
Lossless Audio Compression: A Case Study

CISE Technical Report 08-415
Department of Computer and Information Science and Engineering

University of Florida, Gainesville, FL 32611, USA.

August 7, 2008

Abstract

Audio compression is used everywhere – largely due to the rise of the internet, computers, and embedded

systems. Since original, uncompressed digital recordings are very large in size, efficient ways are needed to

compress large audio signals into small, high-quality, convenient formats. While lossy audio formats, like

MP3, are widely popular in many everyday applications, lossless formats are also important to retain the

original audio signals. It is feasible to perform lossless compression due to decreasing memory cost and

increasing internet bandwidth. This paper investigates improvements to the Free Lossless Audio Codec

(FLAC), one of the best lossless audio formats, by conducting tests on nineteen quality benchmarks. We have

also studied lossless compression techniques from other domains and applied dictionary-based encoding for

audio compression. The results show that dictionary-based compression is not useful, while modifying the

blocking size in FLAC shows minor improvements in compression efficiency.

Cristobal Rivero

cristobalrivero@gmail.com

Prabhat Mishra

prabhat@cise.ufl.edu

1 Introduction
In recent years, digital audio has become extremely popular. Through the widespread use of high-speed

internet, consumers can download and transfer audio files. This is largely due to the effect of audio

compression – specifically, lossy audio compression. Lossy audio compression techniques encode an

original audio file (usually a .wav file or .aiff file) by removing information that is not audible to human ears.

The goal of lossy compression is to reduce the file size (estimated 9:1) with minor or no quality loss.

However, the original file can never be recovered from a lossy compression format.

In order to keep an exact copy of the original file, lossless audio compression must be used. The lossless

audio formats are not as well-known as the lossy formats simply because they consume more memory.

However, they are highly effective at reducing the size of original audio files. For example, an

uncompressed Wave (.wav) file, three minutes long, can take 30.3 Mb of memory, too big to be sent by e-

mail. Using lossless audio compression, it can be reduced to 50 – 60% of its original size, without any

quality loss and it is always possible to obtain the exact original file if needed. Since memory cost continues

to decrease, it is becoming increasingly popular for music producers, engineers, and audiophiles to keep their

original, high-quality audio collection through lossless compression.

This paper studies existing lossless compression techniques to see if it can be improved directly or by

employing compression techniques from other domains. One of the best lossless audio compressors is Free

Lossless Audio Codec (FLAC). It has very fast encoding and decoding, competitive compression, extensive

hardware support, and is available in open-source (original source code) – which makes it the current best

lossless audio codec. In fact, the European Broadcasting Company adopted FLAC as its format for

distributing audio over the Euroradio Network [4]. A method from the embedded systems domain is

dictionary-based compression. It provides high compression efficiency with low decompression cost. The

goal was to investigate dictionary-based compression with FLAC to see if FLAC could be improved. If not,

is there a way to enhance dictionary-based compression for audio by borrowing ideas from FLAC?

The rest of the paper is organized as follows. Section 2 presents background information on FLAC and

dictionary-based compression. Section 3 describes our approach followed by a case study in Section 4.

Finally, Section 5 concludes the paper.

2 Background

2.1 Free Lossless Audio Codec (FLAC)
FLAC originated in 2000, originally developed by Josh Coalson. In order to compress audio it uses a

four stage method: blocking, inter-channel decorrelation, prediction, and residual coding [1]. The input to

FLAC is an uncompressed audio file, either Wave or Aiff. The blocking stage divides the audio signal into

blocks or portions of a specified size. This directly affects the compression ratio. If the block is too small,

the total number of blocks will increase, wasting bits on encoding headers. If the block size is too large, the

signal could vary too much for the predictor to make an accurate prediction [1]. Thus, choosing the right

block size is essential for good compression.

The inter-channel decorrelation stage (or mid-side conversion) is performed by removing redundancy in

the stereo signals’ left and right channels. Often, the left and right channels of a stereo signal are very

similar. Thus, mid-side conversion was devised to reduce the amount of bits it takes to store the left and

right channels. By encoding the left and right channels into a middle channel (left and right average) and a

side channel (left minus right), the amount of bits needed to store the signal can be reduced. In cases where

the left and right channels are very different, it can be passed without any decorrelation.

