our test generation methodology. It accepts atlisf clusters
where each cluster consists of a set of similar propertiesn& one property is used to
generate a test, the number of input properties is exactly #thsame as the number of
output tests. The rst step generates the CNF clauses for athe properties in each cluster
using the design and respective bounds. The second step perfs name substitution to
maximize knowledge sharing. The third step computes the iatsection of CNF clauses
between the base property and all the remaining properties the cluster. The rst three
steps can be omitted, if CNF intersection based clustering employed. The fourth step
marks the clauses in the base property to indicate whether agicular clause is also
in the clause set of another property in the cluster. The nexdtep uses a SAT solver to
generate the con ict clauses and the counterexample for tHease property. Based on the
intersection information with the base property, the set oton ict clauses is Itered to
identify the relevant ones for solving the remaining propées in step 6. The nal step
uses the relevant con ict clauses to solve the remaining guerties using our approach.
The algorithm reports all the generated counterexamples.

We use a simple example to illustrate how Algorithnd works. Let us assume that
we are generating tests using properties for a design. The input is a list om (m
n) clusters based on property similarities. Each cluster camave di erent number of
properties. In the worst case, each cluster can have only opmperty which will be
veri ed normally. However, this scenario is rare in practie since a typical design uses
thousands of properties for directed test generation and rjmity of them share signi cant
parts of the design functionality. For ease of illustrationlet us assume that there is a
cluster with three similar properties,f Py, P,, P3g. Let us further assume that the second
step selects; as the base property. The fourth step computes intersectiasf CNF clauses
of P; with P,, and P, with P;3. This information is used to Iter con ict clauses (generaed
while solving P,) relevant for P, and P3 in step 6. The last step adds the relevant con ict

clauses while solving the respective properties to redudeettest generation time.

79

The following subsections describe two important techniaggs in our approach, name
substitution for computation of intersections, and identication of relevant con ict clauses.
4.4.2 Name Substitution for Computation of Intersections

Name substitution is an important preprocessing step in Algrithm 4. Currently, few
BMC tools support the name mapping from the variables of the SF clauses and the
names in the model of the unrolled design. As a result, the vables of the CNF clauses
of two di erent properties may not have any name corresponaee. In other words, the
same variable in two properties may have di erent name in therespective CNF clauses.
Therefore, without name substitution (mapping), it will miss the overlap information.

As a result, the computed intersection will be small and wiladversely a ect the sharing
of learned con ict clauses. We observed that the improvemem test generation time
without using name substitution is negligibly small due to ery small number of clauses
being forwarded as a result of small number of clauses in th@edrsection. Since the
properties are similar and the design is exactly the same,dlsize of the intersection is
very large when our name substitution method is employed.

Our framework uses zCha SAT solver T4 which accepts the input in the DIMACS
format. The generated DIMACS le for each property provideghe name mapping from
the CNF variable to the unrolled design. For example, \c 8 = Vlvar[6]" shows that
the variable 8 is used in the CNF le to refer to the ¥ bit of variable var in the design
speci cation at time step 1. This can also be written as, 8 = var [6].1.

Given two DIMACS les f1 andf 2 for two propertiesP; and P, respectively, the
name substitution is a procedure that changes the names oauke variables of 2 using
the name mapping de ned inf 1. Figure 4-3 shows an example for name substitution.
Before the name substitution, the intersectionf(1\ f 2) is empty. However, after name
substitution, there are two common clauses in the intersdon (f 1\ f 29. The complexity
of both name substitution and computation of intersectiong linear (using hash table)

to the size of the DIMACS le of the properties. Therefore, tle time required for name

80

substitution and intersection computation is negligible empared to the SAT solving time
for complex properties.

It is important to note that the same variable at di erent tim e steps can be assigned
a di erent number. Therefore, the name mapping (substitutbn) method needs to consider
the same variable at di erent time steps in the CNF clauses dhe same property as well
as in the CNF clauses for the di erent properties in the sameluster. Moreover, the name
mapping routine needs to remap some of the variables in the ENtlauses. For example in
Figure 4-3, when the variable 4 in lef 2 is replaced with the variable 1 (inf 29, the name

mapping routine needs to remap the original variable 1 in l¢ 2°to a di erent variable.

DIMACS f1 DIMACS f2 DIMACS f2'
cl=>a_l ca=>a 1l cl=>al
c2=>b_1 c5=>b 1 c2=>b_1
c3=>a_2 c6=>a 2 c3=>a 2
pcnf33 pcnf64 pcnf64
120 540 ~ s >2-10
320 560 - >2 30
130 1 40—~~~ >4 10
2-30 ——mmfmmms »5-6 0

Figure 4-3. An example of hame substitution
4.4.3 Identi cation and Reuse of Common Con ict Clauses
Our implementation of relevant con ict clause determinaton is motivated by the work
of [67] which proved that for two sets of CNF clause€; and C,, and their intersection' ,
use of con ict clauses generated froh when checkingC; will not a ect the satis ability
of the CNF clausesC, S . Therefore, the con ict clauses generated from the intersgon
when checking the base property can be shared by other propes in the cluster.
Strichman [67] suggested an isolation procedure that can isolate the caat clauses
which are deduced solely from the intersection of two CNF alge sets. We have modi ed
the isolation procedure to improve the e ciency of test gengtion for a cluster of
properties. We have modi ed zCha [74] SAT solver and used it in our framework.

The zCha provides utilities for implementing incremental satis ability. For each clause,

81

it uses 32 bits to store a group id to identify the group wherehis clause belongs. Use of
group id allows us to generate the con ict clauses for di em properties when checking
the base property. If thei'" bit of the clause's group id is 1, it implies that the clause is
shared by the CNF clauses of property;. If the clause of the base property is not shared
by any property, the eld will be 0.

Assume that there arek + 1 properties in a cluster with C; as the set of CNF clauses
for the property P;. Moreover, assume thaP, is the base property. In other words, there
arek + 1 sets of clauses withCy as the base set, an&; Cy,; :::; C are k similar sets with
Co. We use the following steps to calculate the conict clausdsr Cy; Cy;:::; Cx when

solving Co.

During preprocessing, for each clausg in Cy, if this clause also exists irC; (2 i
k), then mark the i™ bit of cl's group id as 1.

When one conict clause is encountered during the checking the base property,
collect all the group ids of the clauses in the con ict side. fie group id of the con ict
clause is logical \AND" of all these group ids.

For each con ict clause, if thei" bit of the group id is 1, then this con ict clause can
be shared byC;.

In our approach, each con ict side clause has a group id whigh marked during the
preprocessing step or marked during the con ict analysis if is a con ict clause. The
procedure of group id determination of a con ict clause is @eribed in Algorithm 6.

This algorithm traces back from the con icting assignment ¢ a cut such adirst
Unique Implication P oint (UIP) [9]] in zCha . The con ict side will contain all the
implications of the variable assignments of the reason sideor UIP, they are implication
variable assignments in the same decision level as the caning variable assignment which
led to the conict. The group id of the con ict clause is the Iagyical \AND" value of all the
group ids of the con ict side clauses. This algorithm can guantee that if the i!" bit of
the group id of the con ict clause is 1, then this con ict claise can be forwarded to the™

CNF clause set.

82

Algorithm 6 : Determination of con ict clause and its group ID
Input : i) Conicting node N

Output : Conict clause with its group id
Visited = f Ng;

ConflictAssign = fg;

groupld = group id of N % antecedent clause;

while the setVisited is not empty do
1. v = RemoveOneElement(V isited);

2. clause = AntecedentOf(v);
grouplD = grouplD \AND" group id of clause;

if v is on the conict side then
| 3. Put all the nodes of clause in implication graph except v to the set V isited;

else
| 4. ConflictAssign = ConflictAssign [f vg;

end

end
5. ConflictClause = Logical disjunction of negated assignments of all elemers in
ConflictAssign ;

return ConflictClause and groupld;

Figure 4-4illustrates how this computation is done. The implication gaph belongs
to a base property of a cluster. Each clause in this graph is mk&d with the group id
information. Here we use four bits to express the group id. Fe@xample, the group id of
clause «3°+ x49 is \1010". It means that this clause exists both in CNF claus set 2 and
CNF clause set 4. The group id of the con ict clause is the logal \AND" of all con ict
side clauses, and the result is 0010. That means, this corticlause can be forwarded to
clause setC,. Therefore, the use of this con ict clause in solving?, will reduce the SAT
solving (test generation) time.

4.5 Case Studies

We have applied our test generation methodology for validetn of various software

and hardware designs. In this section, we present two casedies: the VLIW implementation

of the MIPS architecture, and a stock exchange system. Bothkxgeriments were performed

83

Conflict Clause
o cuT1
. s (X1'+ x5 + x6 + x7")

xL@3 N
o X2 @ 4 Conflict Side Clauses
\\ o Clauses Group id

: \ 4321
/ \x3@4 (x2' + x3 + x8) 0111
o (X3 + X7" +x8') 1010
X5 @ 4 \ (X2 + X&' +x6) 1111

(x3' + x4 1010

(X1' + x4 +X5) 1110

Implicate

Figure 4-4. An example of con ict clause reuse

on a Linux PC using 2.0GHz Core 2 Duo CPU with 1 GB RAM. In our expriments, we
used the NuSMV R7] as our BMC tool to generate the CNF clauses (in the DIMACS
format) for the design and properties. We developed the to® ropertyCluster which
accepts the graph model, the coverage criteria and the clesing strategies as inputs.
This tool generates the required properties (using di erdrcoverage criteria presented in
Section3.1) and clusters them using the clustering strategies propasén Section4.3. We
also modi ed zCha [74] to integrate our techniques including name substitutionclause
intersection, and constraint sharing based test generatiadescribed in Sectior4.4.1
45.1 A VLIW MIPS Processor

We applied our methodology on the single-issue MIPS presedtin Section2.3.2 The
PropertyCluster generated 171 properties using the node coverage, 2-intgian coverage,
and the path coverage criteria. In this section we rst presd results for each clustering
technique, and then present a summary to compare the clusteg techniques.
45.1.1 Structure-based Clustering

The graph model of MIPS processor has four parallel pipelingaths. Each of them
shares four units (fetch, decode, memory and writeback), drdi ers only in the execution

units. The structural similarity is established based on tk path that a set of properties

84

activates. For example, the following 7 properties is growa in a cluster because all of

them refer to the division path.
pl3 = F(fet_active! = 1& div_active! = 1)
p28 = F(decactive! = 1& div_active! = 1)
pl33 = F(div_active! = 1& mem_active! = 1)
pl34 = F(div_active! = 1& wh_active! = 1)
pl50 = F(div_active! = 1))
ple5 = F(fet_active! = 1& decactive! = 1& div_active! = 1)

pl70 = F(fet_active! = 1& decactive! = 1& div_active! = 1& mem_active! =
1&wb active! = 1)

Table 4-1 presents the veri cation details for the above cluster. T cluster has 7
properties wherepl3 is the base property. The second column shows the propetype
(node coverage, edge coverage, interaction coverage et€he third column indicates the
bound for that property. The fourth column shows the number bCNF clauses (size) for
that property. The fth column presents the number of con ict clauses forwarded from the
base property. The next column presents the test generatiadime (original, in seconds)
using unmodi ed zCha . The seventh column presents the tesgeneation time using our
approach. The new time is larger for the base property sinceincludes the intersection
calculation time with other properties in the cluster. The peedup is computed using the

formula (Original Time / New Time). The overall speedup for his cluster is 418x.

Table 4-1. Veri cation results for a structure-based clusgr

Prop. Type Bound Size Forward Orig.(s) New(s) Speedup
pl3 Inter. 8 461122 - 15.61 21.99 0.71
p28 Edge 7 395566 32576 8.31 0.16 51.94
pl33 Edge 7 395564 32576 11.99 0.18 66.60
pl34 Inter. 7 395564 32576 9.07 0.19 47.74
pl50 Node 6 330002 21748 4.70 0.16 29.38
ple5 Path 8 461132 35121 22.87 0.27 84.70
pl70 Path 8 461142 35121 24.45 0.26 94.04
Avg: - 7.29 414299 - 13.86 3.32 4.18

85

Table 4-2. Structure-based clustering results for MIPS po@ssor

Cluster Size Base Original Improved Time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)

1 10 1.21 68.26 32.01 5.91 1.78

2 8 1.84 83.26 37.43 6.02 1.88

3 17 15.90 193.21 2.49 15.44 6.18
4 17 18.31 173.20 3.81 14.47 5.23
5 7 15.61 81.40 1.22 6.38 4.18

6 7 2.03 120.38 40.05 5.71 2.56

7 4 2.15 15.94 5.79 2.62 1.71

8 1 8.56 8.56 8.56 0.00 1.00

9 17 30.92 582.80 59.44 17.57 5.69
10 17 2.30 149.75 50.74 12.83 2.31
11 7 10.54 140.31 30.77 6.78 3.14
12 17 9.40 669.83 164.34 17.39 3.55
13 11 21.21 365.79 44.1 12.26 4.99
14 4 10.62 46.58 3.84 3.54 3.18
15 14 15.84 142.78 4.00 11.47 5.07
16 13 2.65 263.93 149.19 11.92 1.63
Avg: 10.69 10.57 194.12 39.86 9.39 3.42

Table 4-2 provides the overall veri cation details of the clusters geerated using the
structural similarity. The total 171 properties are groupe into 16 clusters shown in the
rst column. The example presented in Tabled4-1is the expansion of the fth cluster in
Table 4-2 (row 5). The second column presents the size of that cluster ferms of number
of properties. The base time is the execution time of the bageoperty. The original
time is the running time of the remaining properties (excepthe base property) without
using any knowledge sharing techniques. Since intersecticalculation is necessary before
executing the base property, we show the improved time (oupproach) in two parts: new
veri cation time, and overhead (intersection calculationtime). The last column shows
the speedup using the formula (Base time + Original time) / (Base time + Improved
time). In this table, we can see that the overhead has a lineaelation with the number of

properties in the cluster. Using structural clustering, weean achieve a speedup of42x 3 .

3 Clustering time using structural similarity is negligibleand not shown in the table.

86

45.1.2 Clustering based on Textual Similarity

Since the properties are generated based on fault modelseyhuse similar format and

therefore helpful for clustering based on textual similaty. In this case, we assume that

50% is a reasonable threshold for textual similarity. For emple, the following properties

are textually similar. In this case,p49 is the base property, and other 6 properties has 50%

similarity with it. So they can be clustered together.

p49 =
p50 =
p61 =
p72 =
p82 =
pol =

p100 =

F (ml_active! = 1& m6_active! = 1)
F(ml.activel = 1& m7_active! = 1)
F(m2_active!l = 1& m6_active! = 1)
F (m3_active! = 1& m6_active! = 1)
F (m4_active! = 1& m6_active! = 1)

F (m5_active! = 1& m6_active! = 1)

F (m6_active! = 1& m7_active! = 1)

Table 4-3. Veri cation results for a textual cluster

Prop. Type Bound Size Forward Orig.(s) New(s) Speedup
p49 Inter. 10 592239 - 59.54 68.81 0.87
p50 Inter. 11 657806 78826 81.09 5.88 51.94
p6l1 Inter. 10 592239 78826 60.72 0.31 195.87
p72 Inter. 10 592239 78826 62.37 0.31 201.19
p82 Inter. 10 592239 78826 61.91 0.31 199.71
p91 Edge 10 592239 78826 67.96 0.31 219.23

pl00 Edge 11 657806 78826 84.17 6.08 13.84

Avg: - 10.29 610972 - 68.25 11.72 5.82

Table 4-3 shows the veri cation details for a cluster consisting of ative 7 properties.

The numbers in the table are in the same format as Tablk-1 Due to knowledge sharing,

the speedup

for this cluster is B2x.

Table 4-4 shows the test generation details for all 32 clusters usingxtual similarity.

Table 4-3is the expansion of the 22 cluster of Table4-4 (row 22). In this case, our

approach is able to obtain the overall speedup of 2.

87

Table 4-4. Textual clustering results for MIPS processor

Cluster Size Base Original Improved Time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)
1 1 0.11 0.11 0.11 0 1.00
2 1 0.12 0.12 0.12 0 1.00
3 1 0.35 0.35 0.35 0 1.00
4 1 0.35 0.35 0.35 0 1.00
5 3 1.28 4.62 2.57 1.53 1.10
6 5 2.75 15.63 6.02 3.34 1.52
7 8 5.56 72.61 15.23 6.55 2.86
8 11 11.30 183.44 26.31 10.57 4.04
9 11 17.72 249.19 40.57 12.03 3.80
10 10 30.58 456.97 48.44 12.38 5.33
11 1 0.30 0.30 0.30 0 .00 1.00
12 3 1.28 4.65 2.00 1.57 1.22
13 5 2.69 17.78 7.82 3.40 1.47
14 8 5.00 77.04 21.91 6.62 2.45
15 11 4.7 100.19 34.17 9.16 2.18
16 3 1.55 4.77 1.22 1.62 1.44
17 5 2.73 18.17 4.28 3.42 2.00
18 2 1.21 1.84 1.42 0.97 0.85
19 17 15.67 269.53 6.18 16.45 7.39
20 13 7.74 127.90 4.49 11.24 5.78
21 4 2.04 7.78 1.13 2.38 1.77
22 7 59.54 418.22 13.22 9.27 5.82
23 7 10.34 69.91 9.16 5.82 3.17
24 3 29.07 61.34 0.32 3.39 2.76
25 4 95.77 288.45 0.61 5.66 3.77
26 6 21.63 104.19 0.85 5.98 4.42
27 4 4.02 29.97 4.24 3.05 3.00
28 2 10.46 10.50 0.15 1.72 1.70
29 5 18.64 81.71 0.83 5.08 4.09
30 5 21.07 78.80 6.61 5.22 3.04
31 3 22.25 44,91 0.46 3.05 2.61
32 1 28.78 28.78 28.78 0 1.00
Avg: 5.34 13.64 88.44 9.07 4.74 3.72

4.5.1.3 Inuence-based Clustering

The following 7 properties are grouped using in uence-bagelustering with p111
as the base property. We set the threshold of the similaritysa70%. For instance, the
in uence nodes ofplll arefFET, DEC, MUL1, MUL2, MUL3, MUL4, MULS5,
MULG6, MUL7, FADD 1, FADD 2, FADD 3, FADD 4g, and the in uence ofpl108 isf
FET,DEC,MUL1, MUL2, MUL3, MUL4, MUL5, MUL6, MUL7, FADD 1g. The
similarity between p108 andpl11l is 1613 = 77%.

plll = F(m7_active! = 1&f 4 active! = 1)

88

pl04 = F(m6_active! = 1&f 4 active! = 1)
pl10 = F(m7_active! = 1&f 3 active! = 1)
pl03 = F(m6_active! = 1&f 3_active! = 1)
pl09 = F(m7_active! = 1&f 2 active! = 1)
pl02 = F(m6_active! = 1&f 2 active! = 1)

pl08 = F(m7_active! = 1&f 1 active! = 1)
Table 4-5 shows the veri cation results for an in uence-based clusteconsisting of the

above 7 properties. In this case, the overall speedup usingr@pproach is 452x.

Table 4-5. Veri cation results for an in uence-based clustr

Prop. Type Bound Size Forward Orig.(s) New(s) Speedup
plll Inter. 10 592239 - 54.80 63.40 0.87
pl04 Inter. 9 526687 66773 25.98 0.22 118.09
pl10 Inter. 10 592239 70975 54.26 0.25 217.04
pl03 Inter. 9 526687 66773 25.83 0.22 117.41
pl09 Inter. 10 592239 70975 49.16 0.25 196.64
pl02 Inter. 9 526687 66773 33.27 0.22 151.23
pl08 Inter. 10 592239 70975 49.74 0.26 191.31
Avg: - 9.57 564145 - 41.86 9.26 4.52

Table 4-6 shows the veri cation results using in uence-based clustig for all 27
clusters. The details of the rst cluster (row 1) is shown in &ble 4-5. The overall speedup

using our approach is B0x.
45.1.4 Intersection-based Clustering

Intersection-based clustering is intuitive and easier tanplement since it does not
require any prior knowledge about the structure of the grapmodel or the format of
the properties. It only uses the mapping of the variables farame substitution and the
intersection between the CNFs. Due to use of data structureashmap, the intersection
time is linear to the size of the CNF le. The following propeties are grouped as a cluster

using a threshold for the intersection as 90%.

p50 F (ml.active! = 1& m7_active! = 1)

p62 F (m2_active! = 1& m7_active! = 1)

89

Table 4-6. In uence-based clustering results for MIPS pr@&ssor

Cluster Size Base Original Improved Time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)

1 7 54.80 238.24 1.42 8.60 4.52
2 15 55.31 874.07 38.38 19.18 8.23
3 6 0.07 72.30 83.01 5.18 0.82
4 11 21.22 173.93 4.81 10.44 5.35
5 17 25.94 570.77 48.36 19.22 6.38
6 7 10.49 62.39 4.89 5.92 3.42
7 14 8.98 188.18 22.39 12.64 4.48
8 6 9.41 19.76 0.86 4.45 1.98
9 17 11.76 192.75 20.44 14.62 4.37
10 7 4.06 44.33 10.76 5.29 241
11 8 4.39 49.22 7.26 591 3.05
12 4 24.29 49.00 0.90 3.92 2.52
13 6 15.54 73.46 0.72 5.74 4.05
14 5 2.19 8.99 2.25 2.86 1.53
15 6 2.18 12.60 1.42 3.44 2.10
16 7 12.98 84.54 8.65 6.45 3.47
17 6 19.49 63.14 1.01 5.59 3.17
18 2 4.58 1.83 0.11 1.27 1.08
19 1 2.31 2.31 2.31 0.00 1.00
20 9 10.57 107.50 16.85 8.14 3.32
21 2 1.54 0.35 0.08 0.74 0.80
22 3 18.24 26.83 0.43 2.90 2.09
23 1 0.35 0.35 0.35 0.00 1.00
24 1 0.30 0.30 0.30 0.00 1.00
25 1 1.21 1.21 1.21 0.00 1.00
26 1 0.12 0.12 0.12 0.00 1.00
27 1 0.12 0.12 0.12 0.00 1.00
Avg: 6.33 11.94 108.1 10.35 5.65 4.30

p73 = F(m3.,active! = 1& m7_active!l = 1)
p83 = F(m4._active! = 1& m7_active!l = 1)
p92 = F(mb5_active! = 1& m7_active! = 1)

pl00 = F(m6_active! = 1& m7_active! = 1)
Table 4-7 presents the veri cation details for the above cluster usipnp50 as the base

property. The speedup for this cluster is ®6x.
Table 4-8 presents the intersection clustering veri cation for all he 171 properties.

