
Hardware Trojan Detection using Shapley Ensemble Boosting

Zhixin Pan and Prabhat Mishra
University of Florida, Gainesville, Florida, USA

Abstract
Due to globalized semiconductor supply chain, there is an in-
creasing risk of exposing system-on-chip designs to hardware
Trojans (HT). While there are promising machine Learning
based HT detection techniques, they have three major limi-
tations: ad-hoc feature selection, lack of explainability, and
vulnerability towards adversarial attacks. In this paper, we
propose a novel HT detection approach using an effective
combination of Shapley value analysis and boosting frame-
work. Specifically, this paper makes two important contribu-
tions. We use Shapley value (SHAP) to analyze the importance
ranking of input features. It not only provides explainable in-
terpretation for HT detection, but also serves as a guideline for
feature selection. We utilize boosting (ensemble learning) to
generate a sequence of lightweight models that significantly
reduces the training time while provides robustness against
adversarial attacks. Experimental results demonstrate that
our approach can drastically improve both detection accuracy
(up to 24.6%) and time efficiency (up to 5.1x) compared to
state-of-the-art HT detection techniques.
ACM Reference Format:
Zhixin Pan and Prabhat Mishra. 2023. Hardware Trojan Detection
using Shapley Ensemble Boosting. In 28th Asia and South Pacific
Design Automation Conference (ASPDAC ’23), January 16–19, 2023,
Tokyo, Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3566097.3567920

1 Introduction
A vast majority of semiconductor companies rely on global
supply chain to reduce design cost and meet time-to-market
deadlines. The benefit of globalization comes with the cost of
security concerns. A typical automotive System-on-Chip (SoC)
consists of multiple Intellectual Property (IP) cores, some of
these cores may come from potentially untrusted third-party
suppliers. An attacker may be able to introduce malicious
implants, popularly known as Hardware Trojans (HT). HT is
a malicious modification of the target integrated circuit (IC)

This work was partially supported by the NSF grant CCF-1908131.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPDAC ’23, January 16–19, 2023, Tokyo, Japan
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9783-4/23/01. . . $15.00
https://doi.org/10.1145/3566097.3567920

Figure 1: An example hardware Trojan constructed by a trigger
logic (gray AND gate). Once the trigger condition is satisfied,
the payload (gray XOR gate) will invert the expected output.

with two critical parts, trigger and payload. The trigger are
typically created using a combination of rare events (such as
rare signals or rare transitions) to stay hidden during normal
execution. The payload represents the malicious impact on
the target design, commonly resulting in information leakage
or erroneous execution. When the trigger is activated, the
payload enables themalicious activity. For example in Figure 1,
when the output of the trigger logic (grey AND gate) is true,
the output of the payload (grey XOR gate) will invert the
expected output. It is vital to detect HTs to enable trustworthy
computing using modern SoCs.

There are many promising approaches for machine learning
(ML) based HT detection [3, 10, 14]. However, they have three
inherent limitations. First, they provide only detection results
without interpreting them in a human understandable way.
Next,they focus on extracting ‘features’ from given dataset,
but the feature selection relies on expert knowledge without
any established guidelines. Finally, existing efforts focus on
generating complicated models to improve the detection ac-
curacy, which may introduce unacceptable training cost for
parameter tuning.

In this paper, we propose an efficient HT detection approach
based on Shapley Ensemble Boosting (SEB) which addresses the
above challenges. It efficiently combines the Shapley analysis
(SHAP) and boosting to enable an explainable, fast and robust
detection model. Specifically, this paper makes the following
major contributions:

• SEB provides an explainable ML framework. It exploits
SHAP to generate the spectrum of impact of each fea-
ture towards the model output. It explains the decision
process and serves as a guideline for feature selection.

• SEB a provides a fast and robust boosting framework.
It explores ensemble model by combining a sequence
of lightweight models to generate a powerful classifier.

• Extensive evaluation shows significant improvement in
both detection accuracy (up to 24.6%) and time efficiency
(up to 5.1x) compared to state-of-the-art approaches.

The paper is organized as follows. Section 2 surveys related
efforts. Section 3 describes our Trojan detection framework.
Section 4 presents experimental results. Finally, Section 5
concludes the paper.

https://doi.org/10.1145/3566097.3567920
https://doi.org/10.1145/3566097.3567920
https://doi.org/10.1145/3566097.3567920

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Zhixin Pan and Prabhat Mishra

2 Background and Related Work
We first survey related efforts on hardware Trojan detection.
Next, we provide background on boosting and Shapley values.

2.1 Related Work for HT Detection
There are many promising efforts for hardware Trojan de-
tection that can be broadly classified into three categories:
side-channel analysis, simulation-based validation, and ML-
based HT detection. Side-channel analysis focuses on the
difference in side-channel signatures (such as power, path
delay, etc.) between the expected (golden specification) and
actual (Trojan-inserted implementation) values [4, 6, 9]. A
major drawback in side-channel analysis is that it is difficult
to detect the negligible side-channel difference caused by a
tiny Trojan since it can easily hide in process variation and
environmental noise. Simulation-based HT detection is not
affected by any process/noise variations since it relies on test
patterns to activate HTs. MERO [2] proposed a statistical test
generation scheme to activate the rare trigger. COTD [13]
proposed a static HT detection approach based on testability
analysis. TARMAC [7] utilizes maximal clique sampling to
generate efficient test patterns. it is a fundamental challenge to
activate an extremely rare trigger without trying all possible
(exponential) input sequences.

