
Quantum Data Compression for Efficient Generation of Control Pulses

Daniel Volya and Prabhat Mishra
University of Florida, Gainesville, Florida, USA

ABSTRACT
In order to physically realize a robust quantum gate, a specifi-
cally tailored laser pulse needs to be derived via strategies such
as quantum optimal control. Unfortunately, such strategies
face exponential complexity with quantum system size and be-
come infeasible even for moderate-sized quantum circuits. In
this paper, we propose an automated framework for effective
utilization of these quantum resources. Specifically, this paper
makes three important contributions. First, we utilize an effec-
tive combination of register compression and dimensionality
reduction to reduce the area of a quantum circuit. Next, due
to the properties of an autoencoder, the compressed gates
produced are robust even in the presence of noise. Finally, our
proposed compression reduces the computation time of quan-
tum control. Experimental evaluation using popular quantum
algorithms demonstrates that our proposed approach can en-
able efficient generation of noise-resilient control pulses while
state-of-the-art fails to handle large-scale quantum systems.

1 INTRODUCTION
Quantum technologies offer promising advantages over classi-
cal counterparts in a variety of tasks, including faster computa-
tion, secure communication, and high-precision sensors [1, 2].
However, they depend on quantum resources such as quantum
coherence, which can be challenging to implement in practice
[3, 4]. Due to the scarcity of quantum resources, strategies to
minimize the use of these resources are vital for widespread
adoption of quantum computing.
One promising strategy to optimize the usage of quan-

tum resources is quantum optimal control (QOC). Generally,
quantum computation and algorithms are described in terms
of quantum circuits composed of discrete gates. In order to
implement quantum gates, control pulses, which represent
classical signals, such as specifically tailored laser pulses,
need to be computed to optimize for fidelity and coherence.
QOC techniques, such as GRadient Ascent Pulse Engineer-
ing (GRAPE) [5] uncover optimal pulses for a given system
model and have been employed to robustly implement gates
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Figure 1: An overview of the general framework used to
realize a quantum algorithm on a quantum computer.

and algorithms [6]. However, the time complexity of these
techniques scale exponentially with system size and become
costly even for a couple of qudits.

Quantum compression has been used as a promising strat-
egy to reduce the dimension of quantum gates. Since quantum
gates are reversible, and therefore lossless, compression is
achieved if the set of possible states does not span the full
Hilbert space in the original encoding. Methods of compress-
ing quantum data have been successfully used earlier [7, 8],
but rely on particular assumptions about the properties of
the quantum states. Alternatively, recent strategies propose
the usage of autoencoders – utilizing machine learning to
represent data in a lower dimension. Autoencoders do not
rely on any prior assumptions of the types of quantum states.
Instead of requiring a fixed structure of data, they can learn
the structure based on the given dataset.
Figure 1 shows an overview of realizing a quantum algo-

rithm on a quantum computer. A quantum algorithm, speci-
fied in terms of generic quantum operations, is first compiled
to a lower-level quantum circuit that is tailored to device-
specific constraints such as implementable quantum gates
and gate connectivity. A pulse is computed for each of the
implementable quantum gates, and is then sent to a quantum
device to perform the computation. As shown in Figure 2, com-
putation of control pulses using GRAPE [5] can be infeasible
for larger gates or complex quantum algorithms. Therefore,
state-of-the-art pulse generator (GRAPE) will significantly
constrain the set of implementable quantum gates, which can
lead to sub-optimal usage of quantum resources [9].

In this paper, we propose autoencoder-based compression
to enable pulse exploration for larger quantum gates. The
autoencoder can be trained on a few examples of qudit gates
and subsequently tested with qudits from the same family. We
use a classical machine learning algorithm, gradient descent,
to optimize unitary transformations for compressing quantum
states. This paper makes the following major contributions:

• Enables Hilbert space reduction using a combination of
dimensionality reduction and register compression.

• Generation of training data by utilizing Clifford circuits,
which implicitly contains noise-related information.
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Figure 2: Pulse generation time increases exponentially with
varying size using GPU-based GRAPE implementation, while
pulse generation after compression is beneficial.

• Our proposed quantum compression leads to noise re-
duction via the inherent properties of autoencoders.

• Proposed compression leads to faster pulse generation
for larger quantum gates or sequences of gates.