The details of the 3" cluster are shown in Table4-7. The overall speedup using our

approach is 590x.

90

Table 4-7. Veri cation results for an intersection-based laster

Prop. Type Bound Size Forward Orig.(s) New(s) Speedup
p50 Inter. 11 657806 - 80.91 89.41 0.90
p62 Inter. 11 657806 91548 95.87 0.58 165.29
p73 Inter. 11 657806 91548 95.75 0.46 208.15
p83 Inter. 11 657806 91548 96.29 0.59 163.20
p92 Inter. 11 657806 91548 96.83 0.59 164.12

pl00 Inter. 11 657806 91548 83.99 0.59 142.36

Avg: - 11 657806 - 91.61 15.37 5.96

Table 4-8. Intersection-based clustering results for MIPSrocessor

Cluster Size Base Original Improved Time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)
1 4 1.22 4.08 0.27 1.75 1.64
2 13 1.82 28.44 131 7.48 2.85
3 17 15.68 266.61 2.76 16.99 7.97
4 17 7.72 147.75 1.80 14.51 6.47
5 17 3.65 66.50 2.00 11.96 3.98
6 14 26.19 383.10 2.28 1591 9.22
7 13 60.61 691.41 2.68 16.58 9.42
8 17 8.51 172.23 3.10 14.20 7.00
9 6 80.91 468.73 2.81 8.50 5.96
10 17 20.57 323.98 2.73 16.71 8.61
11 12 13.01 120.28 2.17 10.26 5.25
12 4 4,74 15.29 0.41 2.88 2.49
13 2 0.11 0.11 0.04 0.30 0.49
14 3 0.35 0.65 0.16 0.89 0.71
15 13 18.91 249.84 2.40 13.29 7.77
16 1 30.63 30.63 30.63 0 1
17 1 29.54 29.54 29.54 0 1
Avg: 10 19.07 176.42 5.12 8.95 5.90

45.1.5 Comparison of Clustering Techngiues

Table 4-9 compares the four clustering technqgiues. The rst row showsur proposed
clustering methods. The second row indicates the number diisters using the respective
clustering methods, and the third row shows the correspondj clustering time (in
seconds). The fourth row presents the test generation timerfthe base property. Similar
to the previous tables, the original time refers to traditimal (no clustering) veri cation
time for all the properties excluding the base property. Thaixth row presents the
veri cation time for all the properties except the base proprty using the respective
clustering method. The speedup is computed using the fornau(Base time + Original

time) / (Clustering time + Base time + Improved time). For the rst three clustering

91

methods, the clustering is very fast and the associated cqsime) is negligible. However,
for the intersection-based clustering, the intersectionire is longer compared to other
three methods and is not negligible. Therefore, for intersgon-based clustering, we
provide speedup values for both scenarios { without considieg clustering time (the rst

number) as well as with clustering time (the number in parettesis).

Table 4-9. Property clustering and veri cation for MIPS processor

Methods Structure Textual Influence Intersection
Cluster No. 16 32 27 17
Clust. Time 0.24 0.06 0.22 187.90
Base Time 169.09 436.60 322.44 324.18
Orig. Time 3105.98 2830.13 2918.56 2999.16
Impr. Time 788.09 442,53 431.92 239.28
Speedup 3.42 3.72 4.33 5.90 (4.42)

It is important to note that intersection-based clusteringis most bene cial for
reducing overall test generation time. However, the clusteg overhead is much more than
other strategies. When a large number of complex propertiese involved, the intersection
overhead may become prohibitively large. In such cases, uence-based clustering is most
bene cial. Interestingly, textual clustering consumes last amount of clustering time but
generates better results than structure based clusteringVhen detailed information about
the design is not available, textual clustering is most bengal.

45.2 A Stock Exchange System

This section presents the test generation results of the dime stock exchange system
(OSES) (described in Sectior2.3.5. The speci cation is used to generate 51 properties
based on the fault model. We applied the clustering methodssgtussed in Sectio.3 on
all the properties to generate the tests.

Table 4-10presents the test generation results using structure-baselustering for all
the 51 properties. The overall speedup using our approachd6x.

Table 4-11 presents the test generation results using textual clusteg for all the 51

properties. The overall speedup using our approach is33x.

92

Table 4-10. Structure-based clustering results for OSES

Cluster Size Base Original Improved time Speedup

Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)
1 2 4.48 3.72 0.63 0.97 1.35
2 4 6.14 45.5 13.13 1.92 2.44
3 2 1.76 2.03 0.60 0.97 1.14
4 4 59.56 160.99 15.16 1.90 2.88
5 2 9.34 11.09 19.58 0.98 0.68
6 4 10.74 123.79 5.97 1.95 7.21
7 2 0.40 0.32 0.25 0.97 0.44
8 4 96.44 150.45 31.11 1.91 1.91
9 2 6.62 7.40 0.71 1.13 1.66
10 4 10.08 82.61 48.02 2.26 1.54
11 2 3.36 4.69 1.22 1.13 141
12 4 101.16 154.62 38.48 2.22 1.80
13 2 29.55 36.5 2.90 1.14 1.97
14 4 106.51 168.30 2.24 2.24 1.95
15 2 0.21 0.20 19.34 1.14 0.02
16 4 95.91 588.49 120.00 2.26 3.14
17 2 18.91 15.53 1.16 0.82 1.65
18 1 0.88 0.88 0.88 0.00 1.00

Avg: 2.83 31.23 86.51 19.51 1.44 2.26

Table 4-11. Textual clustering results for OSES

Cluster Size Base Original Improved time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)

1 1 0.68 0.68 0.68 0.00 1.00

2 2 15.55 18.86 7.73 0.81 1.43
3 9 4.33 196.59 60.88 4.26 2.89
4 8 60.25 135.37 36.83 3.80 1.94
5 1 33.57 33.57 33.57 0.00 1.00
6 6 11.62 246.23 2.05 2.86 15.60

7 9 6.44 469.61 130.68 5.01 3.35
8 8 10.61 155.82 95.90 4.50 1.50
9 7 0.21 760.38 390.69 3.91 1.93
Avg: 5.67 15.87 22412 84.33 2.79 2.33

Table 4-12 presents the test generation results using in uence-basetustering for all
the 51 properties. The overall speedup using our approach2=i4x.

Table 4-13 presents the test generation results using intersectiorabed clustering for
all the 51 properties. The overall speedup using our apprdacs 284x without considering
clustering overhead. If clustering overhead is considerdéae overall speedup is B9x.

Table 4-14 summarizes the results using four clustering methods whe2¢3 times
improvement is achieved. It is important to note that the reslts for OSES are consistent

with the results for MIPS in Table 4-9. As Table 4-14shows, intersection-based clustering

93

Table 4-12. In uence-based clustering results for OSES

Cluster Size Base Original Improved time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)

1 5 22.97 147.84 50.48 2.75 2.24

2 8 10.10 369.97 120.27 4.40 2.82

3 3 36.62 59.65 38.78 1.69 1.26
4 5 10.66 135.98 11.37 2.37 6.01
5 4 0.32 4.00 3.28 1.90 0.78

6 1 93.48 93.48 93.48 0 1.00

7 7 28.89 629.39 132.41 3.89 3.98

8 2 12.87 9.85 0.37 0.98 1.58
9 6 14.23 302.63 115.31 2.83 2.40
10 7 34.66 261.80 69.81 3.34 2.75
11 2 15.87 18.98 7.63 0.81 1.43
12 1 0.75 0.75 0.75 0 1.00
Avg: 4.25 23.12 169.50 53.65 2.08 2.44

Table 4-13. Intersection-based clustering results for OSE

Cluster Size Base Original Improved time Speedup
Index (# Prop) Time (s) Time (s) Verify(s) Overhd(s)

1 7 4.84 53.91 16.64 3.31 2.37

2 3 10.93 94.79 6.2 1.46 5.69

3 2 7.13 56.72 5.81 0.98 4.59
4 2 35.32 68.96 24.97 0.98 1.70
5 3 5.06 20.60 22.56 1.45 0.88

6 7 84.18 243.60 22.78 3.30 2.97

7 8 6.54 393.75 147.45 4.53 2.53

8 6 3.37 98.46 42.39 3.32 2.07
9 3 29.45 68.71 19.07 1.74 1.95

10 3 107.27 457.52 39.59 1.69 3.80
11 4 0.20 247.46 62.83 2.24 3.79
12 2 18.74 15.35 1.17 0.82 1.64
13 1 0.7 0.7 0.7 0 1.00

Avg: 3.92 24.13 140.04 31.70 1.99 2.84

is most bene cial for reducing overall test generation timeHowever, when clustering
overhead is prohibitively large, in uence-based clustarg is bene cial. Similarly, when

detailed information about the design is not available, teal clustering is the best choice.

Table 4-14. Property clustering and veri cation for OSES

Methods Structure Textual Influence Intersection
Cluster No. 18 9 12 13
Clust. Time 0.05 0.01 0.05 42.77
Base Time 562.05 142.81 277.42 313.73
Orig. Time 1557.11 2017.11 2034.05 1820.53
Impr. Time 377.15 784.16 668.72 437.98
Speedup 2.26 2.33 2.44 2.84 (2.69)

94

On two case studies (MIPS and OSES) our approach demonstrdt&{5 times
improvement in overall test generation time using e cient ntegration of property
clustering and con ict clause forwarding based learning thniques.

4.6 Summary

Directed test vectors can reduce overall validation e ort isice fewer tests can obtain
the same coverage goal compared to the random tests. The apability of the existing
approaches for directed test generation is limited due to pacity restrictions of the
automated tools. This chapter addressed the test generaticomplexity by clustering
similar properties and exploiting the commonalities betwen them. To enable knowledge
sharing across multiple properties, we have developed a noen of conceptually simple,
but extremely e ective, techniques including name substittion and selective forwarding
of learned con ict clauses. Our experimental results usingoth hardware and software

designs demonstrated an average of four times speedup inedied test generation time.

95

CHAPTER 5
DECISION ORDERING BASED INTRA- AND INTER-PROPERTY LEARNIN G

The primary goal of e cient test generation is how to quickly get satis able
assignments for SAT instances. Various heuristic methodsi@ tools [39, 63] are proposed
to improve the SAT searching time.Decision ordering[59 plays an important role during
the search because di erent decision ordering implies dirent decision tree as well as
di erent search path which strongly a ect the search time. Kisting decision ordering
methods focus on exploiting the useful information of gerarSAT problem with a
single SAT instance. Most of them are based on the statistied SAT instances without
considering any other learning information. For test genation, a design may have various
properties and generally model checking techniques will@tk each of them individually.
For a given design, similar properties describe correlatédnctional scenarios. Therefore
the respective counterexamples are expected to have a sigamnt overlap which can be
used for sharing learning. Furthermore, even for a single $Anstance, the result of the
local search can also bene t the global search. The methodgmosed in this chapter
exploits the learning from decision ordering in the contexof test generation involving one
or more properties of a design. This chapter makes three cabutions: i) investigates the
decision ordering based learning for a single SAT instanadg;applies the decision ordering
based learning between similar SAT instances; and iii) exgts the relation between the
decision ordering and con ict clause forwarding based meths.

The rest of the chapter is organized as follows. Secti@nl presents related work on
decision ordering based heuristics. Sectidn2 describes our learning techniques based on
decision ordering. Sectiorb.3 proposes the test generation methodology using e cient
decision ordering techniques. Sectiob.4 presents the experimental results. Finally,

Section5.5 summarizes the chapter.

96

5.1 Related Work

Di erent variable ordering will lead to di erent search trees, therefore branching
heuristics can improve the SAT searching performance sigrantly [55. As a popular
SAT solver, zCha uses the Variable State Independent Decayg Sum (VSIDS) heuristic
[63]. This heuristic contains two parts: i) the static part collects the statistics of the
Conjunctive Normal Form (CNF) literals prior to SAT solving and sets the initial decision
ordering, and ii) during the SAT solving, the dynamic part peiodically updates the
priority based on con ict clauses. Although the above genal-purpose heuristics are
promising for propositional formulas, they neglect some igue information of BMC.

In [81], Strichman exploited the characteristics of the BMC formlas for a variety of
optimizations including decision ordering. When the bounds unknown, SAT-based BMC
needs to increase the unrolling depth one-by-one until ndig a counterexample. Wang et
al. [87] analyzed the correlation among di erent SAT instances of aroperty. They used
the unsatis able coreof previously checked SAT instances to guide the variabledwrring
for the current SAT instance.

To the best of our knowledge, all the existing approaches drp variable ordering to
improve the SAT solving time involving only one property (o SAT instance or several
correlated SAT instances with di erent bounds). Our approah is the rst attempt to use
both decision ordering and con ict clauses to reduce the BMBased test generation time
for a single SAT instance as well as for a cluster of similar $Anstances. The comparison
between various learning techniques is provided in Secti@.

5.2 Decision Ordering Based Learnings

Decision ordering plays an important role during the SAT seah. It indicates which
variable will be selected rst and which value (true or falspwill be rst assigned to
this variable. Similar to BDD based methods 15|, variable ordering determines the
performance of the SAT solving time. In the VSDIS heuristicanplementation of zCha,

each literal | is associated with azcha _score(l) which is used for decision ordering at

97

decidenext branch() (see Algorithm 3 in Chapter 4). Initially the score is equal to the
literal count in corresponding CNF le. During the SAT solving, the score will be updated
in periodic function after a certain numbers of backtracksThe calculation of the new

literal score is as follows:

chaff _scorgl) = chaff _scorgl)=2 + lits __in _new_confs(l) (5{1)

wherelits_in _new.confs(l) is the number of newly added con ict clauses which contain
literal | since last update.

Similar properties usually have similar counterexampleshich indicates that they
may have similar Boolean constraints during the test genetian. Consequently the
generated SAT instances should have a large overlap in CNRagbkes and can be clustered
to share the learning. This section presents our decisiondaring heuristic which will be
incorporated in the test generation approaches in Sectidnh3.

5.2.1 Overview

As discussed in Sectiod.2.], the most time consuming parts are BCP and long
distance backtracking. They are indicated by implication amber and con ict clause
number which represent the successful decision ratio anddi&rack number respectively.
Ideally, a search method can get a satis able assignment byaking the assignment for
each variable only once. However, generally it is impossblo achieve such scenario. For
a cluster of similar properties and pre-determined boundthe objective of our method
is to reduce the number of implications and con ict clausesfainchecked properties by
incorporating the learned decision ordering knowledge fropreviously checked properties.

Assuming that we have two similar properties, both properés will have a large
overlap on CNF clauses and counterexample assignments. tig5-1 shows the partial
views of search trees and search paths of the two properti@he search paths are formed
according to the decision ordering (shown on top of the seartrees). For each variable

v in the ordering, there are two literals ¥ meansv=1 and v' meansv=0). As shown in

98

Figure 5-1a, there are 6 con icts encountered. The search stops aftending a satis able
assignmenta =1, b=0, c =0, d =1 in this scenario. In Figure 5-1b, the search will be
successful only whem =0, b=0, c=0, d = 1 after encountering 14 con icts. Therefore
the search of the second example will be more time-consumingcause of more backtracks.

Ordering: a,a',b,b,c,c,dd Ordering: a,a',b,b',c,c,dd

XX XXX XXXXXXXXX V

a) Partial view of the first example b) Partial view of the second exampl

‘ ————— » Search Path X: Conflict V : Success Variables: a, b, ¢, d

Figure 5-1. Two examples of SAT search

Because of the large overlap in the assignment of counterexales, the result of
previously checked properties can be used as a learning foichecked properties. For
example, in Figure5-1, the result of rst example strongly indicates the assignnm@ of the
second example because of the satis able assignment inessonb =0, c =0, d = 1.

If the second example uses the decision ordering based on ¥agable assignments in
the rst example, the searching time of the second example de drastically reduced as
shown in Figure5-4.

5.2.2 Bit Value Ordering

Similar properties generally have a large intersection orokth corresponding CNF
clauses and counterexample assignments. This indicatestlthe satis able assignment of
checked SAT instances contain rich decision ordering knadge for unchecked satis able
SAT instance. In SAT search, incorrect value selection folaeh variable will cause con icts

which will result in backtracks to remove the reason of the coicts. A good decision

99

ordering can mostly avoid such faulty assignments. Unlikerpning the search tree using
con ict clause forwarding B8], bit value ordering changes thesearch path By setting the
bit priority (choose 0 or 1 rst) for each variable using the knowledge ofgvious property
checking, the length of the search path can be reduced.

Learned assignment: a=1, b=0, ¢=0, d=1

Ordering: a, a', b, b', ¢, c', d, d' Ordering: a, a', b', b, ¢, c, d, d'

X XX XXXXXXXXXXXV X XX XX XXX
a) Without bit-value ordering b) With bit-value ordering

Figure 5-2. A scenario where bit-value ordering works

Figure 5-2 shows an example where bit-value ordering works. As shownFkigure 5-1a,
we can get a satis able assignmera = 1, b=0, c= 0 and d = 1. This assignment can
be used to change the bit-value ordering of the second examplThat means, when node
b is encountered, the search choosbs= 0 rst in its search path. The same rule also
applies on other nodes. Applying such heuristic in Figurg-2b, there are only 8 con icts
encountered compared to 14 conicts in Figur®-2a. In addition, the search path is also
shortened. Therefore, the searching time is reduced.

It is important to note that the bit-value ordering itself is not always helpful for
the SAT searching. For example in Figuré-3,a=1, b=1, ¢ =0, d = 1 is the only
satis able assignment in the given scenario. The searchimg Figure 5-3a without bit value
ordering is faster than the searching in Figur®-3o because of less con icts. If the learning
assignment in Figure5-3was a=0, b=1, c=0 and d=1, the searching performance will

be much worse than the search in Figurg-3b. Clearly, in the search tree, the high level

100

Learned assignment: a=1, b=0, c=0, d=1

Ordering: a, &', b, b', c,c', d, d' Ordering: a, @', b', b, ¢, c, d, d'

v XX XX X

a) Without bit-value ordering b) With bit-value ordering

Figure 5-3. A scenario where bit value ordering fails
variables (e.g., nodea) strongly a ect the performance of the searching if they ar@ot
consistent with learned bit-value ordering.
5.2.3 Variable Ordering

Although bit-value ordering is promising in general, therare still a lot of con icts
encountered during the search. According to the example sk in Figure 5-3, if high level
nodes (e.g., nod&) make the wrong decision, the search path will be lengthenellie to
the long distance backtrack. To reduce the searching timd,is necessary to restrict the
con ict detection and reasoning in a small area.

Learned assignment: a=1, b=0, c=0, d=1

Ordering: a, @', b, b', c, ¢, d, d' Ordering: b, b', c', c, a, a', d, d'

X XX XXXXXXXXXXXV

a) Without any learning b) With bit-value and variable orde

Figure 5-4. An example of bit-value and variable ordering

101

E cient combination of variable ordering and bit-value ordering is very promising. As
shown in Figure5-4b, the search time is better than that in Figure5-4a due to a shorter
search path and less conicts. The reason of this improvemels that we enhance the
priority of variables b and c. Sincea is the variable with di erent values between the two
satis able assignments shown in Figur®-1, lowering down the priority of such variables
(ones with di erent values between two CNFs) can e ciently avoid the long distance
backtrack. Generally, before SAT solving, it is hard to gue out the di erence between
two satis able CNF variable assignments. However, based dhe value assignment
statistics of the checked properties, the variable ordemncan be constructed. For a
variable with the lower assignment value variation, whichridicates high chance of same
value, we will enhance its priority by increasing the scoref ats two literals.