ML-based HT detection does not have any of the above
disadvantages. It focuses on extracting ‘features’ from a large
amount of historical data to trainmodels to perform experience-
based predictions. Hasegawa et al. [3] proposed a static HT
detection technique using random forest. A similar neural net-
work based approach has been explored by [14]. Recently, Pan
et al. [10] use reinforcement learning for improved feature
selection to reduce the false positive rate. There are several
major drawbacks of existing ML-based HT detection meth-
ods. First, There is no clear guideline for feature selection,
existing feature selection work for HT detection are heav-
ily determined by human expert knowledge. Next, due to the
black-box nature of most ML models, existing approaches lack
the transparency, and are unable to interpret their predictions
in a meaningful way. Finally, ML algorithms themselves are
vulnerable towards adversarial attacks, making their usage in
security-focused domain unreliable. In this paper, we address
these challenges by combining Shapley value analysis with
boosting framework as described in Section 3.

2.2 Ensemble Boosting
Boosting is a machine learning technique to improve the ac-
curacy of predictive models. It creates stronger models by
combining multiple weaker models, such as decision trees.
The individual models are trained sequentially, with each
model compensating for the errors of the previous model. The
final prediction is made by combining the predictions of all
the individual models. Boosting can be used for regression
and classification tasks and is a powerful tool for dealing with
complicated tasks. It is also relatively resistant towards over-
fitting problem, and achieves high levels of accuracy without

sacrificing generalization. This can also lead to fast predic-
tion since multiple models can work in parallel at run-time.
Figure 2 shows an overview of a boosting framework.

Figure 2: The ensemble consist of a set of weak classifiers. Sub-
sequent models focus on fixing the weakness of previous models.
The final decision is based on the overall voting result.

2.3 Shapley Values
ML has shown its potential in security domain tasks. How-
ever, due to their black-box nature, no further information
aside from detection result can be provided by the ML models.
What’s worse, security practitioners gain no clue for incorrect
predictions. This lack of transparency make people hesitate to
widely adopt them in safety-critical domains. In our work, we
address this challenge by utilizing explainableML. Specifically,
explanation techniques aim to illustrate what is the major rea-
son for model transferring certain input into its prediction.
This often involves identifying a set of important features that
make key contributions to the forward pass of model. In our
proposed method, we utilize Shapley value analysis to provide
the contribution measurement.
The concept of Shapley values (SHAP) is borrowed from

the cooperative game theory [11]. It is used to fairly attribute
a player’s contribution to the end result of a game. SHAP
capture the marginal contribution of each player to the final
result. Formally, we can calculate the marginal contribution
of the 𝑖-th player in the game by:

𝜙𝑖 =
∑︁

𝑆⊆𝑁 /{𝑖 }

|𝑆 |!(𝑀 − |𝑆 | − 1)!
𝑀!

[𝑓𝑥 (𝑆 ∪ {𝑖}) − 𝑓𝑥 (𝑆)] (1)

where the total number of players is |𝑀 |. 𝑆 represents any
subset of players that does not include the 𝑖-th player, and
𝑓𝑥 (·) represents the function to give the game result for the
subset S. Intuitively, SHAP is a weighted average payoff gain
that player 𝑖 provides if added into every possible coalitions
without 𝑖 . We will show how Shapley value analysis is applied
in the task of HT detection in Section 3.3.

3 Shapley Ensemble Boosting for Hardware
Trojan Detection

Our proposed approach enables a synergistic integration of
Shapley value analysis (SHAP) and boosting for efficient HT
detection. Figure 3 shows an overview of our proposedmethod
that consists of five major tasks. The first task performs Data
Sampling from given sources. We randomly sample bench-
marks from the entire pool and extract a subset of features
from them. The second task performs Model Training that

Hardware Trojan Detection using Shapley Ensemble Boosting ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

trains a lightweight classifier based on sampled data. The
trained classifier is immediately tested to record correct/incorrect
predictions. The third task performs Shapley Analysis to figure
out the importance ranking of each feature. The fourth task
performs Weight Adjustment to adjust the weights for each
benchmark as well as each feature in the list. These four tasks
repeat for sufficient number of iterations until reaching con-
vergence. The final task uses the well-trained framework to
perform an Ensemble Prediction. For any given testing bench-
mark, all the classifiers generated during this process will pro-
duce their own prediction, and the overall voting determines
if the benchmark has any hardware Trojan. The remainder of
this section describes these tasks in detail.

Figure 3: An overview of our proposed Shapley ensemble boost-
ing framework for hardware Trojan detection.