The remainder of the paper is organized as follows. Sec-
tion 2 surveys related efforts. Section 3 describes our proposed
quantum data compression framework. Section 4 presents the
experimental results. Finally, Section 5 concludes the paper.

2 BACKGROUND AND RELATEDWORK
2.1 Quantum Optimal Control
Qudits, the basic units of quantum computers, are experimen-
tally realized using some underlying engineered technology.
The engineered product, conceptually, exposes an effective
Hamiltonian 𝐻 (𝑡). Commonly, this Hamiltonian can be sepa-
rated into two parts: a time-independent Hamlitonian𝐻𝑑 , and
a set of Hamiltonians 𝐻𝑐 with a controllable pulse 𝑎(𝑡), such
that 𝐻 = 𝐻𝑑 + ∑

𝑖 𝑎𝑖 (𝑡)𝐻𝑐𝑖 . For example, a superconducting
transmon has effectively two control Hamiltonians, which in
the qubit case, can be approximated as the Pauli-matrices 𝜎𝑥
and 𝜎𝑦 . The field of quantum control addresses the underlying
question of what pulses 𝑎(𝑡) to use in order to obtain a desired
time evolution that will implement a given quantum gate.
A common strategy to achieve a desired 𝑈 is to employ

the optimal quantum control technique GRAPE [5]. Given
a system’s parameters 𝐻𝑑 and set 𝐻𝑐 , GRAPE will simulate
Shrödinger’s equation for an initial guess of the discretized
pulses 𝑎𝑖 (𝑡) = 𝑎𝑖 𝑗 , which will result in a unitary operator 𝑈𝑓 .
The error, 𝐹 , between𝑈 and𝑈𝑓 is computed and the gradient
∇𝐹 (𝑎𝑖 𝑗 ) is approximated. Then, an optimizer attempts to fol-
low the gradient and find 𝑎𝑖 𝑗 that minimizes the error 𝐹 . The
computational cost is dependent on the simulation of a quan-
tum system and the optimizer – both of which are dependent
on the dimensions of the Hilbert space. Therefore, lowering
the dimensionality of the Hilbert space will improve the com-
putational cost of optimal quantum control techniques.
2.2 Autoencoders
Autoencoders are special type of neural-network. They are
meant to take input data, compress it into a lower dimension-
ality representation – the bottleneck layer, also known as the
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Figure 3: Example qutrit gate (𝐻3) that can be trivially com-
pressed into a qubit gate (𝐻2).

latent space. Autoencoders then attempt to reconstruct the
original data using only the latent-space representation. The
output is compared directly to the input, meaning labeled
data is unnecessary. Autoencoders have a wide variety of
uses, including sound-generation, outlier detection, and di-
mensionality reduction. It is common to only use half of the
autoencoder after training is complete. The first half is known
as the encoder, and the second half is known as the decoder.

2.3 Related Work
Speeding up quantum optimal control algorithms, especially
on real-time systems, is a growing research area. Methods
such as automatic differentiation, and acceleration by general-
purpose graphical processing units have been employed to
speed upGRAPE calculations [10]. Strategies, such as Chopped
RAndom Basis (CRAB) [11, 12], have been shown to be suc-
cessful in targeting a constrained many-body quantum system
by transforming functional minimization to a multi-variable
function minimization. Alternative strategies, such as quan-
tum control via deep reinforcement learning [13] have been in-
troduced as away to produce pulsesmodel-free and simulation-
free with greater accuracy. Compared to optimal control tech-
niques, the learning basedmethods lack theoretical guarantees
of an optimal solution, and are often limited by the dataset.
The field of quantum data compression aims to optimize

the usage of precious quantum resources, such as the ones in
Noisy-Intermediate Scale Quantum (NISQ) computers. Meth-
ods based on genetic algorithms [14], or autoencoders for
compression of qudit dimension [15] and gate size [16] have
been experimentally and theoretically proposed as effective
strategies for compression. Strategies such as parameterized
quantum circuits [17] seek to limit the types of quantum gates
but add a set of parameters. Our approach generalizes qubits
to arbitrary quantum dimension (qudits) and works on any
register size. Our approach is the first attempt in utilizing
quantum compression of quantum registers.