Learned assignment: a=1, b=0, c=0, d=1
Ordering: a, a', b', b, c', ¢, d, d' Ordering: a, @', b', b, c', ¢, d, d'

X XX XXXXX
a) With bit-value ordering b) Bit-value ordering + Conflict Claus

Figure 5-5. An example of con ict clauses based variable atdng

5.2.4 Conict Clause based Decision Ordering (Hybrid)

Con ict clause is promising to avoid repeated con icts dumg the SAT searching.
Therefore it can be used as a learning during the test genei@t (described in Chapter4).
In essence, con ict clause forwarding can be used to pruneetldecision tree and can be
utilized as a complementary approach for the decision ordeg techniques proposed in

Section5.2.2and Section5.2.3 For two similar SAT instances, if the con ict clauses of the

102

checked SAT instance can be forwarded to the unchecked ortewill reduce the con icts,
thus further shorten the search path.
Figure 5-5a shows application of bit-value ordering on the example sha in
Figure 5-1b. There are 8 con icts during the SAT search in this case. L&t assume
the conict clauses generated from Figur&-la can be forwarded to the CNF clauses of

Figure 5-1b. The generated 6 con ict clauses are as follows:

9
(@°_ B & d9

O P & d =
R
(@ 0 _c_d %
@ B _c_d 12
- T 779

0 0 =2
(@_b_c_d) @ b &
(@ b @ d 7

Equation 5{2 shows the resolution of the forwarded con ict clauses. Bag®n
the result, we can prune the search tree as shown in Figusesh. It indicates that
there are only 2 con icts by applying the bit value ordering a the pruned search tree.
Therefore the test generation time can be signi cantly redeed. For the example shown
in Figure 5-4b, the con ict clause forwarding is not bene cial since the sarch does not
traverse the pruned part of the decision tree. Generally, thcon ict clause forwarding can
further improve the performance of the decision ordering sad methods.

5.3 Test Generation using Decision Ordering

For model checking based test generation, each property isxagation of a desired
system behavior. Consequently each property can produce auaterexample. Since
our method adopts SAT-based BMC, we assume that the bound cére pre-determined
and the generated SAT instances are satis able. The goal dfii¢ test generation for
the property with a known bound is to gure out a satis able asignment for this SAT

instance.

103

To reduce the overall test generation e ort, this section utizes the heuristics
proposed in Sectiorb.2 as a learning. Sectiorb.3.1applies the learning based on the
decision ordering for test generation of a single propertyn Section5.3.2 we present an
algorithm which shares learning from the decision orderingmong a cluster of similar
properties.

5.3.1 Test Generation for a Single Property

When checking a base property using property clustering tewiques, or when
checking only a single property, current methods solve theA$ instance alone since there
is no source of learning. Therefore it is time-consuming antdcan be a major bottleneck
of the clustering based test generation.

During test generation, if the bound of a property is increasl by one, the complexity
will be drastically increased. Based on the observation @], the reason of time-consuming
search is due to the long distance backtracking. Since larget of clauses that belong to
di erent distant cycles are being satis ed independently lpcally), [81] found that there are

three typical scenarios which can cause the con icts:

Distant cycles are being satis ed independently until theycollide each other with
assignment con ict.

Some cycle assignment collides with the constraints impasby the initial state.

Some cycle assignment collides with the constraints impasbky the negation of the
speci ed property.

The resolution of such con icts needs to cancel large numbef variable assignment
between the con icting cycles. Especially for the SAT instace with large bound, the cost
of non-chronological backtracking is still huge since laegbound indicates huge number of
clauses and variables.

To alleviate long distance backtrackings during test genation, learning is required to
guide the SAT search. Conict clause is a promising learninthat can prune the decision

tree. However, in a SAT instance with large bound, the cost aferiving a con ict clause is

104

costly due to large interleaving of irrelevant variables ding the SAT search. Furthermore,
large set of CNF clauses is likely to generate a large numbdramn ict clauses which
can a ect the search performance. Therefore if we can get cmt clauses from a smaller
SAT instance, then the average cost of con ict clause gendi@n will be reduced. As an
alternative, decision ordering can be used as learning. 8a;the SAT instance is assumed
to be satis able, each segment of the CNF clauses should be satis able. The searching
time for a segment is much shorter than the original SAT instace. Although a segment
can not re ect the global view of the system, if the satis abé assignment of the segment is
consistent to the partial variable assignment of the origial SAT instance, it will be helpful
to reduce the overall test generation time of the original SAinstance.
5.3.1.1 Heuristic Implementation

The basic idea of our heuristic for test generation involvim a single property is
to use the learnings from a small part of the SAT instance to gde the search of the
whole SAT instance. By dividing the SAT instance into two segents, we can get the
rst segment which contains the initial state constraints ad the second segment which
contains property constraints. After checking any one of ttim, we can get the partial
variable assignments which can be used as decision orderiegrning, and we can get the
con ict clauses which can be forwarded to the original propty according to Theorem?2 in
Chapter 4.

Figure 5-6 demonstrates an example of using such learnings. In Figuseth, we rst
check one part of the SAT instance and get the correspondingarnings. Then during the
checking of whole SAT instance, under the guidance of the tea@d knowledge, the overall

search path is shortened compared to Figure-6a.

L A CNF SAT instance can be viewed as a union of a set of segmentsene each
segment consists of a set of CNF clauses.

105

1st search

ﬂ/\ \jﬂ searcl

V4
Search trace -- -~ lstsearch trace— 2nd search trace
a) A search without any learnings b) A search with two kinds of learnings

Figure 5-6. Learning techniques for a single property

Our decision ordering heuristics implementation uses anray var[sz] (sz is the
largest variable number for CNFs) to indicate the satis abé assignment result of the
rst search. Each element of the arrayar[i] (0O < i sz) has three values: 1 means
that the i" variable is assigned with 1; 0 means that thg" variable is assigned with
0; and -1 implies that the variable is not assigned during thest search. So during the
second search, the literal score is calculated using thelé@ling formula wheremax(v;) =

MAX(cha _score;), cha _scoref/;Q)+1 .

8
% max(v;) (var[i]==1& |; = v)
scorg(li) = or(var[i]==0 & I; = V9 (5{3)
chaff _scorgv;) otherwise

5.3.1.2 Test Generation

Algorithm 7 describes our test generation procedure for a single profyeusing
learnings from some part of the SAT instance corresponding the original property. Step
1 initializes all the elements ofvar with -1. Step 2 generates the CNF clauses for the
property p. After dividing the CNF into two parts in step 3, step 4 solves the clauses in
any one part and derives the learning in the form of decisiorraering and con ict clauses.
Step 5 updates thevar. Finally, step 6 uses the learning to guide the test generat of

the original property.

106

Algorithm 7 : Test Generation for a Single Property
Input : i) Formal model of the design,D

ii) Property p with bound b

Output : Atest t for p with generated con ict clauses

1. Initialize var;

2. CNF = BMC (D; p; b);

3. Divide CNF into CNF; and CNFy;

4. (assign, conf _clausesl)=SAT(CNF1 or CNF,, var, NULL);
5. Update var using assign;

6. (t, conf_clauses?) = SAT(CNF, var, conf _clausesl);

return (t; conf_clausesl + confclauses?2);

It is important to note that our heuristic for a single propetty is based on the
assumption that the decision ordering knowledge learnedofn the rst search has a large
overlap with a satis able assignment of the second search.lthough the forwarded con ict
clauses can prune the decision space, it is still possibleatithe rst search may mislead
the second search which will aggravate the overall searchitime. Since we halve the
SAT instance and each part can be checked individually, foest generation, we use the

following three strategies in parallel:
Directly solve the original SAT instance.
Solve the rst part and use the learnings to solve the originanstance.

Solve the second part and use the learnings to solve the onai instance.
Once one of the above methods nds a satis able assignmentie remaining two
processes will be terminated. Therefore, we can guarantdestworst case of the test
generation time is the same as directly solving the origin&AT instance.
5.3.2 Test Generation for a Cluster of Similar Properties
For similar properties, there exists a large overlap betwaecorresponding counterexamples.

Therefore the satis able assignments of checked propediean be used as a learning for

107

other properties in the cluster. Some of the derived con ictlauses can also be forwarded
as learning. This sub-section will discuss how to extract éhbit-value ordering and
variable ordering based learnings from the checked propied in details. Also we will
describe an algorithm to utilize the learning based on ded ordering for test generation
of a cluster of similar properties.
5.3.2.1 Heuristic Implementation

In our heuristic implementation, we predict the decision atering based on the
statistics collected from the checked properties. LetarStat[sz][2] (sz is the largest
variable number for CNFs) be a 2-dimensional array to keep ¢éhcount of variable
assignments. Initially, varStat[i][0] = varStat[i][1] = 0 (0 < i sz). varStat will
be updated after checking each property. Assuming we are nawecking propertyp;, if
the value of variablev; in the assignment of thep; is 0, thenvarStat[i][0] will be increased
by one; otherwise varStat[i][1] will be increased by one. This updated information of

varStat will be utilized when checking propertyp; +1 .

Initial values Learning from p1
varStat a| b|{c | d| - varStat a|b| c| d|......
pl: a=0, b=0, c=1, d3t
O]v | 0/0|0|0]:- O]v | 1[2]|0]|0 |-
[V |0|0[0 |0 |- [V [0 [0 [|1

p2: a=0, b=0, c=1, d=p
Y
a=0,b=0,c=1,d=" varStat| a| b| c| d |~

, predict ordering for p3
score(a) 4+ score(@) 4+ Olv | 22101/

score(b) ¢+ score(b)t
score(c) *+ score(c') 4

[1v | 0| 0|2 1|

Learning from p1 + p2

Figure 5-7. Statistics for two properties
For example, if we have three propertiep;, p, and ps, the statistics after checkingp;
and p, are shown in Figure5-7. When checkingps, we can predict its decision ordering

based on the collected information saved imarStat. The content of varStat indicates

108

that variables a and b are more likely to be 0,c is more likely to be 1 andd can be
assigned any value. FurthermoreyarStat implies that the assignments for variable, b
and c are more consistent than the assignment for variablgé Thus the score of variable
a, b and c will be increased. In other words, they will be searched rsas described in
Section5.2.3

Assumingl; is a literal of v;, we use the following equation to predict the bit value

assignment ofv; when checkingp; 11 .

8
% 1 (varStat[i][1] > varStat [i][0]&l; = V)

potential (i) = E or(varStat[i][1] < varStat [i][0]&!; = V9 (5{4)
- 0 otherwise

Here, potential(l;) = 0 means that value ofl; is more likely to be 0 in the satis able
assignment ofp, .1 . For example, in Figure5-7, potential(a) = 0 which means that a is

more likely to be assigned with 0. Let

max(varStat[i][0]; varStat[i][1]) + 1

ratio (1) = in (varStat[ijo} varStat[ij[i) + 1

(5{5)

indicates the assignment variance of variablg. The largerratio; means that the value
assignments for variables;, are more consistent. So it can be used for variable ordering.
Our decision ordering heuristic is based on VSIDS. The onlyi drence is that our
method incorporates the statistics of previously checkedgperties. For each literall;, we
usescorg(l;) to describe its priority. Initially, scorgl;) is equal to the literal count ofl;.
At the beginning of search as well as periodically decayingrte, the literal score will be

recalculated using the following equation whermax(v;)=MAX(score(v;), score(v;"))+1 .

8
S max(v;) ratio(i) pontential(l;) =1
scorgl;) = (5{6)
>
scorg(lj) ratio (i) otherwise

109

5.3.2.2 Test Generation

Algorithm 8 : Test Generation for A Property Cluster
Input : i) Formal model of the design,D

ii) Property cluster, P, with satis able bounds

Output : Test-suite

1. Initialize varStat;

2. Select the base propertyp; and generate CNF,CNF¢;

for i is from 2 to the size of cluster Pdo
3. Generate CNF,CNF; = BMC (D; pj; bound);

4, INT; = Computerintersection (CNF1;CNF;);

5. Mark the clause of CNF1 using INT ;

end
6. (testy, conf _clause) = Algorithm 7(D, pi1, bound,);
Test-suite = ftest g ;

for i is from 2 to the size of cluster Pdo
7. Update varStat usingtest; 1;

[*Figure out the learned con ict clauses from p;i*/;
8. CC; = Filter (conf _clause;i) ;

9. (testj,) = SAT(CNF;, vatStat, CC;);

Test-suite = Test-suite [test;;

end

return Test-suite;

Algorithm 8 describes our test generation methodology. The inputs of éhalgorithm
are a formal model of the design and a cluster of similar progies. The rst step
initializes varStat which is used to keep statistics of the variable assignmentStep 2
generates the CNF clauses for the base propeny. Step 3 generates the CNF clauses for
other properties. After guring out the intersection between the base property with other
properties in step 4, step 5 marks the clauses of base propefthe marking is used for

con ict clause identi cation in step 8). Step 6 solves the bse property using Algorithm?7,

110

and generates a test as well as theonf _clause which can be used as learnings for the
test generation of the remaining properties in the clustersing steps 7-9. After solving
each property, we need to update thearStat in step 7. Step 8 nds the proper conict
clauses which can be forwarded to the current property. Step solves the current property
using the learnings based on con ict clauses and decisiordering. Finally, the algorithm
reports all the generated counterexamples (tests). It is iportant to note that this
algorithm combines both the con ict clause and decision oeting based learnings. If
only decision ordering learning is used, steps 4, 5, 8 shold omitted. Similarly, if only
con ict clause forwarding is applied, then step 7 should benaitted.
5.4 Case Study

This section presents case studies for e cient test generiah using our decision
ordering as well as con ict clause based heuristics. Secti6.4.1presents the case studies
using intra-property learnings for checking individual SA instances. The benchmarks
collected are all pre-generated satis able SAT instance®y using inter-property learning
for a cluster of similar SAT instances, Sectiok.4.2 presents two case studies: a VLIW
implementation of the MIPS architecture (described in Seain 2.3.2 and the stock
exchange system (described in Sectid3.5. We used NuSMV PR7] to generate the CNF
clauses (in DIMACS format). We modi ed the SAT solver zCha [74] to incorporate
our proposed decision ordering heuristic on top of VSDIS. Ehexperimental results are
obtained on a Linux PC using 2.4GHz Core 2 Duo CPU with 2 GB RAM.
5.4.1 Intra-Property Learning

The benchmarks are collected fronBB] and [85]. In [83], there are 13 SAT instances
given in the benchmark set which are all taken from real indtisal hardware designs
(contribution of IBM research and Galileo). We chose four coplex instances from them,
because most SAT instances provided 83 take short time during falsi cation. Apart

from these four benchmarks, we also chose the benchmarkswed ttomplex designs from

111

[85] as follows. Since we are focusing on test generation, thdlected SAT instances are

all satis able.

VLIW-SAT-4.0 , buggy VLIW processors with instruction queues and 9-stage
pipelines; the processors support advanced loads, predezhexecution, branch
prediction, and exceptions.

PIPE-SAT-1.1 , buggy variants of the pipe benchmarks as presented i8q.

For the intra-property learning, we divide each SAT instane into two segments
with the same number of clauses. TablB-1 shows the test generation details using
various intra-property learning techniques. The rst colunn shows the names of the SAT
instances. The second and third columns indicate the CNF siznformation including
the variable number and clause number. The fourth column indates the checking time
by directly using zCha without any other learning information. The fth column shows
the checking time using intra-property learning based on odct clause forwarding,
and the sixth column shows the test generation time using owtecision ordering based
heuristics. The seventh column presents the result whichdorporates both con ict clause
forwarding and decision ordering techniques as described$ection5.2.4 Since we run
di erent methods on di erent computers with the same settirgs, when one machine gets
the satis able assignment, all the remaining SAT searchesadhe other machines will be
terminated. Therefore the SAT searching time is the minimunsearching time among
these techniques. Based on such minimum time, the last colanmdicates the maximum

speedup using the following formula:

MIN (zChaff; Conflict Clause; Decision Ordering; Hybrid)

speedup= zChaff

(5{7)

where zChaff , Conflict Clause, Decision Ordering and Hybrid indicate the results of
columns 4-7 in Table5-1, respectively.
It is important to note that the execution time in columns 5-7which adopt the

intra-property learning techniques includes the learningme from divided/segmented

112

€Tt

Table 5-1. Test generation results using intra learnings

SAT CNF Size zCha [74] Conit Clause Decision Ordering Hybrid Max
Instance #Variable #Clause Time(s) Time(s) Time(s) Time(s) Speedup
bmc-galileo-8 58074 294821 0.99 0.43 0.74 0.41 2.30
bmc-galileo-9 63624 326999 1.74 0.99 0.94 0.56 3.11
Bmc-ibm-10 59056 323700 7.98 3.96 8.23 7.86 2.02
Bmc-ibm-11 32109 150027 6.98 4.58 1.8 6.97 3.88
VLIW-1 521188 13378461 1366.78 1070.4 2074.19 489.15 2.79
VLIW-2 521158 13378532 198.12 77.45 221.17 298.16 2.56
VLIW-3 521046 13376161 145.46 151.85 55.66 52.93 2.75
VLIW-4 520721 13348117 1126.13 295.15 599.22 94.4 11.93
VLIW-5 520770 13380350 879.24 757.09 703.1 167.78 5.24
VLIW-6 521192 13378781 211.50 51.49 544.26 317.26 4.11
VLIW-7 521147 13378010 87.61 189.41 357.63 400.74 1.00
VLIW-8 521179 13378617 1227.75 952.13 443.38 377.74 3.25
VLIW-9 521187 13378624 962.82 107.99 1523.44 1590.54 8.92
VLIW-10 521182 13378625 1769.14 915.73 930.2 1595.05 1.93
PIPE-1 138917 4678756 1327.92 752.52 279.82 278.17 4.77
PIPE-2 138918 4678718 1710.66 1703.37 403.97 403.97 4.23
PIPE-3 138917 4678757 825.78 394.07 365.04 969.33 2.26
PIPE-4 138563 4675040 1080.10 32.57 408.13 14.06 76.82
PIPE-5 138918 4678760 626.9 566.75 603.45 114.57 5.47
PIPE-6 138795 4671352 0.43 0.65 117.44 117.23 1.00
PIPE-7 138918 4678760 1734.26 987.88 1359.35 534.72 3.24
PIPE-8 138711 4688614 113.07 2.06 0.65 0.65 173.95
PIPE-9 138916 4676007 6062.27 6065.7 355.56 355.62 17.05
PIPE-10 138918 4678760 1430.29 1074.18 277.98 978.93 5.15

CNFs. This table shows that our method can drastically redwecthe test generation time
(up to 174 times). We can observe that in majority of the caseshe con ict clauses
forwarding based intra-property learning can improve thedst generation time compared
to zCha . However, decision ordering method and hybrid methd are not always helpful.
This is because the decision ordering based method may lede tsearch in a wrong way
with more con icts.

Figure 5-8 and 5-9 show the statistics of con icts and implications for the cdéected
benchmarks using various intra-property learning methods/Ve normalized the generated
con ict clauses for each learning method using the total coist clauses and implications
generated by the four di erent methods shown in Tablé&-1 The vertical axis of the
stacked graphs shows the normalized percentage of con idaases and implications
respectively. We can nd that the result of the percentage ofon ict clauses and
implications is consistent. In other words, less con icts W result in less implications.
Furthermore, these gures also are consistent to the test geration performance shown
in Table 5-1 It indicates that, by using the proposed intra-property l@rning methods in
parallel, we can drastically reduce the con icts as well asnplications during the SAT

searching. Consequently we can save the test generation ém

m zChdf Conflict Clause m DecisionOrdering Hybrid

100%

o | |
D 90% f 0 — 4§ = E - = n
5 80%_ | EE EEE _1_L H B
5 oo M N B N RN N
P 60% - - - || . - N
s 50% 1 B B B e B | B
9 B
C:U; 40%' _____ . — . —
O 30% - - = =
2 20% | N FFEEEEEEERERER
......... EEEEEEREERERERER
S il BB EEEEEEEEEEEEEENEEEEEED
O
S IO DNV X OH LN DD NS X H AN DD O
& &Ry SRR S o
%é\\:f\b f&f&&x PPILIIIOL @@ FFIFIIEE QQ’Q@Q)
ot T

Figure 5-8. Con ict statistics using various intra-propety learnings

114

m zChaf Conflict Clause ® DecisionOrdering Hybrid

) -
D 90% + —— — —m— B — e — — — L —
g oo AE SNl NS R . M
& | | | | |
870% —— = . — .
&60%- — — — . — = .
- 50% +— — . H | B
S 40% - - _
g 11 N
g 0% g EEEEEEEEENEEEENEN
IIIIIIII EEEEERERERERAER
= o A EL R EEEENR] EEEEEEEEREERED
OOV D LPIE LN E DD NN D X h b A S 9D
S S AR AR XN R & & o
Q§© @06306\630&4\} 4\} 40 404\} 4\} 40 4\} 4\}4\}$ QQ QQ Q\Q Q\Q Q\Q Q\Q Q\Q’ Q\Q QQQXQQ)
e F

Figure 5-9. Implication statistics using various intra-larnings

5.4.2 Inter-Property Learning
5.4.2.1 A MIPS Processor

The MIPS processor design is based on the example describe@&ection2.3.2 We
applied our methodology to generate the required directeasts for four pipeline paths in
the execute stage (ALU, FADD, MUL and DIV).