3.1 Data Sampling
The key idea of boosting framework is to train a sequence
of lightweight classifiers and adopt the aggregation result as
the output. To improve the efficiency, training cost for each
individual classifier should be restricted. To address this, we
perform data sampling before model training at each itera-
tion. The sampling considers two aspects: benchmarks and
features. At each iteration, only a subset of benchmarks and
features are fed into the model. To enable a comprehensive
evaluation, we collect data from benchmarks from both Trust-
Hub [12] and ISCAS-89 [1]. As for features, we adopt the idea
from [3], where the authors proposed 51 important features
for HT detection, including but not limited to the number
of logic-gate fan_ins, flip-flops, multiplexers as well as loops
in netlists. These features are intuitively related with mali-
cious implants. For example, in case of combinational circuit
triggers, the number of fan_ins tends to become large for ex-
tremely rare triggers. We have also included the total number
of nets and cells into consideration since they provide the
overall statistics. All the above features are based on static
analysis. To better inspect the property of benchmarks, we

Table 1: The list of all candidate features (1 ≤ 𝑥 ≤ 5)
Features Description
Nets Total # of nets
Cells Total # of cells
fan_in_x # fanins up to x-level away from the PI/PO.
in_FF_x # flip-flops up to x-level away from the PI.
out_FF_x # flip-flops up to x-level away from the PO.
in_MUX_x # MUXs up to x-level away from the PI.
out_MUX_x # MUXs up to x-level away from the PO.
in_loop_x # up to x-level loops.
out_loop_x # up to x-level loops.
in_const_x # constants up to x-level away from the PI.
out_const_x # constants up to x-level away from the PO.
in_pin The level to the PI from the nearest net.
out_pout The Level to the PO from the nearest net.
{ in, out }_FF minimum level to any flip-flop from the PI/PO.
{ in, out }_MUX minimum level to any MUX from the PI/PO.
Rare Switches # of total rare switches during simulation.
Dynamic Power dynamic power change during simulation (mW).

also simulate these benchmarks with test vectors from [9] to
get their dynamic power changes as well as total number of
rare switches. The complete list of all 55 candidate features are
shown in Table 1. Initially, every benchmark has equal chance
to be sampled. Similarly, every feature has equal probability
of getting sampled initially.

3.2 Model Training
Once the subset of sampled data is obtained, the model train-
ing process starts. In our framework, each lightweight clas-
sifier is chosen to be a decision tree (DT). DT is a supervised
learning approach based on a tree structure. It predicts the
class of the target by traversing from the root to the leaf of the
tree. We compare the values of the node attributes with the
record’s attribute. On the basis of comparison, we follow the
branch corresponding to that value and jump to the children
nodes until the leaf node is reached. We follow the tradi-
tional steps to train DTs, and specifically, we utilize CART [5]
method to generate the trees. To enable fast training speed,
the maximum depth of each DT is kept less than 6. We also
utilize both L1 (Lasso Regression) and L2 (Ridge Regression)
regularization to prevent the model from overfitting. Once the
training finishes, the trained DT is used to detect hardware
Trojans, and we record the correct/incorrect prediction for all
the testing samples. These records are further analyzed in the
next step.

Figure 4: Example decision tree that classifies using 3 features

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Zhixin Pan and Prabhat Mishra

3.3 Shapley Analysis
To apply SHAP in ML tasks, we can assume features as the
‘players’ in a cooperative game. SHAP is a local feature at-
tribution technique that explains every prediction from the
model as a summation of each individual feature contributions.
Assume a decision tree is built with 3 different features for
HT detection as shown in Figure 4. To compute SHAP values,
we start with a null model without any independent features.
Next, we compute the payoff gain as each feature is added to
this model in a sequence. Finally, we compute average over
all possible sequences. Since we have 3 independent variables
here, we have to consider 3!=6 sequences. Specifically, the
computation process for the SHAP value of the first feature is
presented in Table 2.

Table 2:Marginal contributions of the first feature for themodel.

Sequences Marginal Contributions
1,2,3 L({1}) − L(∅)
1,3,2 L({1}) − L(∅)
2,1,3 L({1, 2}) − L({2})
2,3,1 L({1, 2, 3}) − L({2, 3})
3,1,2 L({1, 3}) − L({3})
3,2,1 L({1, 2, 3}) − L({3, 2})

Here, L is the loss function. The loss function serves as
the ‘score’ function to indicate how much payoff currently
we have by applying existing features. For example, in the
first row, the sequence is 1, 2, 3, meaning we sequentially add
the first, second, and the third features into consideration
for classification. ∅ stands for the model without considering
any features, which in our case is a random guess classifier,
and L(∅) is the corresponding loss. Then by adding the first
feature into the scenario, we use {1} to represent the dummy
model that only uses this feature to perform prediction. We
again compute the loss L({1}). L({1}) − L(∅) is the mar-
ginal contribution of the first feature for this specific sequence.
We obtain the SHAPs for the first feature by computing the
marginal contributions of all 6 sequences and taking the av-
erage. Similar computations happen for the other features.
The SHAP values are crucial indicator of their impact towards
model decisions, as explored in the next section.

