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Abstract 

Audio compression is used everywhere – largely due to the rise of the internet, computers, and embedded 

systems.  Since original, uncompressed digital recordings are very large in size, efficient ways are needed to 

compress large audio signals into small, high-quality, convenient formats.  While lossy audio formats, like 

MP3, are widely popular in many everyday applications, lossless formats are also important to retain the 

original audio signals. It is feasible to perform lossless compression due to decreasing memory cost and 

increasing internet bandwidth.  This paper investigates improvements to the Free Lossless Audio Codec 

(FLAC), one of the best lossless audio formats, by conducting tests on nineteen quality benchmarks.  We have 

also studied lossless compression techniques from other domains and applied dictionary-based encoding for 

audio compression. The results show that dictionary-based compression is not useful, while modifying the 

blocking size in FLAC shows minor improvements in compression efficiency. 
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1 Introduction 
In recent years, digital audio has become extremely popular. Through the widespread use of high-speed 

internet, consumers can download and transfer audio files.  This is largely due to the effect of audio 

compression – specifically, lossy audio compression.  Lossy audio compression techniques encode an 

original audio file (usually a .wav file or .aiff file) by removing information that is not audible to human ears.  

The goal of lossy compression is to reduce the file size (estimated 9:1) with minor or no quality loss.  

However, the original file can never be recovered from a lossy compression format. 

In order to keep an exact copy of the original file, lossless audio compression must be used.  The lossless 

audio formats are not as well-known as the lossy formats simply because they consume more memory.  

However, they are highly effective at reducing the size of original audio files.  For example, an 

uncompressed Wave (.wav) file, three minutes long, can take 30.3 Mb of memory, too big to be sent by e-

mail.  Using lossless audio compression, it can be reduced to 50 – 60% of its original size, without any 

quality loss and it is always possible to obtain the exact original file if needed.  Since memory cost continues 

to decrease, it is becoming increasingly popular for music producers, engineers, and audiophiles to keep their 

original, high-quality audio collection through lossless compression. 

This paper studies existing lossless compression techniques to see if it can be improved directly or by 

employing compression techniques from other domains. One of the best lossless audio compressors is Free 

Lossless Audio Codec (FLAC).  It has very fast encoding and decoding, competitive compression, extensive 

hardware support, and is available in open-source (original source code) – which makes it the current best 

lossless audio codec.  In fact, the European Broadcasting Company adopted FLAC as its format for 

distributing audio over the Euroradio Network [4]. A method from the embedded systems domain is 

dictionary-based compression.  It provides high compression efficiency with low decompression cost.  The 

goal was to investigate dictionary-based compression with FLAC to see if FLAC could be improved.  If not, 

is there a way to enhance dictionary-based compression for audio by borrowing ideas from FLAC? 

The rest of the paper is organized as follows. Section 2 presents background information on FLAC and 

dictionary-based compression. Section 3 describes our approach followed by a case study in Section 4. 

Finally, Section 5 concludes the paper. 

2 Background 

2.1 Free Lossless Audio Codec (FLAC) 
FLAC originated in 2000, originally developed by Josh Coalson.  In order to compress audio it uses a 

four stage method: blocking, inter-channel decorrelation, prediction, and residual coding [1].  The input to 

FLAC is an uncompressed audio file, either Wave or Aiff.  The blocking stage divides the audio signal into 

blocks or portions of a specified size.  This directly affects the compression ratio.  If the block is too small, 

the total number of blocks will increase, wasting bits on encoding headers. If the block size is too large, the 

signal could vary too much for the predictor to make an accurate prediction [1].  Thus, choosing the right 

block size is essential for good compression. 

The inter-channel decorrelation stage (or mid-side conversion) is performed by removing redundancy in 

the stereo signals’ left and right channels.  Often, the left and right channels of a stereo signal are very 

similar.  Thus, mid-side conversion was devised to reduce the amount of bits it takes to store the left and 

right channels.  By encoding the left and right channels into a middle channel (left and right average) and a 

side channel (left minus right), the amount of bits needed to store the signal can be reduced.  In cases where 

the left and right channels are very different, it can be passed without any decorrelation. 

The prediction stage is essential for providing good compression. It is dependent on the efficiency of the 

block size chosen in the first stage.  By using linear prediction and run-length encoding, FLAC predicts how 

each block could be most closely modeled.  For example, if the current block resembles a sine wave, then 
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4.1 Experimental Setup 
A 32-bit, frequency-based dictionary compressor was used to test 

and Wave files.  Section 3 described this method in detail. 
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Figure 5 – Dictionary
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Figure 6 – Dictionary-based compression

 

As shown in Figure 6 and Figure 7
compressing a portion of the file, it increased the file’s size.  The dictionary size had no effect in varying

compression ratio. 
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Dictionary-based compression using ‘Chan Chan’ Wave file

FLAC file was compressed using dictionary-based compression.  FLAC has initial metadata 

dictionary compressor’s text file because, in reality, the compressor would have to 

the initial metadata uncompressed in order for the FLAC header to remain intact.
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 FLAC optimization for nineteen benchmarks  

Figure 9, the FLAC optimization only improved the compression ratio by 

0.2%, which is not a significant increase.  While it shows that at 2048-sample blocks, FLAC seems better

predicting the signal, it is not a notable increase to compel a change from the 4096-sample block
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5 Conclusions 
Lossless audio compression is gaining popularity and will continue as long as memory costs continue to 

decline and internet bandwidth increases.  FLAC is a great lossless audio compressor, compressing original 

audio files an average of 57%, according to our tests (other high-quality lossless audio codecs are within 3% 

of FLAC [1], [3]).  Improvement to the FLAC method will likely have to come from another domain, since 

optimizing FLAC from within provided only slight improvement.  As shown in Section 4.2, dictionary-based 

compression was not able to improve the quality of FLAC.  The likely place for improvement in FLAC is in 

the residual coding section by testing other error encoding means. Moreover, it may be possible to reduce the 

file size using bitmask-based compression since it tries to match data patterns that are not identical using 

bitmasks [2]. 

An interesting direction is to study FLAC in order to incorporate near-lossless audio compression.  Near-

lossless audio compression is the balance between lossless and lossy audio codecs.  Its goal would be to 

provide the highest quality audio possible by taking away completely unnecessary characteristics of the 

audio signal.  For example, many Wave files contain frequencies above 20 kHz, which humans cannot hear – 

and most cannot hear above 17 kHz.  Performing this minimal psychoacoustic analysis would still be 

acceptable to musicians and audiophiles since the small quality loss is not noticeable to anyone.  A near-

lossless FLAC option would provide great quality and compression – highly attractive to musicians, 

audiophiles, and mainstream consumers. 
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