Due to the similarity, we cluster the properties of each patliogether to share the
learning. There are 16 properties divided into 4 clusters. &h cluster has a base property.
Table 5-2 shows the results. The rst column indicates the componentnder test. The
second column shows the properties used for test generatidrhe third column gives
the test generation time using zCha directly. The fourth cdumn shows the result by
forwarding con ict clauses among properties. It has threeub-columns. Since the con ict
clauses forwarding based method needs to explore the comnoteuses, we need to gure
out the intersection between SAT instances. Therefore therst sub-column gives the
intersection time. The second sub-column gives the checgitime under the learning

of conict clauses. The third sub-column gives the speeduprer zCha (speedup =

zChaff Time
Intersection Time + Checking Time

). The fth column gives the test generation result using

decision ordering based learnings. It has two sub-column$:test generation time, and ii)

115

speedup over zCha . The last column shows the result which es both con ict clauses
and decision ordering based learnings.

For the base property of each cluster, we adopt the intra-pperty learning techniques.
Since the base property is a major bottleneck of the clusteg based methods described
in Chapter 4, the test generation time reduction for the base property cadrastically
increase the overall performance. In Tablé-2, we also give the summary for each
property cluster. We found that the hybrid method needs lessme during the test
generation. However, since the con ict clause forwardingeeds to consider the SAT
instance intersection, the overall performance of hybrid ethod is worse than the decision
ordering based method. In general, the decision orderingd®d method can achieve the
best performance. In this case study of four clusters with dio property in each cluster, we

can achieve 4-6 times improvement.

mzChaff ®Corflict Clause = Variable Ordering ® Hybrid
1E+6

1E+5 I

1E+4 - 11

1E+3 -

1E+2 - -

Conflict Claise Number

1E+1 - —

1E+0 -
pl p2 p3 p4 p5 p6 p7 p8 p9 pl0 pll pl2 pl3 pld pl5 pl6

Properties

Figure 5-10. Con ict statistics for MIPS processor

During the SAT searching, the number of con ict clauses andumber of implications
strongly indicate the searching time. Figures-10illustrates the con ict clause generation
for each property during the search using di erent methodsFigure 5-11shows the
corresponding implication numbers. It can be seen that, bysing our method, the
number of con ict clauses and implications can be reduced astically by several

orders-of-magnitude, which results in signi cant improvenent in test generation time.

116

LTT

Table 5-2. Test generation result for MIPS processor

MIPS Prop. zCha [74] Con ict Clause Decision Ordering Hybrid
Component (Tests) Time (s) Inter. (s) Time (s) Speedup Time (s) Speedup Inter. (s) Time (s) Speedup
p1 1 19.78 0 11.9 1.66 13.08 151 0 9.36 2.11
ALU p2 16.55 2.49 0.87 4.93 0.13 127.31 2.49 0.11 7.84
Unit P3 15.41 2.08 1.82 3.95 0.15 102.73 2.08 0.11 6.45
P4 16.21 2.66 0.54 5.07 0.18 90.06 2.66 0.12 5.69
Summary all 67.95 22.36 3.04 13.54 5.02 16.71 4.07
ps L 15.21 0 16.14 0.94 16.09 0.95 0 8.34 1.82
DIV Ps 19.83 2.77 1.84 4.30 0.12 165.25 2.77 0.11 9.40
Unit p7 13.74 2.79 0.98 3.64 0.49 28.04 2.79 0.15 5.56
Ps 13.24 2.84 0.91 3.53 0.14 94.57 2.84 0.18 4.66
Summary all 62.02 28.27 2.19 16.84 3.68 15.76 3.94
Po 1 16.01 0 18.00 0.89 11.59 1.38 0 9.33 1.72
FADD P1o 15.38 2.61 2.60 2.95 0.16 96.13 2.61 0.12 5.01
Unit P11 15.63 2.08 1.80 4.03 0.12 130.25 2.08 0.12 6.65
P12 18.37 2.88 0.92 4.83 0.12 153.08 2.88 0.12 7.09
Summary all 65.39 30.89 2.12 11.99 5.45 17.34 3.77
p13 ! 50.90 0 38.9 1.31 31.88 1.60 0 26.18 1.94
MUL P14 51.27 3.35 13.14 3.11 0.29 176.79 3.35 0.66 15.40
Unit P1s 47.85 3.14 15.06 2.63 0.22 217.50 3.14 0.61 12.24
P16 53.44 2.89 14.59 3.06 0.25 213.76 2.89 0.15 16.75
Summary all 203.46 91.07 2.23 32.64 6.23 36.61 5.56

1 Base property

mzChaff ®Corflict Clause = Variable Ordering ® Hybrid

1E+8
1E+7 A
1E+6 -
1E+5 -
1E+4 -
1E+3
1E+2
1E+1
1E+0 -

Implication Number

pl p2 p3 p4 p5 p6 p7 p8 p9 plO pll pl2 pl3 pl4 pl5 pl6

Properties

Figure 5-11. Implication statistics for MIPS processor

It is important to note that the hybrid method can achieve leat number of con icts and
implications, which justi es our discussion in Sectiorb.2.4
5.4.2.2 A Stock Exchange System

The formal NuSMV description of the on-line stock exchange/stem (OSES)
is derived from its UML activity diagram speci cation descibed in Section2.3.5in
Chapter 2. A path in the UML activity diagram indicates a stock transadion ow. There
are a total of 49 properties generated based on path coveragéeria. According to their
similarity, we group them into nine clusters.

Table 5-3. Test generation result for stock exchange system
Cluster Size zCha Conict Clause Decision Ordering Hybrid Max

[74] (s) (s) (s) (s) speedup
Ci 3 13.63 11.93 8.55 10.71 1.59
C, 4 26.35 35.37 3.99 7.75 6.60
Cs 8 463.54 183.06 41.24 50.43 11.24
Ca 4 3.36 5.01 1.49 5.56 2.26
Cs 4 66.59 40.47 6.38 11.30 10.44
Cs 8 343.88 270.48 12.28 23.33 28.00
C; 2 17.81 6.73 7.03 6.20 2.87
Cs 8 666.61 343.94 51.80 71.19 12.87
Co 8 208.50 101.91 34.99 34.83 5.99
Average - 201.14 110.99 18.64 24.59 10.79

Table 5-3 shows the test generation results involving all the 9 cluste The rst

column indicates the clusters. The second column indicatése size of each cluster

118

(number of properties). The third column presents the test gneration time (including
base property) using zCha . The fourth column gives the redtiusing con ict clause based
inter- and intra- property learnings. The fth column presents the result using decision
ordering based inter- and intra- property learnings. The sth column indicates the test
generation time using both learnings (i.e., hybrid method) The last column indicates
the maximum speedup using our heuristic methods. In this castudy, our approach can
produce an average of 10.79 times overall improvement in tegneration time compared
to zCha . It is important to note that the decision ordering method can achieve the best
performance, which is consistent with the result obtainechiSection5.4.2.1
5.5 Summary

To address the complexity of test generation using SAT-badBMC, this chapter
presented a novel methodology which explores the intra-grerty learnings within a SAT
instance and inter-property learnings between similar SAThstances. All these learnings
are based on decision ordering heuristics as well as con iause forwarding techniques.
To the best of our knowledge, our work is the rst attempt to skare the decision ordering
learnings on di erent parts of a SAT instance as well as acresnultiple properties.
By exploiting the commonalities during the search of satisble assignments, the test
generation time of a single property as well as a set of similproperties can be reduced.
The experimental results using both hardware and softwareedigns demonstrated the
e ectiveness of our method. Our studies show that hybrid leaing is more pro table for
solving one SAT instance, whereas decision-ordering badedrning is more bene cial for

solving a set of similar SAT instances.

119

CHAPTER 6
EFFICIENT PROPERTY DECOMPOSITION TECHNIQUES

Checking the rst (base) property is a major bottleneck dumg the test generation
using clustering and learning techniques, since the baseoperty can not actively obtain
learnings from others to improve its test generation time. §pecially when checking a
large design with complex properties (i.e., properties witlarge cone of in uence or deep

bounds), BMC based methods are very costly since large SATstances indicate long SAT

search time.

2 P
pl p2 pm pl 92 pn
P : I S i !
TR an leamings i+
(Composition [BMC

J :

T T

a) Test-oriented decompositiorb) Our Learning-oriented decomposit|

Figure 6-1. Two property decomposition techniques

To address this problem, Koo et al. proposed a property dec@msition technique
[47] as shown in Figure6-1a. The basic idea is to decompose a complex property into
several simple sub-properties, and then compose the testsresponding to sub-properties
to derive a test for the original property. Since the test gegration time of sub-properties
is typically several orders of magnitude smaller than the @inal property, the state
space explosion problem can be avoided in many scenarioswieer, the composition of
tests of sub-properties is a major bottleneck in this methodince it is hard to automate.
The inevitable human intervention and expert knowledge isequired during the test
composition. In many cases, it may not be possible to obtaimé required counterexample

by composing partial (local) counterexamples. As an alteative, in this chapter, we

120

propose a learning-oriented decomposition technique show Figure 6-1b which can

be fully automated. Unlike the test-oriented method in47], our approach is based on
the learned knowledge (i.e., decision ordering) during thiest generation of decomposed
pro table sub-properties. Such learnings can be used to dstically accelerate the original
property falsi cation. Therefore the overall test generaibn e ort can be signi cantly
reduced. Our method makes three important contributions:)iit proposes a method

that can spatially or temporally decompose a complex propgrinto several simple but
pro table sub-properties; ii) it proposes an approach thaican derive learnings from the
decomposed sub-properties; and iii) it proposes a methodathcan guide the complex

property checking using derived learnings.

Complex

______ > . e
Design Specification Properties

Property
Decomposition

Formal Model
Generation

Checking

\ 4 A 4

I

I

I

|

|

I

:

: Formal Model :
| (SMV Input) Learnings
|

I

I

I

|

I

|

A

Test Generation

Specification Implementation

" Validaiion | TESL CASEY T on)

Figure 6-2. Our test generation framework

Figure 6-2 shows our test generation framework. The inputs to this fraework are
the design speci cation and required properties. To reduddis complexity, there are three
important steps (three shaded boxes in the gure). First, wgropose two novel property

decomposition techniques which can signi cantly reduce ghcomplexity during property

121

falsi cation. Next, by checking the selected pro table subproperties, we can collect
useful learnings for the original property checking. Findl, the learned knowledge can be
utilized as a decision ordering heuristic to avoid the unnessary con icts during the test
generation. Therefore, the test generation time can be ditaslly reduced.

The rest of the chapter is organized as follows. Secti@nl proposes two novel
property decomposition methods based on learning techniggl Section6.2 presents the
decision ordering based learning techniques for originailgperty checking. Section6.3
describes how to use the learned knowledge from the decongzbgroperties for test
generation. Section.4 shows an example using our decomposition techniques. Sectb.5
presents case studies using both hardware and software desi Finally, Section6.6
summarizes the chapter.

6.1 Learning-Oriented Property Decomposition

This section rst discusses the potential learnings of therpperties for test generation.
Next, we propose our spatial and temporal decomposition teaiques.

6.1.1 Potential Learnings for Complex Properties

During test generation using BMC based methods, there are énwkinds of complex
properties which are often encountered: i) properties whiadescribe complex scenarios
involving multiple components of the design; and ii) propeies which indicate events with
long delay. Both cases will result in large SAT instances bagse of the corresponding
large Cone of In uence (COIl) and large bounds. Therefore isinecessary to explore
learnings to reduce the complexity during the test generatn.

For a complex system level property which describes inteft@zans between di erent
components, it can be partitioned into multiple componentdvel sub-formulas. As an
example shown in Figures-3, a system level propertyP can be broken into 3 component
level sub-propertiesP;, P, and Ps with di erent COl. When checking a sub-property
such asP; with a small COI, it usually needs much less time and space thahat of

checking the complex property?. The knowledge learned during checking, can be used

122

for test generation of the propertyP. In Section6.1.2 we propose a spatial property

decomposition method to explore such learnings.

Design Block

Figure 6-3. The COI of a design block

Transactions are widely used to describe SoC system level behaviors. Arisaction
is a sequence of strongly relevamvents As an example shown in Figuré-4, there are
3 transactions, and each transaction has two events. We ctdfy the relation between
these events in two categories. Theause e ectrelation (marked by)) de nes the
relation of intra-transaction events. For example, in tragactionT1, if el happens, thene2
should happen in future. Thehappen beforeelation (marked by) species the relation
of inter-transaction events. It indicates which events hapen before other events. For
example,e4 €5 meanse4 happens before5.

During the test generation for transactions, we specify a gated safety property to
indicate the occurrence of eveng in the form of F(€). Generally, if an event happens
with a long delay, BMC will unroll the design many times whichwill drastically increase
the checking complexity. According to the de nition, the \) " relation can be used to
derive helpful learnings. For example in Figur&-4, let property P, = F(e;) and
property P, = F(e&). Sincee;) e impliesF(e) ! F(e), l.e.,, P! P,, it
shows that the P1's counterexample will be helpful for deriving? 2's counterexample.

Such information can be used as a learning. The \' relation also can be used to indicate

123

the learning information. Assuminge; es, the counterexample of F(ey) is shorter
than the counterexample of F(es5). However, by our observation, counterexample of
F (e;) may have a large overlap of variable assignments with the waterexample of
F (es). Therefore the learning from F (&) can bene t the test generation of F(es).

In Section6.1.3 we propose a temporal property decomposition method to egpe such

learnings.

T3

T2

T1:

el e2
- e3 e !

re5 'e6

Figure 6-4. A functional scenario with three transactions

6.1.2 Spatial Property Decomposition

A complex false safety property can be decomposed into a sétsab-properties with
equivalent semantics. If the partial counterexamples geraed by the sub-properties can
be re ned to guide the complex property falsi cation, the orginal property is spatially
decomposable
De nition 8. Let P be a false safety property. P is spatially decomposable ie tfiorm

pLN P2 N py orin the form py_p,_ :::_ py if all the following conditions are satis ed.

If the decomposed properties are in the forp” p.” :::” pn, then at least one property
pi (1 i n)has a counterexample. In this case, the bound Bfis the minimum
bound ofp;, which has a counterexample.

If the decomposed properties are in the forqy, _ p> _ ::: _ pn, then each propertyp;

(1 i n)has a counterexample. In this case, the bound Bfis the maximum bound
of all decomposed properties.

124

The counterexamples generated from propertigs (1 1 n) can guide the test
generation for propertyP. []

According to De nition 13, the following rules can be used for complex property

decomposition.

X(p_a X" X(q
X(pra X(P_ X(q (6{1)
F(p_g F(@E" F(

The false property in the formof F(p”~ gand F(p !) cannotbe
directly decomposed into conjunctive or disjunctive formHowever, by introducing a
synchronization clockclk, they can be spatially decomposed. It is important to note tat
the value of theclk indicates the bound of the false property. The Equationg{2) shows
that the counterexample of F(p” g” clk = k) can be re ned by the counterexamples of
F(p™ clk = k) and F(g” clk = k).
F(p™ gq” clk = k) F(p" clk=k)_ F(g” clk = k)

(6{2)
where F(p” g~ clk = k) is false

For a false property in the formF(p! @), p describes the pre-condition, andj indicates
the post-condition. When the propertyG(p) holds, F(p ! @) will be vacuously
true, and the checking of F(p! q) will report a counterexample without satisfying
the precondition p. This counterexample may not match the original intention.In
Equation (6{3), we only consider the case where the pre-conditignis satis ed.

F(p! g” clk = k) F(p™clk=k)_ F(g” clk = k)

(6{3)
where F(p! g*clk=k)and F(p” clk = k) are false

Based on the rules presented in Equatior6{1)-Equation (6{3), a system level property
can be decomposed in the form qfy » p, ™ i paorpy_ P2 :ii_ pa. Infact, if the

complex property can be decomposed in the form p, ™ :::” p,, it is not necessary to

125

use the learning information. We just need to sort the propér p; (L <i n) according

to their increasing bounds, and check the sub-propertiesofn the small bounds to large
bounds. The counterexample of rst falsi ed property can baised as a counterexample for
the complex property.

When checking a complex property in the formop, _ p> _ ::: _ pn, it iS not necessary
to check all its sub-properties. Because the bounds of suleperties are the same as the
complex property, if the COI of a sub-property is similar to he complex property, the test
generation complexity of such sub-property will be similato the complex property. In this
case, it is not economical to use learning. Therefore we neted gure out sub-properties

with small COI from the complex property.

PP _ P =(pi_Px)_ B (6{4)

According to the commutative law, for a complex property, wean classify its
atomic sub-properties into several clusters. For examplay Equation (6{4), pi and pk
are clustered together, angy; belongs to another cluster. For each cluster, we generate a
re ned property which represent all the atomic sub-properties in the clustdo derive the
learning. Based on our experience, the following clustegrrules work well for most of the
time.
Structural similarity: In each cluster, all the variables in the sub-formulas shaliicome
from the same component (e.g., fetch module in a processosigm).
Functional similarity: In each cluster, all the sub-formulas should describe thelaged
functional scenarios (e.g., fetching instructions and/odata).
Algorithm 9 presents our spatial decomposition method which can derigeset of
re ned sub-properties with small COI for learning. The inpts of the algorithm are
a design modeD and a complex propertyP in disjunctive form. Step 1 initializes
the SD_props with an empty set. Step 2 tunes sub-properties’ order accarg) to the

commutative law and clusters sub-properties using the sifarity rules. Step 3 selects the

126

ith cluster. If the COI of such cluster is smaller tharﬁ of P's COl, step 4 will generate

a new re ned property newP for the iy, cluster. Step 5 addsnewP to SD_props. The

re ned property newP for learning represents a cluster of sub-properties as showm step
3. Finally this algorithm will return a set of re ned sub-properties for deriving learnings
(described in Sectior6.2). Since the COI of a re ned property inSD_propsis small, its
test generation time will be much smaller than that of the oginal complex property. It is
important to note that this algorithm may return an empty set which means the property

cannot be spatially decomposed.

Algorithm 9 : Spatial Decomposition

Input : i) The design model,D
i) A property P intheformpy_p2_:::_ pn
Output : A set of re ned sub-properties for learning, SD _props

1. SD_props = fg;

for i is from 1 to m do
3. cluster_i = fpropy;:::;prop«g;

if COl(clusterj) KCOI(P) then
4. generate a re ned property newP for the cluster;;

S
5. SD_props= SD_props newP;

end

end

return SD _props;

6.1.3 Temporal Property Decomposition

Temporal property decompositioriries to eclipse the bound e ect. The basic idea
of temporal decomposition is to deduce a long bound properfyom a sequence of
short bound properties. For exampleP 1, P2,P3 andP4 (P4 = P) are properties
indicating four di erent stages of property P. The bound of them areK 1, K2, K 3 and
K 4, respectively, andK 1 < K 2 < K 3 < K 4. BecauseP 1's counterexample is similar

to the pre x of the P2's counterexampleP 1's counterexample contains rich knowledge

127

that can be used when checking 2. Similarly, during the property checking,P 3 can

benet from P2 and P4 can benet from P 3. Therefore the knowledge learned from lower
bound properties can be reused by the larger bound propert§uch learning can avoid
some unnecessary random SAT searching and can quickly obt#ne counterexample for
property P.

De nition 9. Let P be a false safety property, and P is temporally decomposablall the

following conditions are satis ed.

P can be divided into false propertiep;, p;, ::: and p, (P = pn) with increasing

bounds.
pi ! p+1 (1 i Kk, 1), which indicates the counterexample generated from
properties p; can guide the test generation for propertgp;.; . []

If the counterexamples of lower bound property can be used teason aboutP, the
property P is temporally decomposabldn temporal decomposition, nding the implication
relation (\! ") between properties is a key process. In our framework, wertstruct such

implication relation by exploring the order between events.e. \) "or\ "

e3 e4 e5
Q 1 C 2
/
el e2 3 2\ €7 e8 e9
Q—l{}' 2 M\ 1 O
- . Y
~ - .
e6
O Event Cause effect - - - - - Happen before

Figure 6-5. A DAG of event relation

When checking a large bound property for a transaction, thermay be many events
along the path to the target events. Checking all these evento obtain learnings is

time-consuming. For example, assuming that we want to chet¢ke property F (&),

128

the relation between events is described using a directedyalic graph (DAG) shown in
Figure 6-5. Each node indicates an event, and each directed edge indesathe relation

of\) "or\ ", and each edge is associated with the delay between evenits.this DAG,
there are 8 events that happen befored. However, it is not necessary to check all of them.
Since the branch nodes of a DAG contain the critical variablassignment information,

in our decomposition method, we only consider the events vehi determine the branches
along the path from initial state el to the target state €9.