3.4 Weight Adjustment
The weight adjustment step aims at tuning the probabilities
of selecting benchmarks and features in the next iteration
of training. Intuitively, while adjusting weights, we need to
follow three guidelines. First, for incorrectly predicted bench-
marks, their weights should be increased. Next, for high-
impact features from incorrectly predicted benchmarks, their
weights should be decreased. Finally, for high-impact features
from correctly predicted benchmarks, their weights should be
increased. In our framework, we always normalize the weight
values at the start of each iteration, therefore, there is no need
to decrease the weights for correctly classified benchmarks.
Formally, we denote 𝑋𝑖 ∈ D as the 𝑖-th benchmark from

the entire dataset D. 𝑋𝑖 ’s corresponding label is denoted as

𝑦𝑖 , where 𝑦𝑖 = 0 represents for a Trojan-free benchmark and
𝑦𝑖 = 1 for a Trojan-infected one. The ML model’s prediction
probability for this benchmark is denoted as 𝑦𝑖 . The weight of
𝑋𝑖 is recorded as𝑤𝑏

𝑖 . As for features, we denote 𝐹 𝑗 ∈ F as the 𝑗-
th feature from the candidate feature list (Table 1). The weight
of 𝐹 𝑗 is represented by𝑤 𝑓

𝑗
. Especially, we use 𝐹𝑖 𝑗 to represent

the value of 𝐹 𝑗 for the specific instance 𝑋𝑖 . The remainder of
this section briefly describe the weight adjustment procedure
for benchmarks as well as features.

Weight Adjustment for Benchmarks: The goal of adjust-
ing benchmark weights is to maximize the chance of sampling
these hard-to-fit samples in the next iteration. To accelerate
the convergence speed, benchmarks with larger prediction
error should take higher priority. Therefore for misclassfied
benchmark 𝑋𝑖 , we should have

Δ𝑤𝑏
𝑖 ∝ L(𝑦𝑖 , 𝑦𝑖)

where L is the loss function measuring the extent of predic-
tion error (mentioned in Section 3.3). In binary classification
task, L is selected as the cross-entropy,

L(𝑦𝑖 , 𝑦𝑖) ≜ (𝑦𝑖 𝑙𝑜𝑔𝑦𝑖 + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦𝑖))

which leads to

Δ𝑤𝑏
𝑖 ∝ (𝑦𝑖 𝑙𝑜𝑔𝑦𝑖 + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦𝑖))

⇒ 𝑤𝑏
𝑖 (𝑡+1)

= 𝑤𝑏
𝑖 (𝑡)

+ 𝛼 (𝑦𝑖 𝑙𝑜𝑔𝑦𝑖 + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦𝑖))

where 𝑡 represents for the 𝑡-th iteration, 𝛼 is a hyperparameter
which affects the learning rate. In our framework, we artifi-
cially limit the step size to be small, so that the parameters
are more likely to converge to the optimal values, thereby
providing better overall performance for the model.
Weight Adjustment for Features: The adjustment for

feature weights are similar to benchmark weights but differs
in three aspects. First, the extent of adjustment is measured
by the contribution of the feature towards the model out-
put. The more contribution it possess, larger the extent of
adjustment. Next, the correctness should be taken into con-
sideration. As outlined earlier, in case of high-impact features
from incorrectly predicted benchmarks, their weights should
be decreased, since it is a dominating factor contributing to
an incorrect prediction. Finally, for each feature, their con-
tribution varies from benchmark to benchmark, therefore,
the computation should be an overall summation among all
tested samples. We measure the contribution by SHAP. We
use 𝑆𝐻𝐴𝑃 (𝐹𝑖 𝑗) to denote the SHAP value of 𝐹𝑖 𝑗 . Then

Δ𝑤
𝑓

𝑗
∝
∑︁

(±𝑤𝑏
𝑖 L(𝑦𝑖 , 𝑦𝑖) 𝑆𝐻𝐴𝑃 (𝐹𝑖 𝑗))

where ± is positive for correct prediction and vice versa. No-
tice Δ𝑤 𝑓

𝑖
is a weighted summation, since we should also take

the benchmarks’ weights into consideration. Large bench-
mark weights indicate their necessity. Their corresponding
features are emphasized than the others. Therefore, we have

𝑤
𝑓

𝑗 (𝑡+1)
= 𝑤

𝑓

𝑗 (𝑡)
+ 𝛽

∑︁
(±𝑤𝑏

𝑖 (𝑡+1)
L(𝑦𝑖 , 𝑦𝑖) 𝑆𝐻𝐴𝑃 (𝐹𝑖 𝑗))

Hardware Trojan Detection using Shapley Ensemble Boosting ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

where 𝑡 represents the 𝑡-th iteration, and 𝛽 is another hyper-
parameter. We follow the same criteria for tuning 𝛽 as that for
𝛼 . The above two procedures are used to adjust and normalize
the weight values for next round of training iteration. The
model training and weight adjustment steps continue until
reaching convergence.

Algorithm 1:Detect with Shapley Ensemble Boosting
Input :Benchmark Dataset(D), Feature Set (F),

Instance (𝑠), learning rate (𝛼, 𝛽), epochs (𝑘)
Output :Ensemble Model T , Prediction 𝑟𝑒𝑠

1 Initialize:
2 T = ∅, 𝑁 = sizeof (D),𝑀 = sizeof (F), 𝑡 = 0
3 For each 𝑋𝑖 ∈ D,𝑤𝑏

𝑖 (𝑡) =
1
𝑁

4 For each 𝐹𝑖 ∈ F ,𝑤 𝑓

𝑖 (𝑡)
= 1

𝑀

5 repeat
6 Random Sample D ′ ⊂ D, F ⊂ F ′ ⊲ Data Sampling
7 𝑇(𝑡) = CART(D ′, F ′) ⊲ Model Training
8 for each 𝑋𝑖 ∈ D ′ do
9 𝑦𝑖 = 𝑇 (𝑋𝑖)