3 QUANTUM DATA COMPRESSION
To mitigate the cost of quantum pulse generation, while main-
taining the advantages of optimizing quantum resources, we
propose a strategy which seeks to compress quantum gates –
enabling faster pulse generation on a reduced space. Figure 4
visualizes our strategy that consists of three important steps.
First, we transform the quantum circuit into an algebraic for-
mulation. Next, we compress the design using dimensionality



reduction as well as register compression. Finally, the con-
trol pulses are generated for the compressed gates. A major
contribution of our work is to develop efficient quantum data
compression. While dimensionality reduction transforms qu-
dits to qunits, register compression reduces the number of
qunits required to represent the functionality. This presents
interesting choices to figure out which of the following is
most beneficial: (i) dimensionality reduction only, (ii) register
compression only, (iii) dimenstionality reduction followed by
register compression, and (iv) register compression followed
by dimensionality reduction.

Figure 4: An overview of our proposed strategy of compress-
ing quantum gates before pulse generation. It consists of
three major tasks: algebraic representation, dimensionality
reduction, and register compression.

In this section, we outline the representation of a quantum
gate used as inputs and outputs for an autoencoder. We then
describe the procedure for quantum register compression and
gate dimensionality compression.

3.1 Representation of Quantum Circuits
We use the coordinate representation of a quantum gate in
the basis spanned by the generalized Gell-Mann matrices. Par-
ticularly, a quantum operation represented as a 𝑑 × 𝑑 unitary
matrix is expressed using 𝑑2 − 1 coordinates of the 𝑠𝑢 (𝑛) Lie
algebra basis. Doing so comes with a few conveniences and
advantages over working directly with unitary operators: the
coordinates 𝐿𝑖 are strictly real by choosing the appropriate
𝑠𝑢 (𝑛) basis, the algebraic properties of these coordinates are
well-defined, and the non-linear optimizer for pulse-finding
can readily ignore the global phase. To represent a quantum
gate 𝑈 , we first map it to the special unitary matrix 𝑆 . We
then exclusively work with the Lie algebra representation of
𝑆 , namely:

𝑠 = log 𝑆 (1)
Example 1: Consider the matrix representations of 𝐻3 as
shown in Figure 3. Through Equation 1, the matrix 𝐻3 is
represented in the Lie algebra as:

𝑠3 =
©­«
−0.587𝑖 −1.111𝑖 0
−1.111𝑖 1.634𝑖 0

0 0 −1.047𝑖
ª®¬

As a coordinate in the 𝑠𝑢 (3) basis spanned by the generalized
Gell-mann matrices, 𝑠3 is

®𝐿3 =
[
−1.111 0 0 −1.111 0.907 0 0 0

]𝑇
.

Similarly, 𝑠2 =
(
−1.111𝑖 −1.111𝑖
−1.111𝑖 1.111𝑖

)
with the coordinates ®𝐿2 =[

−1.111 0 −1.111
]𝑇 . ■

The layout of our autoencoder is as follows. The input layer
consists of 𝑑2 − 1 nodes, representing a quantum gate in the
𝑠𝑢 (𝑑) Lie algebra. The input layer is then fully connected
to 𝑛2 nodes, representing the 𝑠𝑢 (𝑛) Lie algebra using 𝑛2 −
1 nodes, and an extra 1-node that holds information about
the compression between 𝑠𝑢 (𝑑) ↔ 𝑠𝑢 (𝑛). The cost function
includes the mean-squared error (MSE) between the output
layer and the original real vector of the gate. Additionally, an
optional cost function is included to ensure that the latent
space of the autoencoder forms understandable vectors in
the compressed 𝑠𝑢 (𝑛) space. Namely, we may hand-compute
the 𝑠𝑢 (𝑛) compressed representation and include the MSE
between the latent-space and the hand-computed result. This
allows for a quick understanding of the encoded space.

3.2 Qudit Pauli Groups and Clifford groups
A circuit that consists of only Clifford gates can be perfectly
and efficiently simulated by a classical computer as given by
the Gottesman-Knill theorem. In this section we summarize
the notation for qudit Clifford groups.