Algorithm 10 describes how to obtain a sequence of properties based on penal
decomposition. It accepts an event DAG with the initial and &rget events as inputs. Step
1 uses Dijkstra's algorithm R4] to nd a shortest path. Step 2 initializes the sequence
TD _propswith a property for the initial event. Step 3 and 4 select thébranch eventsaand
append their correspond properties to th& D _props Finally the algorithm reports the
property sequence for deriving learnings. By using this algthm, (F(el), F(e3),

F (e7)) is a property sequence from the temporal decomposition Figure 6-5.

Algorithm 10 : Temporal Decomposition
Input : i) An event DAG, D

i) Initial event src, target event dest

Output : A property sequenceT D _props

1. path = Dijkstra(D, src, dest) to nd the shortest delay path;
2. TD _props = (property for src);

for i is from 2 to len (number of events inpath) do
3. (& 1;8)=(i 1)y edge ofpath;

if out_degrede 1) + in_degredeg) > 2 then
| 4. Append the property for g to TD _events;

end

end

return T D _props;

129

6.2 Decision Ordering Based Learning Techniques

SAT based model checking encodes a property checking probleito a SAT instance
(a Boolean formula). A counterexample of the property is a §a able variable assignment
for this formula. Although the variable assignment of courdgrexamples derived from the
decomposed sub-properties may not satisfy the SAT instanoé the complex property,
it has a large overlap with the complex property on the variale assignment. Such
information can be used as a learning to bias the decision erthg when checking the
complex property.

During the SAT search, decision ordering plays an importaniole to quickly nd
a satis able assignment. The learning approach in this chagr is motivated by the
work proposed in Chapters. It is based on Variable State Independent Decaying Sum
(VSIDS) method [63]. A major di erence is that our method incorporates the staistics of
decomposed properties. Since di erent sub-properties hadi erent bounds, we consider
such information in our heuristics.

Let boundsbe an array which stores the bound ok sub-properties. Because in
spatial method the decomposed sub-properties may be indegdent, the learning between
sub-properties is not signi cant. So we seboundi] = 1(1 i k). However for
temporal decomposition, thevstat information of lower bound properties can further
bene t the larger bound property checking. Moreover the lager bound sub-property is
closer to the nal properties than smaller bound sub-propeies. Therefore, for temporal
decomposition based method, the sub-properties is sortedcarding to the increasing
boundand boundi] indicates the bound ofiy, property. Let vstat[sz][2] (sz is the variable
number of the complex property) be a 2-dimensional array tcecord the statistics of
variable assignments. Initially,vstat[i][0] = vstat[i][1] = 0 (O <'i sz). vstat will be
updated after checking each sub-property. When checkingetsub-propertyp;, if variable
v; is evaluated and its value in the counterexample is O (falsejstat[i][0] will be increased

by boundgj]; otherwise ifv; = 1 (true), vstat[i][1] will be increased byboundgj].

130

Assumingl; is a literal of v; (v; has two literals, v; and v;"), we usescorgl;) to
indicate its decision ordering. Initially, scorgl;) is equal to the literal count ofl;. However,
at the beginning of SAT searching and periodic score decaginthe literal score will be

recalculated. Let
MAX (vstat(v;);vstat(v)) + 1

PIas = TIN (vstat(v); vstat(v) + 1

indicate the variable assignment variance.

8

% max(v;) bias (vstat[i][1] > vstat [iI][0]&]; = v;)
scorg(li) = E or(vstat[i][1] < vstat [i][0]&!; = v

- scorg(l) otherwise

The new literal score will be updated using the above formulahere max(v;)

MAX (scorg(V;); scorgv)) + 1.

Initialization pl: a=0, b=1, c=0

learning: a=0, b=1, c=1

p2: a=0, b=1, c=1

Figure 6-6. Learning statistics applied on decision trees

131

Figure 6-6 shows an example of temporal decomposition using our hetids The
complex property P is decomposed into three propertiep;, p, and ps(= P) with bound 1,
2 and 3 respectively and we assume that we always check theiahtes in the order ofa,

b, c. Initially, when checking p,, there is no learning information. However, after checking
p:1, we can predict the decision ordering fop, based on the collected/stat information
from p,. Also we can predict the decision ordering giz(= P) from the vstat of p, and p..
When checkingP, the content of vstat indicates that variablesa is more likely to be 0,b
and c are more likely to be 1.

6.3 Test Generation using Our Methods

In this chapter, we assume that the bound of complex propertgsnd decomposed
properties can be pre-determined. Determination of bound ihard in general. However, for
directed test generation, the bound can be determined by eljiting the structure of the

design. An example of bound determination is presented in &®n 6.4.

Algorithm 11 : Test Generation based on Property Decompaosition
Input : i) Formal model of the design,D

ii) Decomposed propertiesprops and satis able bounds

iif) The complex property P, with the satis able bound bound,
Output : A test testp for P

1. CNFs = BMC (D; props; bounds);

2. (CNFq;:::;CNFpL) = sort CNFs using increasing le size;
3. Initialize vstat;

for i is from 1 to the n do
4, test; = SAT(CNF;, vstat);

5. Updatg(vstat; test;; bounddi]);

end
6. Generate CNF = BMC (D; P; boundp);
7. testp = SAT(CNF, vstat);

return testp;

132

Algorithm 11 describes our test generation methodology. The inputs ofeéhalgorithm
are a formal model of the design, a set of decomposed propesprops and their
satis able boundsbounds and the complex propertyP with its satis able bound bound,.
Step 1 generates CNF les in the DIMACS format T4] for each decomposed property in
props. Step 2 sorts the CNFs by their DIMACS le size. Step 3 initialzesvstat which is
used to keep statistics of the variable assignments for desposed sub-properties. Then
for each decomposed sub-property, we collect its counteaemple assignments from step 4
to step 5. For each iteration, we need to updatestat statistics. In step 6 and step 7, the
complex property P is checked using the decision ordering derived from the degposed
sub-properties. Finally, the algorithm reports a test for he complex propertyP.

6.4 An lllustrative Example

This section presents an example of how to use decompositimethods on a design
illustrated in Section 2.3.2 Assume that we want to check a complex scenario that the
units MUL5 and FADD 4 will be active at the same time. We generate the property
which is a negation of the desired behavior as follows. Themainder of this section will

solve it using spatial and temporal decomposition methods.

/* Original complex property P */

P: ~ F(mul5_active=1 & fadd3_active=1)

6.4.1 Spatial Decomposition

In the MIPS design, each functional unit has a delay of one dk cycle. To trigger
the functional unit MUL5, we need at least 7 clock cycles (there are 7 units along the
path Fectch! Decode! :::! MULS5). Similarly, to trigger the functional unit FADD 3,
we need at least 5 clock cycles. Plus one clock cycle for ialization, we need 8 clock
cycles for triggering this interaction. Thus the bound of tis property is 8. According
to Equation (6{2) and Algorithm 9, property P can be spatially decomposed into two
sub-properties as follows, assuming the COI &1 and P2 are both smaller than half of

COl of P.

133

/* Modified original complex property P' */

P: ~ F(mul5_active=1 & fadd3_active=1 & clk=8)
/* Spatially decomposed properties */

P1. ~ F(mul5_active=1 & clk=8)

P2: ~ F(fadd3_active=1 & clk=8)

When checkingP 1 and P2 individually, we can get the following two counterexampke

Counterexamples for P1 and P2
Cycles P1's Instructions P2's Instructions

1 NOP NOP

2 MUL R2, R2, RO NOP

3 NOP NOP

4 NOP FADD R1, R1, R(Q
5 NOP NOP

6 NOP NOP

7 NOP NOP

8 NOP NOP

However, according to Algorithm11, the test generation forP2 is under the
guidance ofP 1's result. Thus, the counterexample oP 2 guided byP 1 containsP1's
partial behavior (see clock cycle 2 below). So the score délals which have repetitive

occurrences is enhanced.

Counterexample for P2 guided by P1
Cycles P2's Instructions
1 NOP
MUL R2, R2, RO
NOP
FADD R1, R1, RO

NOP
NOP

2
3
4
5 NOP
6
7
8

NOP

134

The statistics saved invstat indicates an assignment which has a large overlap of the
assignments with the real counterexample that can activatproperty P. Thus it can be
used as the decision ordering learning to guide the properthecking ofP.

6.4.2 Temporal Decomposition

For temporal decomposition, we need to gure out the event iplication relation rst.
Because we want to check the propertyF (mul5_active = 1 & fadd3_active = 1), the
target event ismul5_active = 1 & fadd3_active = 1. Figure 6-7 shows the implication for

this event. There are 7 events in this graph, and; is the target event.

Figure 6-7. Event implication graph for property P

Assumingel is the initial event, from el to €7, there is only one pathe; ! e, !
es! e ! e;. Along this path there is a branch nodes,. According to the Algorithm 2,
we need to check two events; and e, using following properties. By using our learning
technique, during the test generationP_e4 can bene t from P_el, and P can bene t from

P_e4

[* Spatially decomposed properties*/

P_el: ~ F(fetch_active=1 & mull_active=1)

P_e4: ~ F(mul3_active=1 & faddl_active=1)

6.5 Experiments
This section presets two case studies: the VLIW implementain of the MIPS

architecture (described in Sectior4.5.1) and the stock exchange system (described in

135

Section4.5.2. In our framework, we used NuSMV 27] to generate the CNF clauses (in
DIMACS format) and integrated our proposed methods in the zBa [74] SAT solver. The
experimental results are obtained on a Linux PC using 2.0GH2ore 2 Duo CPU with 1
GB RAM.
6.5.1 A VLIW MIPS Processor

This section presents the experimental result using a vetage pipelined MIPS
processor design. The details of the design are illustratéd Section2.3.2and Section6.4.
Since the generated properties are in various complex fortaait is di cult to gure
out the implication between events. Therefore in this casdugly, we only investigate the

spatial decomposition based learnings.

Table 6-1. Test generation result for MIPS processor
Property zCha [74] Cluster Renement Spatial Speedup

(Tests) (sec) # # (sec) zCha VS Spa.

Property format: F(p_ Q)

p1 119.96 3 3 0.03 3999

p2 56.22 2 2 0.03 1874

P3 2.32 2 2 0.01 232
Property format: F(p” Q)

P4 43.96 3 2 18.88 2.33

Ps 15.24 2 1 6.57 2.32

Ps 9.28 2 1 4.42 2.10
Property format: F(p! Q)

p7 13.59 2 1 4.16 3.27

Ps 68.33 2 1 13.16 5.19

Po 160.51 3 2 30.31 5.30

We select nine complex properties from the MIPS design. Tabb-1 shows the test
generation results using our spatial decomposition method’he rst column indicates the
selected properties. The second column gives the test geatem time using zCha . The
third and fourth columns present the number of sub-propertglusters and the number of
re ned sub-properties for deriving learnings. The last twaolumns show test generation
time using learnings and the improvement of our spatial deagposition based method

over the method using zCha . We cluster 9 properties into 3 guups (3 properties in each

136

group), and each group has a speci c property format. For exaple, the rst group can
be decomposed ag; * p, " pn. Thus the test generation can be done when nding a
counterexample from a lower bound sub-property without anjearnings. For the second
and third groups, the properties can be decomposed in the forof p; _ p, _ pn.

Each sub-property are of the same bound. Therefore we needdaster the sub-property
according to the similarity rules presented in Sectio.1.2 Compared to the method
without any learnings (column 2), our spatial decompositio based learning method can

drastically reduce the test generation time.

ETime ®Conflict Clauses = Implications

6
5
o 4
>
B 3
Q.
» o,
1 -
0 -
p4 pS p6 p7 p8 p9
Properties

Figure 6-8. Property checking result for MIPS processor

During the SAT-based BMC falsi cation, con ict clause number and implication
number are key factors which determine the test generatioregformance. Decision
ordering learned from decomposed properties can e cientlgvoid the con icts when
checking the complex property. Figures-8 shows the result of propertiep, py presented
in Table 6-1 It illustrates the performance improvement (spatial metlod over zCha)
using time, implication number and con ict clause number. i can be seen that, by using
spatial method, the number of con ict clauses and implicatins can be reduced drastically
by 2-4 times, which consistently results in signi cant impovement in test generation time

(2-5 times).

137

6.5.2 A Stock Exchange System

The on-line stock exchange system (OSES) is a software (désed in Section2.3.5
which mainly deals with stock order transactions. We genet@ 18 complex properties to
check the stock transactions. In the UML activity diagram, ach transaction is indicated
by a path which is a sequence of activities (events). The tegeneration for a transaction
using only one complex property is time consuming. So we teonally decomposed the
transaction into several stages which specify the branchtadgties along the path, and for
each stage we create a sub-property.

Among the 18 complex properties, ten of them are time-consumg (more than 10
seconds without using our method). Tablé-2 shows the test generation results for these
ten properties using temporal decomposition. The rst colmn indicates the property. The
second column indicates the test generation time using zChaithout any decomposition
and learning techniques. The third column presents the bodnof the complex property.
The fourth column indicates the number of temporal sub-progrties decomposed along
the stock transaction ow. The last two columns indicate thetest generation time (using
temporal decomposition) and its speedup over zCha . In thigase study, our approach can

produce around 3-60 times improvement compared to the mettiaising zCha .

Table 6-2. Test generation result for OSES
Property zCha [74 Bound Decomposed Temporal Speedup

(Tests) (sec) # (sec) zCha VS Temp.
p1 25.99 8 3 0.78 33.32
p2 48.99 10 4 2.69 18.21
P3 39.67 11 5 3.45 11.50
P4 247.26 11 5 22.46 11.01
Ps 160.73 11 5 15.68 10.25
Ps 97.54 11 4 1.56 62.53
p7 31.39 10 4 12.31 2.55
Ps 161.74 11 4 12.62 12.82
Po 142.91 10 4 17.57 8.13
P10 33.77 10 4 1.76 19.19

138

6.6 Summary
To address the test generation complexity of a single comgl@roperty using

SAT-based BMC, this chapter presented a novel method whictombines the property
decomposition and learning techniques. By decomposing angaex property spatially
and temporally, we can get a set of sub-properties whose ctenexamples can be used
to predict the decision ordering for the complex property. Bcause of the learning from
the simple sub-properties to the complex property, the ovall test generation e ort can
be reduced. The case studies demonstrated the e ectivenegsour method using both
hardware and software designs that generated signi cant wags (2-60 times) in test

generation time.

139

CHAPTER 7
REUSE OF VALIDATION EFFORT FOR ASSERTION-BASED EQUIVALENC E

For software designs, the di erence between speci catiorVel tests and implementation
level tests is small. Generally, the speci cation level tés can be automatically reused and
applied on software implementations. Consequently, the osistency between di erent
software designs can be checked. However, due to the sigant di erence in timing
and other details, maintaining the functional equivalencéetween di erent hardware
abstraction layers is a major challenge during the SoC deaigin this chapter, we are
focusing on checking the functional consistency betweenatient hardware abstractions.

In this chapter, we focus on reusing validation e ort betwee TLM and RTL models.

Since there is no mature automatic TLM to RTL re nement tool and manual
conversion is error-prone, various approaches are propdse guide the TLM to RTL
conversion. Simulation is a widely used method for functi@h validation. By using
a transactor [p] between TLM and RTL designs for communication, the previaly
generated TLM tests can be exercised on the re ned RTL impleamtations to check the
functional correctness. However, due to substantial di ences between TLM and RTL
models, traditional simulation methods can not guaranteehie functional equivalence.

For black-box methods §6], simulation can not guarantee the bug propagation to the
outputs. Similarly, for white-box simulation methods 66|, the code coverage3p] and
toggle coverage can not fully indicate the required functi@al coverage. This is due to the
lack of functional observation mechanisms for traditionasimulation based methods.

Assertion based validation (ABV) R3, 29] has been successfully applied in SoC
validation to ensure the functional correctness. It not oyl increases the design observability
based on simulation using ad-hoc tests, but also takes advage of more emerging formal
methods for improving the overall veri cation quality and results. As a functional
observation point, an assertion can be instrumented into TW or RTL designs to

monitor the speci ed functional scenario. Currently, thee are two most popular assertion

140

languages: Property Speci cation Language (PSLB[and System-Verilog Assertion (SVA)
[37]. PSL is platform-independent and can be used in multi-layedesigns. SVA is similar
to PSL, nevertheless it is only customized for System-Veot) designs. In the context of
ABV, a property is de ned as a logic constraint description built on Booleamxpressions,
sequences and temporal operators, whigessertion is de ned as a directive to prove the
correctness of the property. For simplicity, in this chaptewe use the term assertion to
indicate both assertion and property.

In this chapter, we propose a methodology to guarantee therfational equivalence
between TLM and RTL models based on the observability of assens. The basic idea
is that in the TLM speci cation, if a test can exercise a spead functional scenario
monitored by some assertion, then in the RTL implementationthe counterpart of
the TLM test can also activate the counterpart of the TLM assdion. During the
TLM-to-RTL functional equivalence checking, we need to adésses the following four

issues:

How to determine a set of TLM assertions for observing all the functional
scenarios? We proposed several fault models which require that all thepsci ed
faults should be covered by the generated assertions.

How to activate a given TLM assertion? We adopted the model checking
falsi cation technique to derive tests for activating TLM assertions. For each
assertion, we generate one test to activate it.

How to reuse TLM validation e ort? We developed the validation re nement
rules which can convert TLM assertions and tests to their RTlcounterparts.

How to use the correlation between TLM and RTL assertions for equiv-
alence checking? We proposed a method to verify the TLM-to-RTL equivalence
based on the criteria of assertion coverage and assertiordering.

Our proposed approach addresses the above challenges an#tesawo major
contributions: i) develops a prototype tool for automatic TLM-to-RTL test and assertion
re nement, and ii) proposes a method that uses the assertiavbservability for checking

the functional equivalence between TLM and RTL models. Beoae our work is based on

141

the reuse of TLM validation e ort, there is no extra cost (extudes de ning the re nement
rules) since it needs to be validated anyway. Furthermoreuo method is fully automated
and can be easily scaled for large designs.

The rest of this chapter is organized as follows. Sectiahl presents related work on
validation reuse and equivalence checking between TLM and'R models. Section7.2
proposes our equivalence checking framework based on \atiion reuse. Sectior7.3
presents the experimental results. Finally, Sectioi.4 summarizes the chapter.

7.1 Related Work

TLM is promising to enable early design space exploration drhardware/software co-
simulation. Hsiung et al. B6] adopted SystemC TLM models to enable rapid exploration
of di erent recon gurable design alternatives. In j4], Kogel et al. presented a SystemC
based methodology which provides su cient performance, xbility and cost e ciency as
required by demanding applications. Shin et al.8(0] proposed a method to automatically
generate TLM models from virtual architecture models whicltan achieve signi cant
productivity gains.

As a hybrid method based on both simulation and formal veri ation, ABV is
acknowledged as a promising approach for functional valilan in RTL level [1]. However,
ABYV is still a challenging domain in system level design. Todaress the issues when
incorporating PSL within SystemC environments, Lahbib et b [49 proposed an
automated solution which can embed PSL assertions in a Syst€ design. Based on
static code analysis and genetic algorithms, Habibi et al3§] presented an e cient
method to optimize test generation in order to increase thesaertion coverage. Ecker et
al. [25] proposed a transaction level assertion framework using @w specialized language.
In [73], Pierre described an e cient and tractable solution for veifying the PSL based
properties of TLM design during the simulation. However, n&t researches are focused on
implementing PSL assertions in SystemC framework, and nowd them use assertions for

checking the TLM-to-RTL functional equivalence.

142

Reusing the validation e ort between abstraction levels aareduce overall validation
e ort. Assertions can be treated as constraints of system gpi cations. Therefore the
assertion reuse can partially guarantee the consistencytween di erent abstraction levels.
In [42], Kasuya and Tesfaye presented a mechanism to construct arelise temporal
assertions in various TLM abstraction levels. As an alterriave, test reuse can not only
reduce the test generation and simulation time, but also eb& the co-simulation between
di erent abstraction levels. In [12], Bombieri et al. proposed a transactor-based dynamic
veri cation method. By using transactors, the TLM testbentes can be reused during
the TLM-RTL co-simulation. In [14], Bombieri et al. presented a formal de nition of
functional equivalence based on events order without timgninformation. However,
they did not provide any implementation details for checkig the proposed functional
equivalence. Similar to our work, the research of incremeaitABV methodology described
in [13] uses various kinds of assertions to check the correctne$d bM-to-RTL re nement.
However, since their work is based on transactors, it is reged that RTL implementations
should be ready before the co-simulation. Also, their workass not provide any methods
about how to activate all the instrumented assertions. Thefore it is di cult to guarantee
that the simulation can achieve the required assertion cosgge quickly. Furthermore, their
method applies assertions on TLM speci cations only. It jusmonitors primary input and
output signals without investigating RTL implementation details.