The prediction stage is essential for providing good compression. It is dependent on the efficiency of the

block size chosen in the first stage. By using linear prediction and run-length encoding, FLAC predicts how

each block could be most closely modeled. For example, if the current block resembles a sine wave, then

FLAC would ideally choose a sine wave to model the signal in that block.

less memory to store than the original signal.

The residual coding stage (or error coding) is where the difference between the prediction and the original

signal is computed and compressed.

a sine wave, the original signal would likely not resemble an exact sine wave. The difference between the

predicted signal and the original signal must be recorded in order fo

preserves the exact original signal and reduces

Rice coding to compress the error signal from

reserved space for other coding methods, which leaves room

2.2 Dictionary-based Compression
Dictionary-based compression can use either a static or a freq

experiments, a 32-bit, frequency-bas

illustrative example to describe the working principle of dictionary

As Figure 1 shows, the dictionary finds the most repeated

a dictionary. For example, in this case, “01111111” is repeated four times and stored in the dictionary.

it encodes the signal by placing a ‘1’

[2]. In case of compression, it stores the dictionary index. F

dictionary entry, therefore, it is compressed

reduce the size of the input files.

decompression overhead.

3 Our Lossless Audio Compression Approach
Figure 2 shows the overall methodology of our approach. This paper investigates

compression approaches. All of them begin with the use of o

Figure

a sine wave to model the signal in that block. Many times, the pr

less memory to store than the original signal. This leads to the final encoding step, residual coding

The residual coding stage (or error coding) is where the difference between the prediction and the original

ssed. For example, if the predictor concludes that the current block resembles

a sine wave, the original signal would likely not resemble an exact sine wave. The difference between the

predicted signal and the original signal must be recorded in order for FLAC to be lossless. In

and reduces the file size. Once the difference is computed,

Rice coding to compress the error signal from the prediction stage [1]. For future improvements

eserved space for other coding methods, which leaves room for FLAC to be explored and

based Compression
can use either a static or a frequency-based dictionary. For our

based dictionary was used in order to encode signals. Figure

illustrative example to describe the working principle of dictionary-based compression.

As Figure 1 shows, the dictionary finds the most repeated bit-words in the file and stores th

For example, in this case, “01111111” is repeated four times and stored in the dictionary.

 if it is to be compressed and a ‘0’ if the word is to be left uncompressed

compression, it stores the dictionary index. For example, the first data is

it is compressed using the first dictionary entry (index ‘0’)

. This method provides good compression and has minor impact on

Audio Compression Approach
shows the overall methodology of our approach. This paper investigates

s. All of them begin with the use of original, uncompressed Wave files

Figure 1 – Dictionary based compression

Many times, the prediction takes

, residual coding.

The residual coding stage (or error coding) is where the difference between the prediction and the original

For example, if the predictor concludes that the current block resembles

a sine wave, the original signal would likely not resemble an exact sine wave. The difference between the

r FLAC to be lossless. In this way FLAC

Once the difference is computed, FLAC uses

the prediction stage [1]. For future improvements, FLAC has

to be explored and enhanced.

based dictionary. For our

. Figure 1 shows an

stores those words in

For example, in this case, “01111111” is repeated four times and stored in the dictionary. Then,

if the word is to be left uncompressed

or example, the first data is identical to the first

(index ‘0’). This can greatly

d provides good compression and has minor impact on

shows the overall methodology of our approach. This paper investigates three different

riginal, uncompressed Wave files.

Figure

First, dictionary-based compression

is shown in Figure 2. Since the dictionary compressor uses text files (*.txt) as inputs, the original Wave file

had to be converted to 32-bit binary text words.

Figure 3 – Procedure for using dictionary

As shown in Figure 3, the hex values of the original Wave file were obtained by using Hex Editor Neo 4.51.