10 L(𝑦𝑖 , 𝑦𝑖) = (𝑦𝑖 𝑙𝑜𝑔𝑦𝑖 + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦𝑖))
11 𝑤𝑏

𝑖 (𝑡+1)
= 𝑤𝑏

𝑖 (𝑡)
+𝛼L(𝑦𝑖 , 𝑦𝑖) ⊲Weight Adjustment

12 for each 𝐹 𝑗 ∈ F ′ do
13 Compute Shapley Values 𝑆𝐻𝐴𝑃 (𝐹𝑖 𝑗)
14 𝑤

𝑓

𝑗 (𝑡+1)
=

𝑤
𝑓

𝑗 (𝑡)
+ 𝛽

∑(±𝑤𝑏
𝑖 (𝑡+1)

L(𝑦𝑖 , 𝑦𝑖)𝑆𝐻𝐴𝑃 (𝐹𝑖 𝑗))

15 T = T ∪ {𝑇(𝑡) }
16 𝑡 = 𝑡 + 1
17 until 𝑡 ≥ 𝑘 or reaching convergence;
18 𝑟𝑒𝑠 = T (𝑠) ⊲ Ensemble Prediction
19 Return T , 𝑟𝑒𝑠

3.5 Ensemble Prediction
The overall ensemble prediction is the voting result of all pre-
dictions from each tree. There is no need to assign weights
to each tree. Intuitively, if every tree has same weight, for
benchmarks misclassified by the first tree, even if it is cor-
rectly classified by the second tree, then the overall voting
result is still fifty-fifty. In fact, by increasing the weights of
misclassified sample and significantly decreasing the most
influential feature causing misclassification, chances for sub-
sequent models to vote for incorrect prediction is extremely
low. If we decrease the weights for the first several trees that
make mistakes, then the correctly predicted benchmarks are
also affected. These benchmarks are hardly selected by sub-
sequent models, while the weights of models voting for their
truth label are diminished. Algorithm 1 summarizes the above
discussion to highlight the major steps in our HT detection
framework. Specifically, Line 6 denotes Data Sampling (Sec-
tion 3.1). Line 7 covers Model Training (Section 3.2). Line 8-14

performs Shapley Analysis (Section 3.3) and Weight Adjust-
ment (Section 3.4) for each model. Finally, Line 18 performs
Ensemble Prediction (Section 3.5) to detect if there is any hard-
ware Trojan in the test benchmark.

4 Experiments
In this section, we evaluate the effectiveness of our hardware
Trojan detection framework. First, we describe the experimen-
tal setup. Next, we compare with state-of-the-art approaches.

4.1 Experimental Setup
To enable fair comparison with existing approaches, we use
the same benchmarks as [2, 3, 10] from Trust-Hub [12] and
ISCAS-89 [1]. Randomly sampled benchmarks are injected
with 1000 HTs. For each benchmark, we record static features
including total number of nets and cells, netlist features in-
troduced in [3], along with simulation-based features (rare
switches, dynamic power change). The list of all 55 candidate
features are shown in Table 1. For counting the number of
rare switches, we preserve the same parameter configuration
applied in those papers, where rareness threshold is set to 0.1.

The code for benchmark parsing and identification of rare
nodes is written in C++. The machine learning model was con-
ducted trained/tested on a host machine with Intel i7 3.70GHz
CPU, 32 GB RAM and RTX 2080 256-bit GPU. We choose
Python (3.6.7) code using scikit-learn (1.1.1) with cudatoolkit
(10.0) to implement the GPU acceleration framework. The
maximum number of epochs is set to 1000 during the training
phase. We compare in terms of detection accuracy as well as
time efficiency between the following methods:

• RFC: State-of-the-art statistical Trojan detection at
gate-level using Random Forest (RF). [3].

• CNN: State-of-the-art Trojan detection using Convolu-
tion Neural Network (CNN) [14].

• TGRL: State-of-the-art test generation method for Tro-
jan detection using reinforcement learning [10].

• SEB: Our proposed Shapley ensemble boosting frame-
work for hardware Trojan detection.

In this paper, we denote a “Trojan-infected” case as positive,
and successfully detecting a Trojan-infected benchmark is
recorded as “True-Positive”, and vice versa.

4.2 HT Detection Performance
We consider the following four metrics, where 𝑡𝑝, 𝑡𝑛, 𝑓 𝑝 and
𝑓 𝑛 are the number of true positive, true negative, false posi-
tive and false negative, respectively. Recall is a measure of a
classifier’s exactness, while precision is a measure of a clas-
sifiers completeness, and F1 score is the harmonic mean of
recall and precision.

• Accuracy: 𝑡𝑝+𝑡𝑛
𝑡𝑝+𝑡𝑛+𝑓 𝑝+𝑓 𝑛

• Precision: 𝑡𝑝

𝑡𝑝+𝑓 𝑝

• Recall: 𝑡𝑝

𝑡𝑝+𝑓 𝑛

• F1 Score: 𝑡𝑝

𝑡𝑝+ 1
2 (𝑓 𝑝+𝑓 𝑛)

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Zhixin Pan and Prabhat Mishra

Table 3: Comparison of HT detection performance using accuracy (Acc), recall (Rec), precision (Pre) and F1 score (F1).