To the best of our knowledge, when checking re nement con@acy and correctness,
existing approaches focus on test/assertion coverage wotlt considering more details such
as the correlation between TLM and RTL assertions. Our appexh is the rst attempt to
reuse the validation e ort to enable assertion-based equilence checking between TLM
and RTL models.

Figure 7-1 shows the framework of our methodology. First by analyzing OM
speci cations, the TLM assertions and tests can be automatally derived according to

speci ed fault models. Next the re nement process translas the TLM assertions and

143

tests for RTL validation using our proposed mapping rules. fie re ned assertions will
be instrumented in RTL implementations. The re ned tests wil be applied on the RTL
implementations and the output of the tests and the activatd assertions will be monitored
by a RTL assertion checker. Finally, by comparing simulatio traces recorded by TLM and

RTL assertion checkers, the equivalence checker reportsethesults.

TLM Validation Refinement RTL Validation
VERT ck |

TLM ‘ Test Mapping ‘ RTL 3 : : :

Tests ‘ Rules ‘ Tests |20k | |

‘Assertion Checkelﬁ—% Equivalence Checker %{Assertion Checkerf
Ty TLM ‘ Assertion Mappiné RTL O
% Assertions ‘ Rules ‘ Assertions ﬁ‘

Figure 7-1. Our equivalence checking framework

7.2 A Framework for Checking TLM-to-RTL Functional Equival ence
Our methodology has three important steps: i) automatic vadiation of TLM
speci cations (i.e., TLM assertion/test generation), ii) validation e ort re nement,
and iii) assertion based equivalence checking. The followi subsections discuss each of
these steps in detail.
7.2.1 Automatic Transaction Level Validation
SystemC TLM emphasizes the functionality of the data transfrs instead of actual
implementation. Essentially a SystemC TLM design intercamects a set of processes
using transactions (i.e., C++ function calls) for communiation. Each process does
the following tasks: receiving data, processing data andreling data. Due to various

complex constructs in C++, extracting all such behavior to @able automated analysis and

144

validation is di cult. Furthermore, the underlying comple x SystemC scheduler aggravates
the modeling complexity. In fact, investigating the generafeatures of SystemC TLM is
not necessary for functional validation of TLM models. For TM, the most important
factors are the transaction data, the transaction ow and tle transaction event order. So
during our assertion/test generation process, these factoneed to be considered. Other
elements can be selectively abstracted.
7.2.1.1 Generation of TLM Assertions

Assertions are used to specify the required functional behars of a system. To
investigate the equivalence between TLM and RTL models, weead to explore as many
assertions as possible. In our method, we de ne a setfalilt modelsto achieve a complete
set of assertions. Each fault indicates a required \desigrebavior" which may be violated
during the system design. For example, when validating a desd scenario described by
a sequence (sequenceas a PSL term which indicates a sequential expression), weeus
the following PSL statement pairs to detect whether the segunce p will happen nally.
The Propl_1 asserts that the sequencp must \ eventually!" hold strongly during the
simulation, and Propl_2 is used to record the assertion coverage during the simutat by

using veri cation directive \cover".

Propl_1: assert eventually! p;

Propl_2: cover (p);

We consider the three TLM fault models which are described iBection3.1.1.2
Transaction data fault model deals with the possible valuessignment for each part of the
transaction data. However, for property generation, due tthe large size of value space,
trying all possible values of a data is infeasible. By checig each bit of a variable (data
bit fault) separately, the data content coverage can be pally guaranteed. The following

is an example of a data fault.

145

/IThe second bit of "packet.parity” can be 1.

assert eventually! (packet.parity==2);

cover (packet.parity==2);

Transaction ow fault model handles the controls along a trasaction ow. To ensure
transaction ow coverage, one can cover branch conditionshich exist in if-then-elseor
switch-casestatements. The goal is to check all possible transaction ves. The following is

an example of a transaction ow fault.

/[The condition packet.to_chan=1 can be true.
assert eventually! (packet.to_chan==1);

cover (packet.to_chan==1);

Transaction event indicates the execution stage of a transion or the interaction
between processes. Therefore, during the equivalence &g, the order of events
should be investigated. In our method, we consider variousents in two categories: 1)
events of procedure calls, such asad and write, and put and get operations; and 2)
synchronization events, such await and notify operations. The following is an example of

a read procedure call.

/IThe event a=A.read() can be activated.

assert eventually! {A==a};

cover {A==a};

It is important to note that an assertion that is generated fom the above three fault
models activate a speci c functional scenario. In our methbit just acts like a functional
check point to monitor the occurrence of a speci ¢ event inead of describing a complex
scenario. The order of the assertion activations plays an portant role and will be
handled when verifying functional equivalence described Section7.2.4
7.2.1.2 Generation of TLM Tests

Our equivalence checking approach is based on simulation, \we need to generate

tests to cover all the assertions derived using the methodgposed in Sectiorv.2.1.1

146

Conventional methods use millions of random/constrainetandom tests, however, it is
di cult to exercise all the assertions in a reasonable time As an alternative, directed
tests are promising since they exploit the structural infanation and can converge to 100%
assertion coverage quickly. However, most directed testrg@ation methods need human
intervention which is error-prone and costly. In our framewrk, we developed a tool which
can enable automatic directed test generation. It is impoant to note that for random test
based methods, we may require a large set of tests for eachesatssn. However, when using
directed methods, we just need to derive one test for each egson. Chapter 3 gives the
details for TLM test generation.
7.2.2 Renement of TLM Assertions and Tests

When TLM assertions and tests are ready, we need to re ne thetn RTL counterparts
for reuse. A major challenge in the translation is how to brige abstraction gap between
TLM and RTL models. As we know, TLM design is signi cantly di erent from its RTL
implementation in input/output port de nition, internal s tructure and timing information.
Thus for TLM-to-RTL validation re nement, it is necessary to provide such missing
information which is also needed during the manual or autontia TLM-to-RTL synthesis.

In our framework shown in Figure7-1, the Validation E ort Reuse Tool (VERT) is a
major component which enables TLM-to-RTL re nement by speiying rules. The inputs
of VERT are TLM assertions/tests as well as a Validation Re ment Speci cation (VRS)
which contains the rules to guide the validation re nement.Generally a VRS contains

three parts as follows.

Symbol Mapping speci es the name and type mapping between TLM variables and
RTL signals.

Assertion Re nement Rules specify patterns and timing information for RTL
assertions.

Test Re nement Rules specify the interface protocols and timing information for
RTL input stimulus.

The following subsections describe each part in details.

147

7.2.2.1 Symbol Mapping

In our prototype tool, we use SystemC for transaction level adeling and Verilog for
RTL modeling. Due to the naming convention inconsistency iween TLM speci cations
and RTL implementations, during the validation re nement, it is necessary to have a
symbol table which speci es the name mappings. Each item imé symbol table de nes
the correspondence between TLM variables and RTL variable§&enerally it provides the
following information: i) name mapping, ii) date type mappng, and iii) bit mapping. The

following is an example of symbol mapping.

SYMBOL_MAPPING
bit[7:0] parity=packet.parity;
bit[7:0] header={packet.payload_sz[7:2], packet.to_ch an[1:0]};

bit[7:0] payload[0..packet.payload_sz-1]=packet.payl oad[0..packet.payload_sz-1];

END_SYMBOL_MAPPING

For each symbol mapping item, the left hand side is the RTL dat declaration, and
the right hand side is the bit mapping details from TLM data toRTL data. The VRS
allows the user to specify the RTL data using the concatenain of several TLM data.
Also it supports the mapping from an array of TLM data to an aray of RTL data. For
example,parity is a RTL data with 8 bits. It refers to the TLM variable packet.parity.
The header is a RTL data whose most signi cant six bits corrge@nds to the TLM data
payloadsz and the least signi cant two bits correspond to the TLM datato_chan. The
RTL data payloadis an array where the width of each element is 8 bits. The ¢ 1)™
elementpayloadi] corresponds to the i(+ 1) element of the TLM data packet:payloadi].
7.2.2.2 Assertion Re nement Rules

According to the de nition in [3], a PSL or SVA assertion consists of four layers:

Boolean Layer de nes the Boolean expressions of signals which are evaletn a
single evaluation cycle.

148

Temporal Layer describes assertions involving complex temporal relatisrbetween
Boolean expressions. Temporal assertions are evaluate@roa series of evaluation
cycles.

Veri cation layer speci es the directives to veri cation tools to handle the emporal
assertions.

Modeling layer is used to model the behavior of design inputs.

Our TLM-to-RTL assertion re nement only considers the rst three layers since
the fourth layer is not relevant in our framework. As preserd in Section7.2.1.] the
generated TLM assertions are in the simple syntax like \asgeeventually! p". Most
of them are temporal assertions involving transaction datanly without any clock and
control signal information. However, RTL assertions genally have such lower level
details. Therefore, during the assertion re nement, we neeto consider clock expression
and control signals. If all such information is provided, te assertion re nement can be
done by inserting the timing (i.e., clock expression) and otrol information as well as by

substituting symbols.

SYMBOL_MAPPING
bit[1:0] data_o_fsm=tmp_packet.to_chan;

END_SYMBOL_MAPPING

ASSERTION_SPEC
“set_clock (posedge clock);
“control

tmp_packet.to_chan

@ $rose(write_enb[%tmp_packet.to_chan]);

END_ASSERTION_SPEC

In the above assertion re nement rulestmp_packet.tachanis a TLM variable that

denotes the target slave address of the packet. From the syoiltmapping, we can gure

149

out the corresponding RTL internal signal isdata o_fsm which is a 2-bit register. In

the ASSERTION_SPEC block, the directive et clock sets the clock expression for the
re ned assertions. Because in RTL di erent value of controkignals may specify di erent
meaning to input data signals, we use the directiviontrol to set the RTL control signals
during the TLM data re nement. The rst parameter of &ontrol is a TLM variable

that appears in the TLM assertion. The second parameter is éhcorresponding RTL
control signal expression for the TLM variable. In this examle, only when the RTL signal
write_enb[%tmppacket.tachan] asserts, the RTL signaldata o_fsm can indicate the target

slave address. Here #fp_packet:tachan denotes the value otmp_packet.tachan

TLM assertion: cover(tmp_packet.to_chan==1);
RTL assertion: cover property

(@(posedge clock) ($rose(write_enb[1])&&

data_o_fsm[1:0]==2'd1));

The above example shows the usage of the assertion re nemeunes. The TLM
assertion wants to check whether the packet can be delivertmithe slave 1. We can nd
that the RTL assertion includes the clock expression. The VET substitutes the TLM
variable tmp_packet:tachan for its RTL signal data_o_fsm accompanied by its control
signal Fose(write _ent1]).
7.2.2.3 Test Re nement Rules

From the symbol mappings, we can get the size information odeh RTL signal as
well as the bit correspondence between TLM data and RTL dataHowever, the RTL
test stimulus is a timed sequence of data signal inputs cowolted by control signals.
Therefore it is required that the test re nement rules needa be programmable. Similar
to Verilog testbench, VRS supports basic programming consicts like if-then-elseand
for-loop statements, sub-functions and so on. In essence, the testnement rules consists

of a sequence of statements. These statements are well oigad to describe the timing

150

sequence of RTL data inputs. Based on the symbol mappings atite compiled test

re nement rules, the V ERT will produce one RTL test for one TLM test.

TEST_SPEC router(packet)
main:
begin
initialize();
reset();
#5 PKT_VALID = 1'b 1;
DATA = header;
for(int i=0; i<packet.payload_sz; i++){
#10 DATA = parity][i];
}
#10 PKT_VALID = 1'b 0;
DATA = parity ;
slave_read(packet.to_chan, 1);

end

END_TEST_SPEC

The above code is an example of the test re nement rules. It deribes a testing
scenario of the packet delivery for a router as follows: i) aaster sends a packet to
the router, ii) the router parses the packet and noti es the orresponding slave to fetch
the packet, and iii) the slave receives the packet. Figuré-6 shows an example of a
TLM-to-RTL test translation using the given rules.
7.2.3 A Prototype Tool for TLM-to-RTL Validation Re nement

We developed a prototype tool which incorporates the proped methods in
Section7.2.2 Figure 7-2 shows both the structure and work ow of our tool. The followng
sub-sections will present its three key components: ILM2SMV for SMV model and
property generation, ii) TLM test generation using model cacking, and iii) TLM2RTL for

RTL test and assertion generation.

151

Formal Model ! | o !
. p SystemC TLM o _____. TLM2SMV = -===---- ! Fault Model
Generation : Specification |

(N\
< 5_'\f/_|V . Model Checker Properties
pecification (SMV)
TLM)
Processing TLM Tests TLM-Test-Gen TLM Assertions
AN J
.. R —
RTL_ ! Validation 3eﬂn_ement L o TLM2RTL
Processing | Specification !
R 1 . J
) o ; RTL E
Automatic [Simulator } ! Implementation
---* Manual '

Coverage Analysis T

Figure 7-2. The structure of our prototype tool

7.2.3.1 TLM2SMV

Implemented based on the C++ parser Elsaq7], TLM2SMV can automatically
translate the SystemC TLM to a SMV speci cation and derive poperties based on the
fault models. Due to the complex data type de nition and comfex constructs de ned in
SystemC TLM library les, direct translation to SMV will cau se the state space explosion.
So in our tool, we simplify such de nition and prede ne them ér SMV transformation.
For example, we restrict the queue size for TLM FIFO channeldn SystemC, an integer
is 32-bit (with 232states). However, we reduce its size to 8 bits (with %tates) during the
SMV transformation.

Before the TLM to SMV translation, preprocessing proceduref TLM2SMV will
do the following three tasks: i) eliminate the header les aththe comments, ii) add the
necessary prede ne constructs, iii) convert the data type necessary. ThenTLM2SMV
will transform the TLM speci cation. As described in Sectim 2.1.2 TLM2SMV will

extract both static and dynamic information. At the mean time, it also collects the

152

information such as transaction relevant data, and branchonditions for the property
generation. Finally based on the collected information, wean get both a formal
speci cation in SMV and properties derived by speci ed faulmodels. By using Cadence
SMV veri er [56], we can get a set of counterexamples. The TLM tests are exttad from
these counterexamples.
7.2.3.2 TLM Test Generation

When a speci ed safety property is false, SMV model checkeiilixgenerate a
counterexample to falsify it. The generated TLM counterexaple is in the form of a
sequence of state assignments. This sequence starts frorst state (initial state) and ends
at the error state which violates the property. If the Cone ofn uence (COI) is enabled
during the property checking, each state will only containtie variables which are relevant
to the speci ed property. The generated counterexample imed to produce the TLM
test.
7.2.3.3 TLM2RTL

Because SystemC TLM focuses on the system level modelinge thenerated TLM
tests/ assertions lack the implementation level knowledgeSo the generated TLM
tests/assertions are di erent from RTL tests/assertions ad can not be directly used
to validate RTL implementation. For example, most loosely itned TLM models are
too abstract and assume that a transaction happened in one arsequence of function
calls. However, a RTL design has much more details and it neethe detailed timing
information for each signal. In our framework, the user shddi provide a VRS which
provides the mapping rules for the TLM to RTL test/assertiontranslation. With the
generated TLM tests/assertions and the VRS as inputs, th€LM2RTL can translate
the TLM tests/assertions to RTL tests/assertions. Finally the coverage of the TLM
implementation will be reported when simulating the genetad RTL tests/assertions on

RTL designs.

153

7.2.4 Assertion-Based Functional Equivalence

After the assertion and test re nement, we need to perform té simulation on both
TLM and RTL designs to check the assertion-based functionalquivalence. As shown
in Figure 7-1, there is a equivalence checker which monitors both the TLMnal RTL
simulation result and reports the equivalence result basezh its comparison.

TLM and RTL indicate di erent abstraction levels of the system. The traditional
simulation based method can only guarantee the correctnelsg enumerating input tests
and comparing the primary output results. However, the sigrcant di erence of internal
structure of TLM and RTL designs is often eclipsed. Thereferno relation on the internal
structure can be assumed during the simulation. As a functi@l constraint, the assertion
can be used as a checkpoint during the simulation. Based onetinherent observability,
the exercise of such checkpoints enables revealing the it functional behaviors.
7.2.4.1 Assertion-Based Functional Coverage

During simulation, an assertion is covered means that the epi ¢ functional scenario
is activated. Therefore the coverage of the assertions iodies the adequacy of the
functional validation. Let T be a TLM design andR be a RTL design ofT. We generate
a set of TLM assertionsTasserion @ccording to the speci ed fault models off, and we
obtain a set of TLM tests T t0O activate such assertions. By using VRS, we can re ne
the Twest 10 @ RTL test set Riest, and re ne Tasserion @S a Subset of the RTL assertion
set Rasserion - When running the Tiest and Rt 0N T and R individually, we can get the
assertion coverage de ned as follows.

De nition 10. Given a TLM speci cation T and its RTL implementation R, by applying
Twest ON T and Rt ON R, the assertion coverage can be calculated as:

of exercised TLM assertions

Tcoverage = - .
JTasserionJ

_ # of exercised RTL assertions
Rcoverage = - -
JRasserionJ

154

In our framework, there are two kinds of assertions: i) TLM asertions which are
automatically generated from the TLM speci cations, and i) RTL assertions which are
re ned from the TLM assertions. The RTL programmers can als@rovide additional
assertions based on other fault models and corner case scesa Therefore 100% TLM
assertion coverage may not indicate 100% RTL assertion coage in case additional RTL
assertions are introduced.
7.2.4.2 Assertion Ordering

The assertion ordering plays an important role in TLM-to-RTL equivalence checking.
For a TLM or RTL design which is instrumented with a large numker of assertions, during
the simulation, a test may exercise a sequence of assertioAs assertion indicates a
functional checkpoint. Such simulation result of a test leds to an assertion tracewhich
reveals the temporal order of checked functions in a systenelmvior. For a TLM test and
its re ned RTL version, when applying them on the TLM and RTL designs individually,
it is required that the TLM functions and RTL functions happen consistently. In other
words, the TLM assertions and corresponding RTL assertiorshould happen in their
traces in the same order.

It is di cult to determine the order of the assertions during the simulation of a
test. Since the assertions belong to di erent parallel prasses in the TLM speci cations
and RTL implementations, even in the same assertion trace ¢hassertions may not
be activated linearly. That means several assertions may legercised simultaneously.

In addition, due to the existence of loop structure in a desig an assertion may be
exercised several times in a design. This will further incase the di culty in assertion
matching between TLM traces and RTL traces. Inspired by the lgorithm proposed by
Lamport [50], in our framework, each assertion activation in a trace issaociated with a
\timestamp" to indicate the happens beforémarked by) relation. We use the timed

assertion in the form of @;t) to denote that the assertiona happens at clock cycld.

155

De nition 11. Given two timed assertionga; t1) and (b;t2) in an assertion trace. The
relations between them are as follows.

(a;tl) happens beforéb;2) i tl1<t2

if t1 == t2, then the two assertions are concurrent, writterfa; t1) jj (b;2) m

De nition 11 describes the relation between the timed assertions. Theykessue in

determining the order is to gure out the timestamp for an assrtion. For RTL design,
because the assertions are translated into the VHDL/Verilp code, we can monitor the
simulation at each clock cycle. Therefore, we can de ne themiestamp using the clock
cycle number. However, guring out the assertion order for IM designs is not trivial due
to the multiple classi cation of TLM abstraction levels. According to the de nitions in

[16], there are three TLM abstraction layers as follows.
Programmer's View (PV) : Pure transaction based without timing information.

Programmer's View with Time (PVT) : Transaction based with approximate
timing information.

Cycle Accurate (CA) : Cycle based with accurate timing information.

In the CA abstraction level, the model is cycle accurate. ThE€A TLM model is
quite similar to the corresponding RTL model with respect tdhe notion of time. For
the PVT abstraction level, the model simulates in non-zeroimulation time. In spite of
the time inaccuracy, we can still judge the assertion ordercaording to the simulation
time. During the simulation, if an TLM assertion is exercisd, we can use the SystemC
function sc_time_stamp() to record the current simulation time. Suchsc.time information
can be used as the timestamp to order the assertions. For th&/Ribstraction level, both
the communication and computation part of the system are uinned. Therefore, it is
not suitable to use the system time to order assertions. To timine the order of the
interaction between communicating processes, SystemC pides the delta cycleconcept
which adopts the evaluate-updatgaradigm to interpret zero-delaysemantics. The evaluate

phase rst executes all the processes that aready-to-run. During the update phase the

156

scheduler calls theupdate() function to handle the pending processes registered bying
the requestupdatg)) function. Each tiny delta cycle consists of these two stepwithout
advancing the simulation time. Therefore the delta cycle cabe utilized for ordering the
assertions. For assertion ordering, we need to use a globafigble as a counter of delta
cycles. This counter can be used as the timestamp for assens. If two assertions happen
in the same delta cycle, then they are concurrent. Otherwidere is a \happen before"

relation between them. Let's take the following simple pragam as an example.