The Pauli group for qubits is defined via the Pauli operators
and identity: {𝐼 , 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧}. To generalize the Pauli group to
qudits, we need to define clock and shift operators

𝑋 =

𝑑−1∑︁
𝑗=0

| 𝑗⟩ ⟨ 𝑗 + 1| , 𝑍 =

𝑑−1∑︁
𝑗=0

𝜔 𝑗 | 𝑗⟩ ⟨ 𝑗 | (2)

where𝜔 = 𝑒2𝜋𝑖/𝑑 is the root of unity. The operators generalize
𝜎𝑥 and 𝜎𝑧 in the qubit case, and𝑋𝑑 = 𝑍𝑑 = 𝐼 . For 𝑛-qudits, the
operation acting on the 𝑖-th qubit is denoted with a subscript.
A Pauli product is defined as

𝜔𝜆𝑋 ®𝑥𝑍 ®𝑧 = 𝜔𝜆𝑋
𝑥0
0 𝑍

𝑧0
0 ⊗ 𝑋

𝑥1
1 𝑍

𝑧1
1 ⊗ · · · ⊗ 𝑋𝑥𝑛

𝑛 𝑍𝑧𝑛
𝑛 (3)

where 𝜆 is part of R𝑑 and ®𝑥 and ®𝑧 are tuples of length 𝑛 in Z𝑛
𝑑

– each element an integer mod 𝑑 .
For a fixed 𝑛, the Pauli group P𝑛 is defined by all possible

Pauli products. For example, the Pauli group of a single qutrit
(𝑛 = 1, 𝑑 = 3) is given by 𝜔𝜆𝑋 𝑖𝑍 𝑗 = 𝜔𝜆 [𝐼 , 𝑍, 𝑍𝑍,𝑋𝑍,𝑋𝑍𝑍,
𝑋𝑋𝑍,𝑋𝑋𝑍𝑍 ] for 𝑖, 𝑗 ∈ R3, and will have a total of 21 elements
due to the possible options for 𝜆. A Clifford operation 𝐶 acts
on an element 𝑝1 ∈ P𝑛 such that under conjugation it returns
another member of the Pauli group: 𝐶𝑝1𝐶† = 𝑝2. All Pauli
products are Clifford operations. A Clifford gate can be viewed
by a tableau of its action on the generators 𝑋 and 𝑍 [18].

3.3 Dimensionality Reduction
Qudit dimensionality compression seeks to take a𝑑-dimensional
qudit and compress it to a 𝑛-dimensional qunit where 𝑑 > 𝑛.
Doing so successfully yields advantages in two ways. First,
as discussed in Section 2, the physical implementation of a
quantum system generally yields a Hilbert space that is larger
than desired. Being able to compress the physical Hilbert
space closer to the desired size would decrease the computa-
tional cost for calculating control signals. Second, a quantum



Figure 5: Example autoencoder layout for compressing a
qutrit to a qubit. The input and output layers consist of 8
nodes, representing the qutrit gate in the 𝑠𝑢 (3) algebra. The
latent space represents the encoding as a qubit gate in the
𝑠𝑢 (2) algebra, plus an extra component used for compression.

algorithm may be originally described in a qudit space, and
without compression, may over-utilize the quantum resources.
Example 2: Consider an example where a quantum gate 𝐻3
operates on a qutrit, as shown in Figure 3. 𝐻3 only operates
on the |0⟩ and |1⟩ states, while leaving |2⟩ constant. Namely, a
non-trivial operation occurs only in a qubit subspace. Hence,
we can compress without any loss the𝐻3 qutrit gate to a qubit
gate𝐻2. It should be noted, that in general, the subspaces may
not be immediately apparent – an encoding may be formed
by a superposition of states |0⟩, |1⟩, and |2⟩ and compressed
to |0⟩, |1⟩. Moreover, noise introduces additional ambiguity:
for example, 𝐻3 may operate non-trivially on |2⟩ in the pres-
ence of noise. Figure 5 shows the layout of an autoencoder
to automatically compress the qutrit gate to a qubit gate. Au-
toencoders can successfully compress arbitrary gates, even in
the presence of noise. ■

3.4 Register Compression
Qudit register compression aims to reduce the number of
qudits required for a quantum operation. Namely, given a
quantum gate𝑈 that operates on 𝑛-qudits, qudit register com-
pression seeks to create a gate𝑈 ′ that operates on𝑚-qudits,
where𝑚 < 𝑛. Successful compression allows for a quantum
algorithm to use fewer qudits, enabling faster pulse genera-
tion. Additionally, this can open doors to alternative usage of
the spare qudits, e.g. for quantum error correction.
Example 3: Consider two qutrits operated on by a 32 × 32

quantum gate. Namely, the gate is represented as a vector ®𝐿
in the 𝑠𝑢 (32)-algebra, containing (32)2 − 1 elements. To only
use one qutrit (to invoke register compression) the quantum
gate must be represented as a 3 × 3 quantum gate – a vector
in 𝑠𝑢 (3)-algebra. In essence, register compression is a special
case of dimensionality reduction where the encoding size is a
lower power of the original size. ■