RFC [3] CNN [14] TGRL [10] SEB (Proposed Approach)
Bench Acc Rec Pre F1 Acc Rec Pre F1 Acc Rec Prec F1 Acc Rec Pre F1 impr/TGRL
c2670 83.1% 0.87 0.89 0.88 90.7% 0.90 0.90 0.90 96.2% 0.97 0.94 0.96 100.0% 1.0 1.0 1.0 3.8%
c5315 75.4% 0.78 0.83 0.81 87.6% 0.85 0.88 0.86 91.4% 0.92 0.91 0.92 100.0% 1.0 1.0 1.0 8.6%
c6288 64.5% 0.68 0.63 0.65 80.5% 0.85 0.79 0.85 88.8% 0.89 0.85 0.87 99.8% 0.99 0.99 0.99 11.0%
c7552 77.2% 0.74 0.79 0.76 84.9% 0.81 0.86 0.83 91.2% 0.89 0.91 0.90 100.0% 1.0 1.0 1.0 8.8%
s13207 78.5% 0.77 0.79 0.78 90.4% 0.91 0.92 0.92 95.6% 0.94 0.95 0.95 100.0% 1.0 1.0 1.0 4.4%
s15850 68.8% 0.65 0.73 0.68 83.0% 0.75 0.86 0.80 92.7% 0.93 0.95 0.94 99.8% 0.99 0.99 0.99 7.1%
s35932 73.1% 0.78 0.53 0.63 75.5% 0.72 0.76 0.74 83.6% 0.88 0.81 0.84 99.9% 0.97 0.99 0.98 16.3%

AES-T100 85.9% 0.93 0.79 0.85 89.2% 0.84 0.86 0.85 96.9% 0.97 0.97 0.97 100.0% 1.0 1.0 1.0 3.1%
AES-T200 79.3% 0.88 0.73 0.79 90.2% 0.85 0.92 0.88 95.8% 0.98 0.91 0.94 99.9% 1.0 1.0 1.0 4.1%
AES-T1000 67.2% 0.84 0.63 0.72 80.5% 0.72 0.76 0.74 90.1% 0.95 0.95 0.95 99.9% 1.0 1.0 1.0 9.8%
Average 75.3 % 0.79 0.73 0.76 85.3% 0.82 0.85 0.83 92.2% 0.93 0.91 0.92 99.9% 0.99 1.0 1.0 6.1

Table 3 compares the performance of our approach (SEB)
with the existing methods. We present the HT detection per-
formance of all four methods on various benchmarks using
accuracy (Acc), recall (Rec), precision (Pre), and F-1 score
(F1). Each row stands for one specific benchmark. The av-
erage values of evaluation are also plotted in Figure 5. The
RFC model achieves 75% accuracy, and CNN model achieves
85%. Their performances falls behind TGRL and our proposed
method. This observation is supported by the intrinsic of mod-
els applied in these methods. RFC utilizes random forest (RF)
which consists of a forest of decision trees (DTs) to make ag-
gregation decisions. It is similar to our boosting framework
but RFC does not perform any weight adjustment for any
benchmarks or features. As a result, RFC has the lowest value
of recall among all methods. Intuitively, a low 𝑟𝑒𝑐𝑎𝑙𝑙 score
inflicts high proportion of false negatives. While in our pro-
posed method, after each training iteration, each misclassified
sample is marked with high sampling weights and becomes
a major focus for subsequent decision trees. As for CNN, it
is a well-known ML model for processing computer vision
tasks. They are good at extracting linear shift invariants from
images, but not specifically designed for HT detection. Our
proposed method achieves 99.9% accuracy with 1.0 F1 score,
which is up to 24.6% improvement over existing efforts.

There are several reasons for our proposed method’s supe-
rior performance over state-of-the-art methods. The sophisti-
cated feature selection strategy guided by the SHAP analysis
helps to identify the most influential features in early stages,
which helps to avoid the disturbance caused by redundant
features. SEB is an ensemble model which make predictions
based on voting of all sub-models. This strategy significantly
reduces the bias. Moreover, the sequential training strategy
allows each sub-model concentrating on the previously incor-
rect classified observations. The errors are gradually reduced
through iterations.

4.3 Explainability Analysis
In this section, we demonstrate the transparency and explain-
ability for the proposed HT detection approach by SHAP. In
ML, the task of classification commonly boils down to com-
pute a separator and check which side the sample falls in.

Figure 5: Comparison of average HT detection performance by
various methods using accuracy, precision, recall, and F-1 score.