/Iprocessl /lprocess?2

while(true){ while(true){
a=FIFO.read(); FIFO.write(random());

} }

Assuming the size of the=IFO channel is 1. The real action sequence of the above
code can be \ (rite; 1), (read;1), (write; 2), (read;2), :::". For each delta cycle, only
one write and read pair can happen. So we can nd the ordew(ite; 1) (write; 2) and
(read;1) (write; 2).
7.2.4.3 Assertion Based Functional Equivalence

In our framework, we de ne functional equivalence based omé assumption that if
a TLM test can trigger a TLM assertion, then its RTL counterpat will also trigger the
corresponding RTL assertion. It is important to note that inthis chapter we do not intent
to introduce new meaning of the classicaquivalence checkingOur method still relies on
the same concept - if two designs are equivalent, when givitifte same input tests, they
will produce the same outputs. Our goal is to increase the calence of TLM-to-RTL
functional equivalence checking under the monitoring of asrtions.

The re nement process is described by two functionsAR for assertion re nement

and TR for test re nement as follows.

AR :Tassertion ! Rassertion

TR Test ! Reest

157

We also de ne the functionsM+ y and Mgt to indicate the relation between tests and
assertions, i.e., what the assertions are activated durirthe simulation of a given test.

MTLM : Ttest | 2Tassertion

MRTL : Rtest | 2Rassertion

M+.m indicates which TLM assertions are covered by a given TLM tesMgr,
indicates which RTL assertions are covered by a given RTL tesBased on the above

de nitions, the de nition of TLM-to-RTL equivalence is giv en as follows.

De nition 12. Given a TLM speci cation T and its RTL implementationR, T and R

are assertion equivalent i Tes can achieve 100% TLM assertion coverage and

where Mty (1) = fag;a; ;a0 =

The assertion equivalence only de ne the assertion covermfpr each test. In fact,
there is a temporal relation between assertions. If the asigen equivalence considers the

event order, we call itstrongly assertion equivalent

De nition 13. Given a TLM speci cation T and its RTL implementation R, T and R
are strongly assertion equivalent i
T and R are assertion equivalent; and
8t 2 Test, the TLM assertions covered by and the RTL assertions covered by R(t)
are activated in the same order. =
Figure 7-3illustrates an example of assertion equivalence. Assumitige TLM
speci cation and the RTL implementation are assertion equalent andt is a TLM test
andt®= TR(t), we can getMy (t) = fal,a2,a3y and AR(Mtpy (t)) = fbl,b2,bg which
is a subset oM g7, (t9. However, the assertion activiation order is not consiste (a2
happens beforeal, but bl happens beford?). Therefore, in this case, the TLM design and

RTL design are assertion equivalent but not strongly asseon equivalent.

158

Figure 7-3. An example of assertion equivalence

7.3 Case Study

This section presents two case studies: a router system andgiepli ed version
of the pipelined Alpha AXP processor{6]. We use the prototype tool (described in
Section7.2.3 to automatically generate the TLM assertions and tests asell as re ned
RTL assertions and tests. The experimental results are obteed on an 3 GHz AMD
Opteron server with 16G RAM using Linux operation system.
7.3.1 A Router Example

Figure 2-11shows the structure of the TLM speci cation of the router exaple. The
main function of the router is to parse the incoming packetsral distribute them to target
slaves. The TLM and RTL packet formats are shown in Figur@-4. The packet consists of
three parts: header, payload and parity. The header has 8 bitbit 0 and bit 1 are used as
the address of output port (i.e., target slave address). Thether 6 bits indicate the size of
the payload. So the maximum payload size is 63. The last bytd the packet is the parity
of both header and payload. In TLM design, the master moduleeates a packet rst.
Then, the master sends the packet to the router for packagestiibution. The router has
one input port and three output ports. Each port is connectedo a FIFO bu er (channel)

which temporarily stores packets. The router has one procemute which is implemented

159

as aSC.METHOD. Triggered by the incoming packets, the route process rstallects a
packet from the channel connected to the master, next decadthe header of the packet
to determine the target slave address, and then sends the gatto the channel connected
to the target slave. Finally, the slave modules read the paeks when data is available

in the respective FIFOs. The transaction data (i.e., packgt ows from the master to its
target slave via the router. The transaction ow is controled by the variableto_chan in

the packet header.

7 6 5 4 3 2 10

/I Packet description in TLM length = N chan| 1 byte
-
class Packet { data[1]
public:
SC_unit<2>to_chan; N-b
sC_unit<6> payload_sz; P) lyted
SC_Uunit<8> payload[63] ayloa
SC_unit<8> parity;
h data[N]
~y
parity 1 byte
a) TLM Packet b) RTL Packet

Figure 7-4. The packet format of the router in TLM and RTL

In the TLM speci cation, the I/O port of the router will deliv er one whole packet
at a time. However, in RTL implementation, during each cloclcycle only a byte can
be transferred through the 1/O ports. Figure 7-5shows the RTL I/O interface of the
router example. During the validation re nement, we need tespecify such mapping rules
between the TLM and RTL designs using a VRS. Section.2.2.3shows the partial VRS
details of the router example. For instance, in the symbol npging part, packet:tachan
in TLM corresponds to the RTL data headel{O : 1] andpacket:payloadsz corresponds

to headef2 : 7]. The array of TLM data packet:payloadwill be mapped to RTL data

160

payload and the TLM variable packet:parity corresponds to RTL variableparity . All

such RTL packet data will be applied to input signalDATA[7 : 0]

oATATO) CHANO[7:0] ——)
L | VDO ——)
CHANL[7:0]F——)
Router vibi—+
enpr— |

¢ — ERR
o CHANZ[7:0]——)
enp2—_ |

Figure 7-5. The 1/O interface of the router example

In Section7.2.2.3 we have shown the partial VRS to specify test and assertion
re nement rules. By using our tool VERT, 95 TLM assertions wee generated according
to the proposed fault models. For each assertion, we derivadoroperty and used it as
an input of a model checker. The model checker generated omeiaterexample (test)
to exercise each assertion. So we obtained 95 TLM asserti@amsl 95 TLM tests from
the TLM design. Table 7-1 gives the details. The rst row de nes the fault types. The
second row shows the number of TLM assertions with di erentalult type. The third row
indicates the number of generated TLM tests. The last row gas the test generation time

(in minutes) using the SMV model checker.

Table 7-1. Assertion re nement for the router example

Fault Type Data Faults Flow Faults Event Faults Total
Numbers of TLM Assertions 88 4 3 95
Numbers of TLM Tests 88 4 3 95
Test Generation Time (min.) 73.70 2.60 31.50 107.8

During the TLM speci cation parsing, we did not consider theFIFO channel

information because it is de ned in the standard SystemC liary. Therefore there is

161

no assertion for the FIFO channels in the router example. Haver, to improve the

RTL code coverage, we manually created 4 TLM tests (2 testsrf&IFO over ow, 1 test

for reset check and 1 test for asynchronous read). Finally vgot 99 TLM tests and 99

RTL tests for validation purposes. It is important to note that the generation of TLM
assertions/tests and re nement are independent. In other evrds, TLM assertions and tests
can come from multiple sources. We use the VRS to describe theth assertion and test
re nement rules for the router example. Under the guidancefdhe VRS, our tool VERT
can translate the TLM tests and TLM PSL assertions to the coesponding RTL tests as

well as RTL assertions in the form of SVA.

TLM assertion: cover (tmp_packet.to_chan = 1);

RTL assertion: cover property (@ (posedge clock)
($rose(write_enb[1]) && date_o_fsm[1:0]==2'd1));

/ITLM Test /IRTL Test

RST = 0;
ENBO = 0;
ENE% _ 8 Initialization
PKT_VALID = 0;
#5 RST =1, \
#20 RST = O: Reset Sequence

p-> to_chan =1 i #5 PKT_VAL|D = 1'bl;

p -> payload_sz = 4;1-COMPOSE__ HATA = 8h00010001;

p -> payload[0] = 128;--------- > #10 DATA = 8'h10000000;

p -> payload[1] =0; F--—---- » #10 DATA = 8'b00000000;

p -> payload[2] =0; F--—----- » #10 DATA = 8'b00000000;

p -> payload[3] =0; |----+ » #10 DATA = 8'b00000000;
#10 PKT_VALID = 1b'0;

p - >parity = 132; -----m- ---» DATA = 8'b10000100;
#10 ENB1 = 1; Read

Figure 7-6. An example of TLM-to-RTL re nement

162

Figure 7-6 shows an example of TLM-to-RTL re nement. The goal of this eample is
to exercise the scenario that the packet can be sent to slave By using the TLM test, we
can activate the TLM assertion. Similarly, the RTL test can &tivate the RTL assertion.

We applied the TLM and RTL tests on the TLM and RTL designs ind@endently.

For the TLM design, we can get 100% coverage on both code andexsions. For the

RTL design, we measured various coverage metritsusing Synopsys VCS cmViewsp).
Table 7-2 shows the coverage obtained using the generated tests. Doesbme unreachable
code and missing \else" statements in RTL implementation,tiis not possible to obtain
100% coverage in all the categories. It is important to notehat the directed tests can

only give 94.7% assertion coverage on the re ned assertioWe investigated the assertions
which are not covered. The reason is that the generated adsems and tests try to

activate the scenarioto_chan = 3 which is used as an error state in TLM. Since RTL
implementation did not consider this case, i.e., sending apket to slave 3, we modi ed

the RTL implementation and nally we can get 100% assertion @verage.

Table 7-2. RTL coverage for the router example

Source Condition FSM Toggle Path Assertion
99.5% 76.6% 100% 76.6% 73.6% 94.7%

When applying a test during the validation, several TLM or RIL assertions may be
exercised. To check the equivalence between TLM and RTL, oprototype tool recorded
the simulation order for assertion activation. Such inforration is used to check the
equivalence between the TLM and RTL design. Our result showbkat the TLM and
RTL designs of the router example are assertion equivalerior strongly equivalence
checking, we only used the assertions derived from the trattion ow and event faults.
By matching the timed assertions on the assertion trace of eatest, it shows that the

TLM and RTL designs of the router example is also strongly asgion equivalent.

! The assertion coverage can not be obtained by VCS cmView.

163

7.3.2 A Pipelined Processor Example

In Figure 2-130of Section2.3.3 we give the TLM speci cation structure of the Alpha
AXP processor. As shown in Tableé’-3, we generated 212 TLM assertions using various
fault models for the processor model. By using SMV, we gentgd 212 TLM tests (117
tests for data faults, 86 tests for ow faults and 9 tests forent faults) to exercise all such

assertions.

Table 7-3. Assertions re nement for the Alpha AXP processor

Fault Type Data Faults Flow Faults Event Faults Total
Numbers of TLM Assertions 117 86 9 212
Numbers of TLM Tests 117 86 9 212
Test Generation Time (min.) 369.00 10.83 0.03 379.86

We applied all the generated tests under the observation ofiotool VERT. According
to the results provided by VCS cmView, we obtained the RTL imf@mentation coverage
report shown in Table7-4. We found that the source and condition coverage can not
be improved further because all the uncovered code are dueureachableMISSING
ELSE and default CASEITEM statements that do not exist in the RTL implementation.
We used all the assertion for assertion equivalence cheakirand the result shows that
assertion equivalence can be achieved. For strongly equérace checking, we did not
include the assertions derived from the transaction data ¢ model. By comparing the
assertion activation sequence, the equivalence checkeowhk that we can achieve a strong

assertion equivalence by using the generated directed test

Table 7-4. RTL coverage for the Alpha AXP processor

Source Condition FSM Toggle Path Assertion
98.9% 97.0% NA 70.2% 86.3% 100%

164

7.4 Summary

Raising the abstraction level in SoC design ow can signi aatly reduce the overall
design e ort but introduces two challenges: i) how to guaraee functional equivalence
between system level designs and low level implementatio@sd ii) how to reuse
validation e ort between di erent abstraction levels. To address both problems, this
chapter proposed a methodology which reuses TLM validatiomort to enable RTL
validation as well as assertion-based functional equivalee checking between TLM and
RTL models. By extracting formal models from TLM speci catons, we can generate a
set of assertions and corresponding tests to validate allgrspeci ed TLM \faults". Then
the assertions and tests can be translated to their RTL couatparts using our proposed
VRS. During the simulation, the TLM-to-RTL functional equivalence can be veri ed based
on the assertion coverage and assertion ordering. The exijp@ental results using several

industrial designs demonstrated the e ectiveness and bete of our approach.

165

CHAPTER 8
CONCLUSIONS AND FUTURE WORK

SystemC TLMs and UML activity diagrams are widely used to erfale early
exploration for both hardware and software designs. It careduce the overall design and
validation e ort of complex SoC architectures. SoC validabn is a major bottleneck due
to lack of e cient automated techniques coupled with limited reuse of validation e orts
between abstraction levels. This dissertation presentedreovel top-down methodology for
automatically generating tests from system-level speciations for functional validation
at di erent abstraction levels. This chapter concludes thalissertation and outlines future
research directions.

8.1 Conclusions

Existing SoC validation techniques widely employ a combin@n of simulation based
techniques and formal methods. Simulation based validatiouses random or directed test
vectors to check the correctness of the design. Certain hatics are used to generate
directed random tests. However, due to the bottom-up naturand localized view of these
heuristics, the generated tests may not yield a good covemgSimulation using directed
tests is promising for functional validation, since runnig time can be signi cantly reduced
with fewer tests while the coverage requirement can still bechieved.

A major challenge to enable directed test generation is to tamatically extract a
formal representation from system level speci cations andevelop an e cient coverage
metric that allows coverage-driven directed test generath. Chapter 2 and 3 described
a model checking based framework for directed test generati This approach can
automatically extract formal models from the high level sp& cations (including SystemC
TLMs and UML activity diagrams as described in Chapter2) as well as can generate
properties (assertions) to cover all the errors for the givefault models (described in

Chapter 3).

166

Most automatic directed test generation methods, espedwalfor model checking based
techniques, are impeded by the capacity restrictions of aesponding tools. To address
the complexity of test generation using SAT-based BMC, thiglissertation presented three

e cient techniques to reduce the overall test generation tne:

Property clustering exploited various similarities between properties in a cter
(described in Chapter4) to share learnings.

E cient decision ordering enables bene cial knowledge sharing (described in
Chapter 5) between properties to avoid repeated validation e ort.

Decomposition techniques tried to scale down the property checking problem into
several sub-problems (described in Chapt&). The learning from the decomposed
sub-problems is bene cial to the test generation of the origal complex property.

By exploiting the commonalities between properties, the st generation time of a set
of similar properties can be signi cantly reduced.

Furthermore, this dissertation presented a promising metidology that can check
the TLM-to-RTL functional equivalence by reusing the TLM level validation e ort. The
re ned assertions as well as tests can not only check the c@tency between di erent
abstraction levels, but also can be used for validating theystem behavior of RTL designs.
Since our method can be automated, complete reuse of TLM teswill lead to a drastic
reduction in RTL validation.

In conclusion, this dissertation presented an e cient franework that can automatically
generate tests from high-level SoC speci cations and enabthecking design errors in
di erent stages of the SoC design. Due to drastic reductiomioverall validation e ort, this
research will lead to cost-e ective and high-quality systas.

8.2 Future Research Directions

Automated coverage-driven test generation and re nemenbf validation of SoC is

a challenging problem. The work presented in this dissertain can be extended in the

following directions:

167

The coverage-driven property generation will generate arlge set of properties, and
many of them may activate the same scenarios. Consequentlyere exists a lot of
redundancy in the derived tests. Therefore, property comgéion can be employed
before the automated test generation to reduce the requiradumber of properties. To
further reduce the number of directed tests, existing testarnpaction techniques can
be used.

Find a way to e ciently generate tests for di erent designs kut using the same
property set. For example, spiral model is widely used as aftsware development
process. The design is often slightly modi ed according toew requirements. Thus
we need to re-generate the new tests for the properties of tpeevious design.
Because most of the functionality remains the same, propezdrning techniques can
be used to generate the new tests.

Currently most assertion based validation methods are bas@n simulation for both
TLM and RTL designs. Generally for a large design, there witbe thousands of
assertions that need to be checked at the same time. Checkitggm independently
will strongly a ect the simulation performance. In the worg case, activating one
assertion needs one test. Therefore it is necessary to dasigmethodology that can
investigate the dependence between assertions and generatsmall set of tests for the
simulation but still can achieve the same assertion coverag

It is necessary to develop a framework that can debug the RTlevel functional errors
using its TLM speci cation. This can help designers to quidy nd the error and x
it.

Post-silicon debugging is an important stage during SoC dgs. However, in the
post-silicon stage, all the debugging tasks are focused &jrsal level. It is very

di cult to detect and check high level functional scenarios Therefore it is necessary
to re ne the high level validation e ort into gate-level implementation.

This dissertation demonstrated the learning techniques.§., con ict clause forwarding
and decision ordering) are promising for system level tesegeration. It can be
extended to other domains, such as circuit-level validatio By incorporating our
learning techniques, we believe that the performance of cant SAT-based automatic
test pattern generation (ATPG) approaches can be drasticlyl improved.

168

REFERENCES

[1] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfshal. FoCs - Automatic
Generation of Simulation Checkers from Formal Speci catits. In Proceedings of
Computer Aided Veri cation (CAV) , pages 414{427, 2000.

[2] S. Abdi and D. Gajski. A formalism for functionality presening system level
transformations. In Proceedings of Asia and South Paci ¢ Design Automation
Conference (ASPDAC) pages 139{144, 2005.

[3] Accellera. Property Speci cation Language. [updated May@08; cited February 2010].
Available at http://www.eda.org/ieee-1850/.

[4] N. Amla, X. Du, A. Kuehlmann, R. Kurshan, and K. McMillan. An analysis of
SAT-based model checking techniques in an industrial eneinment. In Proceedings of
Conference on Correct Hardware Design and Veri cation Metbds (CHARME), pages
254{268. Springer, 2005.

[5] P. Ammann, P. Black, and W. Majurski. Using model checking t@enerate tests from
speci cations. In Proceedings of International Conference on Formal Engingag
Methods (ICFEM), pages 46{54, 1998.

[6] F. Balarin and R. Passerone. Functional Veri cation Methoalogy based on Formal
Interface Speci cation and Transactor Generation. InProceedings of Design, Automa-
tion, and Test in Europe (DATE), pages 1013{1018, 2006.

[7] M. Benedetti and S. Bernardini. Incremental compilation-0-SAT procedures. In
Proceedings of International Conference on Theory and Appations of Satis ability
Testing (SAT), 2004.

[8] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and YWang. Uppaal - a tool
suite for automatic veri cation of real-time systems. InProceedings of Hybrid Systems
(HSCC), pages 232{243, 1995.

[9] D. Beyer, A. Chlipala, T. Henzinger, R. Jhala, and R. Majumda Generating tests
from counterexamples. InProceedings of the 26th IEEE International Conference on
Software Engineering (ICSE) pages 326{335, Los Alamitos, CA USA, 2004.

[10] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. In Proceedings of International Conference on Tools and Algitinms for The
Construction And Analysis of Systemspages 193{207, 1999.

[11] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic modelchecking without
BDDs. In Tools and Algorithms for the Analysis and Construction of $fems
(TACAS), volume 1579 ofLNCS, pages 193{207. Springer, 1999.

[12] N. Bombieri, F. Fummi, and G. Pravadelli. On the evaluation & transactor-based
veri cation for reusing tim assertions and testbenches attlk In Proceedings of Design,
Automation, and Test in Europe (DATE), pages 1{6, 2006.

169

[13] N. Bombieri, F. Fummi, and G. Pravadelli. Incremental abv fo functional validation
of tl-to-rtl design re nement. In Proceedings of Design Automation and Test in
Europe (DATE), pages 882{887, 2007.

[14] N. Bombieri, F. Fummi, G. Pravadelli, and J. Marques-Silva. Towards Equivalence
Checking Between TLM and RTL Models. InProceedings of International Conference
on Formal Methods and Models for Co-Design (MEMOCODEpages 113{122, 2007.

[15] R. Bryant. Graph-Based Algorithms for Boolean Function Maipulation. IEEE
Trans. Computers C-35(8):677{691, August 1986.

[16] L. Cai and D. Gajski. Transaction Level Modeling: An Overviav. In Proceedings
of International Conference on Hardware/Software Codesigand System Synthesis
(CODESH+ISSS), pages 19{24, 2003.

[17] K. Chandrasekar and M. S. Hsiao. Integration of learning témiques into incremental
satis ability for e cient path-delay fault test generatio n. In Proceedings of Design
Automation and Test in Europe (DATE), pages 1002{1007, 2005.

[18] M. Chen, X. Qiu, and X. Li. Automatic test case generation fouml activity
diagrams. InProceedings of International Workshop on Automation on Sofare Test
pages 2{8, 2006.

[19] A. Chureau, Y. Savaria, and E. M. Aboulhamid. The role of moddevel transactors
and uml in functional prototyping of systems-on-chip: A sdivare-radio application.
In Proceedings of Design Automation and Test in Europe (DATE)pages 698{703,
2005.