3.5 Clifford-based Model Training
Generation of a suitable training dataset is a non-trivial prob-
lem. On the one hand, a simulation of a quantum circuit needs
to be performed to acquire the true noise-less result. On the

other hand, quantum circuits composed of many qubits with
significant circuit depth are infeasible to simulate on a classi-
cal computer. Our approach is to generate a training dataset
by using quantum circuits that are largely composed of Clif-
ford gates, and hence are efficient to simulate on a classical
computer. A straight-forward approach is to choose a set of
random state {|𝜓𝑖⟩}, generated by appropriate quantum cir-
cuits [19]. A subset of gates in the circuit are replaced with
Clifford gates that are close in distance to the original gates.
The circuits are then efficiently simulated on a classical com-
puter to generate a noiseless dataset[20]. In additional, the
same circuits are executed on a quantum computer to generate
a noisy dataset. As a result, the dataset 𝐿 = {𝑃exact

𝑖 , 𝑃
noisy
𝑖

} rep-
resents the exact result from simulation in conjunction with
the actual results from the quantum computer. The dataset is
used to train the autoencoder where the ideal gate/circuit is
given as input and the final noisy result (after tomography) is
used to calculate the error of the autoencoder during training.

4 EXPERIMENTS
This section is organized as follows. First, we describe the
utilized quantum algorithms (benchmarks) and evaluation
framework (superconducting Transmon in IBMQ). Next, we
present our experimental results in terms of improvement in
area and computation (pulse generation) time.
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Figure 6: QFT circuits for (a) qutrits and (b) qubits.

4.1 Quantum Algorithms
We use the quantum Fourier transform and the quantum vari-
ational eigensolver as benchmarks for our approach. These
two algorithms are fundamental, and serve as subroutines for
a variety of other quantum algorithms.

4.1.1 Quantum Fourier Transform. The quantum Fourier trans-
form (QFT) algorithm is at the heart of many quantum al-
gorithms including Quantum Phase Estimation and Shor’s
Algorithm. The net result of QFT maps the computational
basis {|0⟩ , |1⟩ , . . . , |𝑛 − 1⟩} to

𝑄𝐹𝑇 |𝑥⟩ → 1
√
𝑑𝑛

𝑑𝑛−1∑︁
𝑘=0

𝑒2𝜋𝑖𝑥𝑘/𝑑
𝑛 |𝑘⟩ (4)
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(b) (VQE-OPT) An optimized variational circuit to prepare a state
|𝜓 (𝜃 )⟩ for a constrained class of molecular simulation.

Figure 7: Parametrized quantum circuits for hydrogen-
hydrogen VQE algorithm.

where 𝑑 is the dimension of qudits, and 𝑛 is the number of
qudits. Here, the integer 𝑥 is expanded in base-𝑑 .

Example 4: Let 𝑥 = 8. Then with qutrits, |𝑥⟩ is written as
|22⟩, while with qubits |𝑥⟩ is written as |1000⟩. In general, the
differences in the number of qudits required scales as(⌊

1
log 2

⌋
−

⌊
1

log 3

⌋)
⌊log(𝑥)⌋ ≈ 𝑂 (log𝑥) (5)

Figure 6 shows the quantum circuits to perform QFT using
qutrits and qubits for 0 ≤ 𝑥 ≤ 8. A guaranteed lossless com-
pression can be achieved by constraining the possible ranges
of 𝑥 . For example, 0 ≤ 𝑥 ≤ 7 would allow Figure 6b to only
require 3 qubits rather than 4. ■

4.1.2 VariationalQuantum Eigensolver. TheVariational Quan-
tum Eigensolver (VQE) is a heuristic-driven algorithm target-
ing NISQ devices. The core task is to solve for the ground state
of any molecular Hamiltonian 𝐻̂ by preparing a parametrized
wave function ansatz |𝜓 (𝜃 )⟩ on a quantum computer and
adopt classical optimization methods to adjust the parameters
𝜃 to minimize the expectation value ⟨𝜓 (𝜃 ) | 𝐻̂ |𝜓 (𝜃 )⟩.