Then, the hex values were transformed into 32

developed. At this point, the file was ready to be used by the dictionary compressor.

was compressed, the ratio of the compressed file

dictionary-based compression was performed on the compressed FLAC file, to test if any improvement was

possible. As shown in Figure 2, the Wave file

compressed using dictionary-based compression

the compression efficiency of dictionary

dictionary-based compression reduces

Finally, we have tried various optimizations on

compressed using the default highest compression values for FLAC. Then, the audio files were

again using an optimized version of FLAC, which we modified by varying block size and rice parameter

optimization. Then, the two resulting files were compared

beneficial, since the audio files being used are very large.

4 Experiments

 The experiments were performed usin

dictionary-based compression was used directly on uncompressed Wave files, to test their effectiveness in

Figure 2 – Our audio compression methodology

based compression was used on original Wave files to observe the compression ratio

Since the dictionary compressor uses text files (*.txt) as inputs, the original Wave file

bit binary text words. The process is shown in Figure 3.

Procedure for using dictionary-based compression

, the hex values of the original Wave file were obtained by using Hex Editor Neo 4.51.

Then, the hex values were transformed into 32-bit binary words in .txt format using a

was ready to be used by the dictionary compressor.

ratio of the compressed file’s size to the original file’s size was

was performed on the compressed FLAC file, to test if any improvement was

, the Wave file was first compressed using FLAC.

compression (with the process shown in Figure 3). L

the compression efficiency of dictionary-based encoding as well as FLAC based compression

reduces the file size produced by FLAC, then the method will be

we have tried various optimizations on FLAC. As shown in Figure 2, audio files were first

compressed using the default highest compression values for FLAC. Then, the audio files were

again using an optimized version of FLAC, which we modified by varying block size and rice parameter

ting files were compared. Even a small increase in compression would be

ng used are very large.

The experiments were performed using nineteen Wave file benchmarks shown Table 1

was used directly on uncompressed Wave files, to test their effectiveness in

observe the compression ratio, as

Since the dictionary compressor uses text files (*.txt) as inputs, the original Wave file

, the hex values of the original Wave file were obtained by using Hex Editor Neo 4.51.

using a program that we

 Once the Wave file

was recorded. Second,

was performed on the compressed FLAC file, to test if any improvement was

was first compressed using FLAC. Then, FLAC was

. Lastly, we measure

based compression. If the

will be beneficial.

, audio files were first

compressed using the default highest compression values for FLAC. Then, the audio files were compressed

again using an optimized version of FLAC, which we modified by varying block size and rice parameter

Even a small increase in compression would be

file benchmarks shown Table 1 [5, 6]. First,

was used directly on uncompressed Wave files, to test their effectiveness in

compressing audio files. Second, dictionary

compression was available. Finally, we experimented with different parameters in

Table

Dave Matthews A Train

Compilation Intense

It Could be Sweet Layla

Since Always Hard

4.1 Experimental Setup
A 32-bit, frequency-based dictionary compressor was used to test

and Wave files. Section 3 described this method in detail.

using Microsoft Visual Studio 2008. Once compiled, Wave file

without optimizations. Finally, the tests were run on nineteen benchmarks, chosen from various audio

compression quality tests. They were purposely chosen to be in diverse genres and st

speech was also tested. The estimated length of each file was 20 seconds.

4.2 Effect of Dictionary-based Compression
 We wanted to test the effect of

method described in Section 3, the dictionary compressor was first tested on Wave files. The

shown in Figure 4 and Figure 5.

Figure 4 – Dictionary-based compression

Note that “compression ratio” in this paper is defined by the ratio of the compressed file

file’s size. Therefore, smaller compression ratio implies better compression tec

Figure 4 and Figure 5, dictionary-based compression

The dictionary compressor was manually varied

nevertheless, the method was not successful at compressing Wave files.

8

dictionary-based compression was tested on FLAC files to test if further

we experimented with different parameters in FLAC

Table 1 – Various audio benchmarks [5, 6]

 Beauty Slept Chan Chan

 Experiencia Female_speech

Life Shatters Macabre

Toms Diner Velvet

based dictionary compressor was used to test dictionary-based compression

Section 3 described this method in detail. FLAC was downloaded from [1] and compiled

using Microsoft Visual Studio 2008. Once compiled, Wave files were compressed by FLAC

Finally, the tests were run on nineteen benchmarks, chosen from various audio

. They were purposely chosen to be in diverse genres and styles. Male and female

The estimated length of each file was 20 seconds.

based Compression on FLAC and Wave file
We wanted to test the effect of dictionary-based compression on Wave and FLAC

, the dictionary compressor was first tested on Wave files. The

based compression using ‘Chan Chan’ Wave file for different

in this paper is defined by the ratio of the compressed file’s

smaller compression ratio implies better compression technique

based compression actually had an adverse effect on the original Wave file.