[20] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A new symbolic
model veri er. In Proc. of Intl. Conference on Computer Aided Veri cation (CAV),
volume 1633 ofLNCS, pages 495{499. Springer, 1999.

[21] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking The MIT press, 2000.

[22] D. Das, R. Kumar, and P. P. Chakrabarti. Timing veri cation of uml activity
diagram based code block level models for real time multipressor system-on-chip
applications. In Proceedings of Asia-Paci ¢ Software Engineering Conferee
(APSEC), pages 199{208, 2006.

[23] K. Datta and P. P. Das. Assertion Based Veri cation Using HD\W.. In Proceedings of
the International Conference on VLSI Design (VLSID) page 319, 2004.

[24] E. W. Dijkstra. A note on two problems in connexion with grapls. Numerische
Mathematik, 1:269{271, 1959.

[25] W. Ecker, V. Esen, T. Teininger, M. Velten, and M. Hull. Interactive Presentation:
Implementation of A Transaction Level Assertion Frameworkn SystemC. In
Proceedings of Design, Automation, and Test in Europe (DATE pages 894{899,
2007.

170

[26] M. Ericsson. Activity diagrams: what they are and how to usettem. The Rational
Edge 2004.

[27] FBK-irst and CMU. NUSMV. [updated August 2006; cited August2008]. Available
at http://nusmv.irst.itc.it/.

[28] F. Ferrandi, F. Fummi, L. Gerli, and D. Sciuto. Symbolic fund¢ional vector generation
for VHDL speci cations. In Design, Automation and Test in Europe (DATE) pages
442{446, 1999.

[29] H. D. Foster, A. C. Krolnik, and D. Lacey. Assertion-Based Design, 2nd Edition
Kluwer Academic Publishers, Boston, MA, 2004.

[30] F. Ghenassia.Transaction Level Modeling with SystemCSpringer, 2005.

[31] N. Guel and A. Mammar. A formal semantics of timed activity diagrams and its
promela translation. In Proceedings of Asia-Paci ¢ Software Engineering Conferee
(APSEC), pages 283{290, 2005.

[32] H. Zhu and P. Hall and J. May. Software Unit Test Coverage and dequacy. ACM
Computing Surveys29(4):366{427, 1997.

[33] A. Habibi and S. Tahar. Towards An E cient Assertion Based Vei cation of
SystemC Designs. IrProceedings of International High Level Design Validatioand
Test Workshop (HLDVT), pages 19{22, 2004.

[34] A. Habibi and S. Tahar. Design and Veri cation of SystemC Trasaction-Level
Models. IEEE Transactions on Very Large Scale Integration SystemsT{LSI),
14(1):57{68, 2006.

[35] J. Hennessy and D. Patterson.Computer Architecture: A Quantitative Approach
Morgan Kaufmann, Sanfrancisco, CA, 2003.

[36] P. Hsiung, C. Lin, and C. Liao. Perfecto: A SystemC-based Digs-Space Exploration
Framework for Dynamically Recon gurable Architectures. ACM Transactions on
Recon gurable Technology and Systems (TRETSL(3), 2008.

[37] IEEE P1800 Working Group. SystemVerilog Assertion. [upd&d September 2008;
cited March 2010]. Available at http://www.eda.org/sv-ac/.

[38] J. Hooker. Solving the incremental satis ability problem. Journal of Logic Program-
ming, 15(12):177{186, 1993.

[39] J. Marques-Silva and K. Sakallah. Grasp: A search algorithrfor propositional
satis ability. IEEE Transactions on Computers 48(5):506{521, 1999.

[40] H. Jin and F. Somenzi. An incremental algorithm to check sadiability for bounded
model checking. InBMC, pages 51{65, 2004.

171

[41] D. Karlsson, P. Eles, and Z. Peng. Formal veri cation of sygmc designs using a
petri-net based representation. InProceedings of Design, Automation, and Test in
Europe (DATE), pages 1228{1233, 2006.

[42] A. Kasuya and T. Tesfaye. Veri cation Methodologies in a TLMto-RTL Design Flow.
In Proceedings of Design Automation Conference (DACpages 199{204, 2007.

[43] J. Kim, J. Whittemore, J. Marques-Silva, and K. Sakallah. Onsolving stack-based
incremental satis ability problems. In Proceedings of International Conference on
Computer Design (ICCD) pages 379{382, 2000.

[44] T. Kogel, M. Doerper, T. Kempf, A. Wieferink, R. Leupers, andH. Meyr.
Virtual Architecture Mapping: A SystemC based Methodologyfor Architectural
Exploration of System-on-Chips.International Journal of Embedded Systems (IJES)
3(3):150{159, 2008.

[45] H. Koo and P. Mishra. Speci cation-based compaction of disted tests for functional
validation of pipelined processors. Innternational Symposium on Hardware/Software
Codesign and System Synthesis (CODES+ISS$®ages 137{142, 2008.

[46] H.-M. Koo and P. Mishra. Test generation using (SAT)-based cunded model
checking for validation of pipelined processors. IRroc. of ACM Great Lakes
Symposium on VLSI (GSLVLSI) pages 362{365, 2006.

[47] H.-M. Koo and P. Mishra. Functional test generation using dagn and property
decomposition techniques.ACM Transactions on Embedded Computing Systems
(TECS), 8(4), 2009.

[48] D. Kroening and N. Sharygina. Formal veri cation of systemdy automatic
hardware/software partitioning. In Proceedings of International Conference on
Formal Methods and Models for Co-Design (MEMOCODE)pages 101{110, 2005.

[49] M. Lahbib, R. Kamdem, M. Benalycherif, and R. Tourki. An Automatic ABV
Methodology Enabling PSL Assertions across SLD Flow for S@Modeled in
SystemC. Computers and Electrical Engineering31(4):282{302, 2005.

[50] L. Lamport. Time, Clocks, and the Ordering of Events in a Digtibuted System.
Communication of ACM, 21(7):558{565, 1978.

[51] M. Chen and X. Qiu and W. Xu and L. Wang and J. Zhao and X. Li. UML Activity
Diagram Based Automatic Test Case Generation for Java Progms. The Computer
Journal, 52(5):545{556, 2009.

[52] M. Davis and H. Putnam. A computing procedure for quanti caion theory. Journal
of ACM, 7(3):201{215, 1960.

[53] M. Davis, G. Logemann and D. Loveland. A machine program foheorem-proving.
Communication of ACM, 5(7):394{397, 1962.

172

[54] M. Prasad and A. Biere and A. Gupta. A survey of recent advanesen SAT-based
formal veri cation. International Journal on Software Tools for Technology Trasfer
(STTT) , 7(2):156{173, 2005.

[55] J. P. Marques-Silva and K. A. Sakallah. The impact of brancinig heuristics in
propositional satis ability. In Proceedings of the 9th Portuguese Conference on
Arti cial Intelligence , pages 62{74, 1999.

[56] K. L. McMillan. SMV Model Checker, Cadence Berkeley Laboraty. [updated June
2006; cited August 2008]Available at http://www.kenmcmil.com/.

[57] S. McPeak. Elsa. [updated August 2005; cited August 2008Available at
http://www.eecs.berkeley.edu/~smcpeak

[58] P. Mishra and M. Chen. E cient techniques for directed test generation using
incremental satis ability. In Proceedings of International Conference of VLSI Design
pages 65{70, 2009.

[59] P. Mishra and N. Dutt. Graph-based functional test program gneration for pipelined
processors. InProc. of Design Automation and Test in Europe (DATE) pages
182{187, 2004.

[60] P. Mishra and N. Dutt. Functional coverage driven test genetion for validation of
pipelined processors. IProc. of Design Automation and Test in Europe (DATE)
pages 678{683, 2005.

[61] P. Mishra and N. Dutt. Functional Veri cation of Programmable Embedded Architec
tures: A Top-Down Approach Springer, 2005.

[62] P. Mishra, H.-M. Koo, and Z. Huang. Language-driven validabn of pipelined
processors using satis ability solvers. INEEE International Workshop on Micropro-
cessor Test and Veri cation (MTV)), pages 119{126, 2005.

[63] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik Cha:
Engineering an e cient SAT solver. In Proceedings of the 38th Design Automa-
tion Conference (DAC), pages 530{535, 2001.

[64] M. Moy, F. Maraninchi, and L. Maillet-Contoz. Lussy: A toolbox for the analysis
of systems-on-a-chip at the transactional level. l®Proceedings of the International
Conference on Application of Concurrency to System Desigpages 26{35, 2005.

[65] W. Mueller, A. Rosti, S. Bocchio, E. Riccobene, P. ScandurfdV. Dehaene, and
Y. Vanderperren. Uml for esl design: basic principles, tagland applications. In
Proceedings of International Conference on Computer-AideDesign (ICCAD), pages
73{80, 2006.

[66] G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas. The Art of Software
Testing, 2nd Edition. John Wiley & Sons, Hoboken, New Jersey, 2004.

173

[67] O. Strichman. Pruning techniques for the SAT-based boundeahodel checking
problem. Proceedings of Correct Hardware Design and Veri cation Métods
(CHARME), ser. LNCS, T. Margaria and T. Melham, Ed. SpringerVerlag,
2144:58{70, 2001.

[68] Object Management Group. UML Pro le for System on a Chip
(SoC), v 1.0.1. [updated August 2006; cited August 2008]Available at
http://www.omg.org/technology/documents/formal/pro le_soc.htm.

[69] Object Management Group. UML Superstructure V2.1.2. [updad November 2007,
cited August 2008]. http://www.omg.org/docs/formal/07-11-02.pdf.

[70] Open SystemC Initiative (OSCI). Systemc. [updated augustdD6; cited august 2008].
Available at http://www.systemc.org.

[71] P. Mishra and N. Dutt. Speci cation-driven Directed Test Generation for Validation
of Pipelined Processors. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 13(3):1{36, 2008.

[72] J. Peterson. Petri Nets Theory and the Modeling of SystemsPrentice-Hall, N.J.,
1981.

[73] L. Pierre and L. Ferro. A Tractable and Fast Method for Monitaing SystemC TLM
Speci cations. IEEE Transactions on Computers 57(10):1346{1356, 2008.

[74] Princeton Univeristy. zCha . [updated November 2004; citd August 2007]. Available
at http://www.princeton.edu/~cha /zcha .html.

[75] R. Eshuis. Symbolic Model Checking of UML Activity Diagrams ACM Transactions
on Software Engineering and Methodology5(1):1{38, 2006.

[76] R. L. Sites. Alpha AXP Architecture. Digital Technical Journal, 4(4), 1992.

[77] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A uml@pro le for systemc:
toward high-level soc design. IfProceedings of the ACM International conference on
Embedded softwarepages 138{141, 2005.

[78] A. Rose, S. Swan, J. Pierce, and J. FernandeZlransaction Level Modeling in
SystemC OSCI TLM Working Group, 2005.

[79] R. Schutten and T. Fitzpatrick. Design for veri cation methodology allows silicon
successEETIMES, (16500856), 2003.

[80] D. Shin, A. Gerstlauer, J. Peng, R. Demer, and D. Gajski. Aubmatic Generation
of Transaction Level Models for Rapid Design Space Exploiah. In Proceedings
of International Conference on Hardware/Software Codesigand System Synthesis
(CODES+ISSS), pages 64{69, 2006.

174

[81] O. Shtrichman. Tuning SAT checkers for bounded model checld. In Proceedings
of the The International Conference on Computer Aided Verication (CAV), pages
480{494, 2000.

[82] SYNOPSYS. VCS Veri cation Library. [updated August 2007; @¢ed August 2007].
Available at http://www.synopsys.com.

[83] The Satis ability Library. SAT Benchmark Problems. [updated September 2003; cited
March 2010]. http://www.satlib.org/Benchmarks/SAT/BMC/descriptio n.html.

[84] B. Unhelkar. Veri cation and Validation for Quality of UML 2.0 Models. John Wiley
& Sons, 2005.

[85] M. Velev. Boolean Satis ability (SAT) benchmarks. [updatel November 2006; cited
March 2010]. http://www.miroslav-velev.com/satbenchmarks.html.

[86] M. Velev. Automatic abstraction of equations in a logic of eggplity. In Proceedings of
Proceedings of Analytic Tableaux and Related Methods (TABHAUX), pages 196{213,
2003.

[87] C. Wang, H. Jin, G. D. Hachtel, and F. Somenzi. Re ning the SATdecision ordering
for bounded model checking. IfProceedings of Design Automation Conference
(DAC), pages 535{538, 2004.

[88] L. Wang, J. Yuan, X. Yu, J. Hu, X. Li, and G. Zheng. Generating est cases from uml
activity diagram based on gray-box method. IrfProceedings of Asia-Paci ¢ Software
Engineering Conference (APSEC)pages 284{291, 2004.

[89] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremeantal satis ability
engine. InProceedings of Design Automation Conference (DACpages 542{545, 2001.

[90] W. Wolf, A. A. Jerraya, and G. Martin. PDF Multiprocessor Sygem-on-Chip
(MPSo0C) Technology. IEEE Transactions on In Computer-Aided Design of Integrate
Circuits and Systems (TCAD) 27(10):1701{1713, 2008.

[91] L. Zhang, C. Madigan, M. H. Moskewicz, and S. Malik. E cient con ict driven
learning in a boolean satis ability solver. InProceedings of International Conference
on Computer-Aided Design (ICCAD) pages 279{285, 2001.

[92] L. Zhang, M. Prasad, and M. Hsiao. Incremental deductive & ituctive reasoning for
SAT-based bounded model checking. IRroceedings of International Conference on
Computer-Aided Design (ICCAD) pages 502{509, 2004.

175

BIOGRAPHICAL SKETCH

Mingsong Chen received his B.S. and M.E. degrees from the Regpnent of Computer
Science and Technology of Nanjing University in China in 2@0and 2006 respectively.
His research focuses on design automation of embedded systefunctional veri cation of
System-on-Chip architectures, model checking techniquasd software engineering.

In 2002, Mr. Chen joined the Software Engineering Group of Mging Unverisity
as a research assitant. His research was focused on modetkihg of real-time systems
and automatic test generation for UML activity diagrams. Urder the supervision of
Prof. Xuandong Li and Jianhua Zhao, he received his mastertiegree with thesis
titted \Dynamic Optimization Techniques for State Space inTimed Automata during
Reachability Analysis". Since 2006, he pursued his Ph.D. geee in CISE department
of University of Florida. He joined the CISE Embedded SystesiGroup in 2007 under
the supervision of Prof. Prabhat Mihsra. He participated tle research project titled
\SOC Validation using SystemC Transaction Level Models"with was funded by Intel
Corporation and U.S. National Science Foundation. Duringil Ph.D. study, one of his
papers presented innternational Conference on VLSI Design 2009vas nominated for
best paper award. He was also a recipient 8AC Young Student Support Program Award
in 2008.

Mr. Chen currently serves as a reviewer of several ACM and IEEEconferences
including DAC, DATE, CODES+ISSS, ASP-DAC, GLSVLSI, VLSI Design, and ISVLSI.

He is a student member of IEEE.

176

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 SoC Design Flow
	1.2 Functional Validation of SoC Designs
	1.2.1 Overview of Functional Validation Methods
	1.2.2 Potential Improvement Opportunities
	1.2.3 Challenges

	1.3 Dissertation Contributions

	2 FORMAL MODELING OF SoC SPECIFICATIONS
	2.1 Specification using SystemC TLMs
	2.1.1 Formal Modeling of SystemC TLMs
	2.1.2 Transformation from SystemC TLM to SMV
	2.1.2.1 Structure Extraction
	2.1.2.2 Behavior Extraction

	2.1.3 A Prototype Tool For TLM to SMV Translation

	2.2 Specification using UML Activity Diagrams
	2.2.1 Notations
	2.2.2 Formal Modeling of UML Activity Diagrams
	2.2.3 Transformation from UML Activity Diagrams to SMV
	2.2.3.1 Static Information Extraction
	2.2.3.2 Dynamic Information Extraction

	2.2.4 A Prototype Tool For UML to SMV Translation

	2.3 Case Study
	2.3.1 Example 1: A Router
	2.3.2 Example 2: A MIPS Processor
	2.3.3 Example 3: An Alpha Processor
	2.3.4 Example 4: A Control System
	2.3.5 Example 5: A Stock Exchange System

	2.4 Summary

	3 COVERAGE-DRIVEN AUTOMATIC GENERATION OF DIRECTED TESTS
	3.1 Coverage-Driven Property Generation
	3.1.1 Fault Models
	3.1.1.1 Generic Fault Models for Graph Based Models
	3.1.1.2 Fault Models for SystemC TLM Specifications
	3.1.1.3 Fault Models for UML Activity Diagrams

	3.1.2 Functional Coverage Based on Fault Models

	3.2 Test Generation using Model Checking Techniques
	3.2.1 Test Generation using Unbounded Model Checking
	3.2.1.1 Unbounded Model Checking
	3.2.1.2 Test Generation Algorithm

	3.2.2 Test Generation using Bounded Model Checking
	3.2.2.1 SAT-Based Bounded Model Checking
	3.2.2.2 Test Generation Algorithm
	3.2.2.3 Determination of Bound

	3.3 Case Studies
	3.3.1 A Control System
	3.3.2 A Stock Exchange System (OSES)

	3.4 Summary

	4 PROPERTY CLUSTERING FOR EFFICIENT TEST GENERATION
	4.1 Related Work
	4.2 Background: SAT Solver Implementation
	4.2.1 DPLL Algorithm
	4.2.2 Conflict Clause Based Learning

	4.3 Property Clustering
	4.3.1 Similarity based on Structural Overlap
	4.3.2 Similarity based on Textual Overlap
	4.3.3 Similarity based on Influence
	4.3.4 Similarity based on CNF Intersection
	4.3.5 Determination of Base Property

	4.4 Efficient Test Generation using Learning Techniques
	4.4.1 Conflict Clause Forwarding Techniques
	4.4.2 Name Substitution for Computation of Intersections
	4.4.3 Identification and Reuse of Common Conflict Clauses

	4.5 Case Studies
	4.5.1 A VLIW MIPS Processor
	4.5.1.1 Structure-based Clustering
	4.5.1.2 Clustering based on Textual Similarity
	4.5.1.3 Influence-based Clustering
	4.5.1.4 Intersection-based Clustering
	4.5.1.5 Comparison of Clustering Technqiues

	4.5.2 A Stock Exchange System

	4.6 Summary

	5 DECISION ORDERING BASED INTRA- AND INTER-PROPERTY LEARNING
	5.1 Related Work
	5.2 Decision Ordering Based Learnings
	5.2.1 Overview
	5.2.2 Bit Value Ordering
	5.2.3 Variable Ordering
	5.2.4 Conflict Clause based Decision Ordering (Hybrid)

	5.3 Test Generation using Decision Ordering
	5.3.1 Test Generation for a Single Property
	5.3.1.1 Heuristic Implementation
	5.3.1.2 Test Generation

	5.3.2 Test Generation for a Cluster of Similar Properties
	5.3.2.1 Heuristic Implementation
	5.3.2.2 Test Generation

	5.4 Case Study
	5.4.1 Intra-Property Learning
	5.4.2 Inter-Property Learning
	5.4.2.1 A MIPS Processor
	5.4.2.2 A Stock Exchange System

	5.5 Summary

	6 EFFICIENT PROPERTY DECOMPOSITION TECHNIQUES
	6.1 Learning-Oriented Property Decomposition
	6.1.1 Potential Learnings for Complex Properties
	6.1.2 Spatial Property Decomposition
	6.1.3 Temporal Property Decomposition

	6.2 Decision Ordering Based Learning Techniques
	6.3 Test Generation using Our Methods
	6.4 An Illustrative Example
	6.4.1 Spatial Decomposition
	6.4.2 Temporal Decomposition

	6.5 Experiments
	6.5.1 A VLIW MIPS Processor
	6.5.2 A Stock Exchange System

	6.6 Summary

	7 REUSE OF VALIDATION EFFORT FOR ASSERTION-BASED EQUIVALENCE
	7.1 Related Work
	7.2 A Framework for Checking TLM-to-RTL Functional Equivalence
	7.2.1 Automatic Transaction Level Validation
	7.2.1.1 Generation of TLM Assertions
	7.2.1.2 Generation of TLM Tests

	7.2.2 Refinement of TLM Assertions and Tests
	7.2.2.1 Symbol Mapping
	7.2.2.2 Assertion Refinement Rules
	7.2.2.3 Test Refinement Rules

	7.2.3 A Prototype Tool for TLM-to-RTL Validation Refinement
	7.2.3.1 TLM2SMV
	7.2.3.2 TLM Test Generation
	7.2.3.3 TLM2RTL

	7.2.4 Assertion-Based Functional Equivalence
	7.2.4.1 Assertion-Based Functional Coverage
	7.2.4.2 Assertion Ordering
	7.2.4.3 Assertion Based Functional Equivalence

	7.3 Case Study
	7.3.1 A Router Example
	7.3.2 A Pipelined Processor Example

	7.4 Summary

	8 CONCLUSIONS AND FUTURE WORK
	8.1 Conclusions
	8.2 Future Research Directions

	REFERENCES