Since HT detection is a binary classification, the task is re-
duced to computing a threshold value and compare with the
model output. It is classified as negative (Trojan-Free) if it lies
in the left (smaller), positive (Trojan-infected) otherwise.
Figure 6 shows the waterfall plot of SHAP values from

a pair of samples, (a) a true negative sample and (b) a true
positive one. In our case, the threshold value is 2.192. The
waterfall plot clearly demonstrate the contribution of each
feature and how they affect the decision. The plus or minus
sign illustrate whether the specific feature is supporting the
sample to be positive (red bars), or voting for the negative (blue
bars). The SHAP values along with each bar show their exact
impact, and the summation of all SHAP values is compared
with the threshold to give the final decision. As we can see
from the figure, in both (a) and (b), rare switches and dynamic
power change are among the most important features. This is
reasonable since HTs are more likely to be designed with rare
signals as triggers, and the change of dynamic power is also
an important indicator of Trojan injection. Notice there are
55 candidate features as we mentioned in Table 1, but only
the top 8 features are shown in our plot since the rest of them
barely provides any contribution (< 0.01). In fact, after the
first several iterations of training, these redundant features’
weights are significantly reduced, and therefore are less likely
to be selected by subsequent models. This strategy drastically
reduced the training time, as we will show in Section 4.4.

Hardware Trojan Detection using Shapley Ensemble Boosting ASPDAC ’23, January 16–19, 2023, Tokyo, Japan

Figure 6: The SHAP values for two example cases. (a) A Trojan-
free benchmark, and (b) A Trojan-infected benchmark. The
SHAP values clearly illustrate the major features.

Waterfall plots only show insights for individual samples.
To provide a better visual illustration, we generate the deci-
sion plot in Figure 7 for 10 random samples (5 positives and
5 negatives) in the dataset. In this figures, each polyline rep-
resents one single sample. The x-axis represents the model’s
output value, and the plot is centered on the x-axis at the
threshold value. The y-axis lists the model’s features ordered
by descending importance. For each line, a traverse from the
bottom to the top clearly displays how each features are con-
tributing to the decision. Starting at the bottom, every sample
converges at the threshold value. When moving bottom-up,
SHAP values for each feature are computed and added to the
base value. When reaching at the top of the plot, each line
strikes the x-axis at its corresponding model output, and this
value determines the prediction result. Clearly, the more fea-
tures we take into consideration, the more two clusters of
lines diverge from each other. Finally, five lines hit on the left
side (negatives) of the central gray line, and the other five on
the right (positives). Notice in this plot, we show the impacts
of the 12 most influential features, but in fact the bottom 4
features barely make any contribution. For every polyline,
after traversing the bottom 4 contributions, the values are still
only slightly deviated from the threshold. It is not until we
take the top 8 features into consideration, the lines in two
classes start to diverge. This observation matches our analysis
from previous plots.

Figure 7: The decision plot for 10 random samples.

SHAP clearly illustrate the decision process of the proposed
framework for HT detection, and as we observed from Figure 6
and Figure 7, the total number of rare switches are considered
as the most influential features for HT detection. To ensure the
credibility of our model, we need to guarantee the validity of
this feature. The scatter plot in Figure 8 shows the distribution
of the rare switches in the entire dataset and its dependence
with respect to model scale (number of cells). In this plot, each
dot is a single benchmark. The x-axis represents the number
of rare switches, and the y-axis is the corresponding Shapley
value. When the value of rare switches are very low (< 60),
they barely make contribution to the model (low Shapley
values), since in this case they do not provide any meaning-
ful information. However, when sufficient number of rare
switches are recorded, larger the value, more contributions
are observed to support model’s prediction.

Figure 8: The dependency plot.

4.4 Efficiency Analysis
Table 4 compares the time efficiency for all four methods. The
first row lists the name of methods, while the next two rows
provide the average training time and testing time respectively.
In the last three columns, we show the time improvement
provided by our approach compared to the others.

ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Zhixin Pan and Prabhat Mishra

Table 4: Comparison of Training & Testing Time (in seconds).
Methods RFC CNN TGRL SEB SEB/RFC SEB/CNN SEB/TGRL
Training 4430 10396 30019 1767 2.6x 5.8x 17.4x
Testing 1284 559 2014 1339 2.3x 3.6x 3.6x
Total 5714 11735 31033 2326 2.5x 5.1x 13.4x

Clearly, our approach provides the best efficiency across
benchmarks. TGRL lags far behind the others in time effi-
ciency due to the utilization of reinforcement learning that
requires tremendous debugging work and parameter tuning
work. While CNN provides better time efficiency than TGRL,
the two RF-based approaches (RFC and SEB) are significantly
faster, and our proposed method is even 2.5x faster than RFC.
There are two major advantages of SEB over RFC. First, RFC
dumps all data samples and collected features into training
phase, which cost extra computation time for handling re-
dundant features and duplicated samples, while SEB perform
partial sampling by Shapley analysis. Second, the tree struc-
ture of RFC is more complicated than that in SEB. SEB trains
a sequence of lightweight decision trees and generate aggre-
gate prediction. The training time of each tree in SEB is much
shorter than that in RFC. Overall, our proposed approach dras-
tically (up to 2.5x, 13.4x, and 5.1x on average) improves the
time efficiency compared to state-of-the-art methods.

4.5 Robustness Analysis
As discussed in Section 2, an ML model’s robustness against
obfuscation is an important consideration. In [8], an adversar-
ial attack against ML-based HT detection methods was pro-
posed. Specifically, the author crafted adversarial samples by
introducing tiny changes to the gate-level netlists to mess up
the statistical features. The standard way of defending against
adversarial attack is through adversarial training, where ad-
versarial samples are added to the training set and retrain the
entire model. But retraining can be expensive in terms of time.
Moreover, if the adversary crafts new adversarial samples, the
model has to be retrained again to enhance its robustness. In
our work, we explored the robustness of all considered meth-
ods against this state-of-the-art adversarial attacks, shown
in Table 5. We list the baseline detection accuracy, accuracy
under adversarial attack, accuracy after adversarial training,
and the extra time (Ex-Time) for adversarial training.
Table 5: Comparison of accuracy (%) under adversarial attack
& extra time needed for retraining models (in seconds).