The dictionary compressor was manually varied by dictionary size, in order to ensure good tests

nevertheless, the method was not successful at compressing Wave files.

0.8

0.85

0.9

0.95

1

1.05

1000500256128

C
o

m
p

re
ss

io
n

 R
a

ti
o

Dictionary Size

was tested on FLAC files to test if further

FLAC for Wave files.

Compilation 2

Floor Essence

Male Speech

based compression on FLAC

FLAC was downloaded from [1] and compiled

s were compressed by FLAC with and

Finally, the tests were run on nineteen benchmarks, chosen from various audio

yles. Male and female

on FLAC and Wave files
Wave and FLAC files. Using the

, the dictionary compressor was first tested on Wave files. The results are

 dictionary sizes

’s size to the original

hnique. As is shown in

actually had an adverse effect on the original Wave file.

by dictionary size, in order to ensure good tests –

Figure 5 – Dictionary

Next, a FLAC file was compressed usin

which was left out of dictionary compressor’s text

leave the initial metadata uncompressed in order for the FLAC header to remain intact.

shown in Figure 6 and Figure 7.

Figure 6 – Dictionary-based compression

As shown in Figure 6 and Figure 7
compressing a portion of the file, it increased the file’s size. The dictionary size had no effect in varying

compression ratio.

Figure 7 – Dictionary-based compression

1500

1600

1700

1800

1900

2000

2100

2200

F
il

e
 s

iz
e

 (
k

b
)

F
il

e
 s

iz
e

 (
k

b
)

Dictionary-based compression using ‘Chan Chan’ Wave file

FLAC file was compressed using dictionary-based compression. FLAC has initial metadata

dictionary compressor’s text file because, in reality, the compressor would have to

the initial metadata uncompressed in order for the FLAC header to remain intact.

based compression using ‘Chan Chan’ produced by FLAC

7, dictionary-based compression adversely affected FLAC. Instead of

compressing a portion of the file, it increased the file’s size. The dictionary size had no effect in varying

based compression using ‘Chan Chan’ produced by FLAC

1500

1600

1700

1800

1900

2000

2100

2200

Dictionary

Compression

Original

0.8

0.85

0.9

0.95

1

1.05

10025102

C
o

m
p

re
ss

io
n

 R
a

ti
o

Dictionary Size

1500

1600

1700

1800

1900

2000

2100

2200

Dictionary

Compression

Original

Wave file

. FLAC has initial metadata

in reality, the compressor would have to

the initial metadata uncompressed in order for the FLAC header to remain intact. The results are

‘Chan Chan’ produced by FLAC

based compression adversely affected FLAC. Instead of

compressing a portion of the file, it increased the file’s size. The dictionary size had no effect in varying the

using ‘Chan Chan’ produced by FLAC

These were undesired results, since it showed that

compressing either Wave or FLAC files.

dictionary-based compression. The

compression of audio files. By extending the method to cover word mismatche

or decrement bit, the compression may

be better suited to be used within the residual coding

4.3 Optimization in FLAC
We wanted to test if FLAC could be improved by optimizing blocking and rice coding parameters. There

is variation in compression that can occur by choosing different blocking sizes and rice coding parameters.

For this experiment, the benchmarks were compressed using the default hig

block size is 4096 samples). Then, different

Tests showed that blocks of 2048 samples

function that seeks the optimal rice coding parameters.

are shown in Figure 8 and Figure 9.

Figure 8 –

As is shown in Figure 8 and Figure
0.2%, which is not a significant increase. While it shows that at 2048

predicting the signal, it is not a notable increase to compel a change from the 4096

highest compression.