Methods RFC CNN TGRL SEB SEB/RFC SEB/CNN SEB/TGRL
Baseline 75.3 88.2 93.8 99.9 +24.6% +11.7% +6.1%

Adversarial 44.3 33.1 50.6 49.2 +4.9% + 16.1% -1.4%
Retrained 73.3 84.9 95.0 98.0 +24.7% +14.1% +3.0%
Ex-Time 1500 2677 10926 108 13.8x 24.7x 101.1x

The accuracy of all models against these adversarial sam-
ples encounter significant drop, while retraining significantly
improves their performance. SEB’s retraining time is signifi-
cantly faster than the others. For all the other methods, retrain-
ing is equivalent to retrain the entire model. This advantage is
due to the fact that SEB is an adaptive learning framework. In
our framework, the retraining happens by introducing a new

decision tree into the framework which specifically targets the
adversarial samples. The cost for complete retraining is equiv-
alent to only one extra iteration as discussed in Section 3.4.
Therefore, our proposed approach is flexible and adaptive to
handle various obfuscation techniques.

5 Conclusion
Detection of hardware Trojans is an emerging and urgent
need to address semiconductor supply chain vulnerabilities.
While there are promising ML-based techniques, they are not
useful in practice due to their inherent fundamental limita-
tions. In this work, a boosting machine model is enhanced
using Shapely value analysis to build an effective and robust
machine learning model. Features derived by Shapley analy-
sis are used to build the boosting framework. The proposed
method made several important contributions. It explored an
efficient combination of explainable ML technique to provide
a fresh perspective for feature selection for HT detection task.
We also developed the entire framework based on boosting
scheme to drastically reduce both the normal and adversarial
training time. Experimental results demonstrated that our
approach can drastically reduce the test generation time (up
to 5.1x) while it is able to detect a vast majority of the Trojans
(99.9% on average), which is a significant improvement (up to
24.6%) compared to state-of-the-art methods.

References
[1] [n.d.]. ISCAS’89 Sequential Benchmark Circuits. https://filebox.ece.vt.

edu/~mhsiao/iscas89.html.
[2] R. Chakraborty et al. 2009. MERO: A Statistical Approach for Hardware

Trojan Detection. In CHES. 396–410.
[3] Hasegawa et al. 2017. Trojan-feature extraction at gate-level netlists

and its application to hardware-Trojan detection using random forest
classifier. In ISCAS.

[4] Yuanwen Huang et al. 2018. Scalable test generation for Trojan detection
using side channel analysis. IEEE TIFS 13, 11 (2018), 2746–2760.

[5] Roger J Lewis. 2000. An introduction to classification and regression
tree (CART) analysis. In SAEM, Vol. 14.

[6] Yangdi Lyu and Prabhat Mishra. 2020. MaxSense: Side-Channel Sensi-
tivity Maximization for Trojan Detection using Statistical Test Patterns.
ACM TODAES (2020).

[7] Yangdi Lyu and Prabhat Mishra. 2020. Scalable Activation of Rare
Triggers in Hardware Trojans by Repeated Maximal Clique Sampling.
IEEE TCAD (2020).

[8] Nozawa et al. 2021. Generating adversarial examples for hardware-
trojan detection at gate-level netlists. Journal of Information Processing
(2021).

[9] Zhixin Pan et al. 2020. Test Generation using Reinforcement Learning
for Delay-based Side-Channel Analysis. ICCAD.

[10] Zhixin Pan and Prabhat Mishra. 2021. Automated test generation for
hardware trojan detection using reinforcement learning. In ASPDAC.

[11] Alvin Roth. 1988. Shapley value: essays in honor of Lloyd Shapley. CMU.
[12] Salmani et al. 2013. On design vulnerability analysis and trust bench-

marks development. In ICCD.
[13] H. Salmani. 2017. COTD: Reference-Free Hardware Trojan Detection

and Recovery Based on Controllability and Observability in Gate-Level
Netlist. TIFS (2017).

[14] Richa Sharma, Vijaypal Singh Rathor, GK Sharma, and Manisha Pat-
tanaik. 2021. A new hardware Trojan detection technique using deep
convolutional neural network. Integration 79 (2021), 1–11.

https://filebox.ece.vt.edu/~mhsiao/iscas89.html
https://filebox.ece.vt.edu/~mhsiao/iscas89.html

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Related Work for HT Detection
	2.2 Ensemble Boosting
	2.3 Shapley Values

	3 Shapley Ensemble Boosting for Hardware Trojan Detection
	3.1 Data Sampling
	3.2 Model Training
	3.3 Shapley Analysis
	3.4 Weight Adjustment
	3.5 Ensemble Prediction

	4 Experiments
	4.1 Experimental Setup
	4.2 HT Detection Performance
	4.3 Explainability Analysis
	4.4 Efficiency Analysis
	4.5 Robustness Analysis

	5 Conclusion
	References