Figure 9

1500

11500

21500

31500

41500

51500

61500

71500

81500

91500

F
il

e
 s

iz
e

 (
k

b
)

0.5665

0.567

0.5675

0.568

0.5685

0.569

0.5695

0.57

0.5705

C
o

m
p

re
ss

io
n

 R
a

ti
o

These were undesired results, since it showed that dictionary-based compression

FLAC files. Wave and FLAC files are not repetitive enough to allow beneficial

. The dictionary-based compression method must be modified to allow for

compression of audio files. By extending the method to cover word mismatches, bitmasks,

may perform better for audio files. Dictionary-based compression

be better suited to be used within the residual coding section in FLAC.

Optimization in FLAC
uld be improved by optimizing blocking and rice coding parameters. There

that can occur by choosing different blocking sizes and rice coding parameters.

For this experiment, the benchmarks were compressed using the default highest setting in FLAC (the

different blocking sizes were tested to see if improvement was possible

samples provided better compression. For rice coding, FLAC has a built

tion that seeks the optimal rice coding parameters. The average results from the nineteen benchmarks

 FLAC optimization for nineteen benchmarks

Figure 9, the FLAC optimization only improved the compression ratio by

0.2%, which is not a significant increase. While it shows that at 2048-sample blocks, FLAC seems better

predicting the signal, it is not a notable increase to compel a change from the 4096-sample block

9 – Results of various FLAC optimizations

1500

11500

21500

31500

41500

51500

61500

71500

81500

91500

Original

FLAC

Optimized FLAC

0.5665

0.567

0.5675

0.568

0.5685

0.569

0.5695

0.57

0.5705

FLAC

Optimized FLAC

 is not proficient at

Wave and FLAC files are not repetitive enough to allow beneficial

method must be modified to allow for

bitmasks, or an increment

based compression might

uld be improved by optimizing blocking and rice coding parameters. There

that can occur by choosing different blocking sizes and rice coding parameters.

hest setting in FLAC (the default

tested to see if improvement was possible.

r rice coding, FLAC has a built-in

The average results from the nineteen benchmarks

, the FLAC optimization only improved the compression ratio by

sample blocks, FLAC seems better at

sample block standard for

5 Conclusions
Lossless audio compression is gaining popularity and will continue as long as memory costs continue to

decline and internet bandwidth increases. FLAC is a great lossless audio compressor, compressing original

audio files an average of 57%, according to our tests (other high-quality lossless audio codecs are within 3%

of FLAC [1], [3]). Improvement to the FLAC method will likely have to come from another domain, since

optimizing FLAC from within provided only slight improvement. As shown in Section 4.2, dictionary-based

compression was not able to improve the quality of FLAC. The likely place for improvement in FLAC is in

the residual coding section by testing other error encoding means. Moreover, it may be possible to reduce the

file size using bitmask-based compression since it tries to match data patterns that are not identical using

bitmasks [2].

An interesting direction is to study FLAC in order to incorporate near-lossless audio compression. Near-

lossless audio compression is the balance between lossless and lossy audio codecs. Its goal would be to

provide the highest quality audio possible by taking away completely unnecessary characteristics of the

audio signal. For example, many Wave files contain frequencies above 20 kHz, which humans cannot hear –

and most cannot hear above 17 kHz. Performing this minimal psychoacoustic analysis would still be

acceptable to musicians and audiophiles since the small quality loss is not noticeable to anyone. A near-

lossless FLAC option would provide great quality and compression – highly attractive to musicians,

audiophiles, and mainstream consumers.

6 References
[1] J. Coalson. FLAC - Free Lossless Audio Codec. 2008. http://flac.sourceforge.net/.

[2] S, Seong and P. Mishra. Bitmask-Based Code Compression for Embedded Systems. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) , volume

27, no 4, pages 673-685, April 2008.

[3] M. Ashland. Monkey's Audio. http://www.monkeysaudio.com, 2008.

[4] European Broadcasting Union. http://www.ebu.ch/en/radio/ops_rdo/faq/index.php, 2007.

[5] Vorbis.com. Dare to Compare. http://www.xiph.org/vorbis/listen.html, 2005.

[6] Media Fire. Loss.7z, http://www.mediafire.com/?3xgdgokzhyt, 2008.