Example 5: Let the Hamiltonian 𝐻̂ represent two hydrogen
atoms with a given interatomic distance in the fermion basis.
The quantum circuit needs to generate a form of |𝜓 (𝜃 )⟩ that
include the minimal solution for ⟨𝜓 (𝜃 ) | 𝐻̂ |𝜓 (𝜃 )⟩. One method
is to represent states in the Hartree-Fock basis, resulting in a
circuit that generates full-entanglement of 4-qubits, as shown
in Figure 7a. An optimized version is shown in Figure 7b. ■

4.2 Superconducting Transmon
In this section, we first provide a brief overview of model-
ing transmon qubits. Next, we fit a model for a supercon-
ducting transmon. The drift and control Hamiltonians from

the fitted model are used for optimal quantum control. A
transmon has energy levels 𝐸0, 𝐸1, . . . , 𝐸𝑁 corresponding to
states |0⟩ , |1⟩ , . . . , |𝐸𝑁 ⟩. More importantly, transition ener-
gies can be directly obtained from experiments and are gen-
erally expressed in terms of frequency (proportional to 2𝜋 ):
𝑤01 ∝ 𝐸1−𝐸0; 𝑤12 ∝ 𝐸2−𝐸1; and so on. By knowing the transi-
tion frequencies, the parameters of the transmon – the control
and drift Hamiltonians – can be sufficiently approximated.
The accuracy of the approximated Hamiltonians depends on
the number of transition frequencies used in the approxima-
tion – the more the better.
We find the first three transition frequencies, 𝜔01, 𝜔12, 𝜔23

of a superconducting transmon via Rabi experiments and
Ramsey experiments. The measured transitions are then used
to fit 𝐸𝐶 , 𝐸 𝐽 and 𝑛𝑔 of a transmon Hamiltonian:

𝐻 = 4𝐸𝐶 (𝑛̂ − 𝑛𝑔)2 − 𝐸 𝐽 cos𝜙. (6)
Due to the system being a transmon, 𝑛𝑔 is close to 0. An

initial approximation is made by using the first two transitions
frequencies, namely via

𝐸𝐶 = 𝜔01 − 𝜔12 (7)

𝜔01 =
√︁
8𝐸 𝐽 𝐸𝐶 − 𝐸𝐶 ⇒ 𝐸 𝐽 =

(𝜔01 + 𝐸𝐶 )2
8𝐸𝐶

(8)
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Figure 8: Error landscape with respect to 𝐸𝐶 and 𝐸 𝐽

The initial approximation is then improved by optimizing
for the eigenvalues with respect to parameters 𝐸𝐶 and 𝐸 𝐽 as
shown in Figure 8.
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Figure 9: Autoencoder training loss for qutrit to qubit com-
pression. Loss of zero indicates lossless compression.



4.3 Improvement in Area
The area is computed as a product of (a) the total number
of gates, (b) the size of the quantum register, and (c) the di-
mensionality of the qudits. In our case, the QFT and VQE
algorithms use qudits with dimensionality of either two or
three. Figure 9 shows the loss function of the autoencoder,
where each iteration starts with a random state, then takes
the measurement results from a quantum gate acting on the
random state. In other words, the loss function goes to zero,
indicating that the quantum gate is compressible.The total im-
provement factor of the area, by using our approach, is shown
in Figure 10. The compression ratio is computed between
the original and compressed version of the quantum circuit.
Compression was not possible for the optimized version of
VQE (VQE-opt) due to circuit already being hand-optimized
for Hydrogen-Hydrogen molecular simulation. Our proposed
compression provided more than 2.5 times reduction in area
for the original VQE.
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Figure 10: Improvement in area (number of gates and qudit
dimension) for varying circuits. Our approch can lead to sig-
nificant area reduction (up to 2.5 times for VQE).

4.4 Improvement in Pulse Generation Time
The computation time for pulse generation and compression
is taken for each circuit and compared against the uncom-
pressed version. Figure 11 shows the improvement factor in
time, taken as a ratio between original and compressed ver-
sions. Since the measurements are based on realistic and fixed
gates, the improvements are weaker than those shown in Fig-
ure 2 which used random gates. In this case, the pulses for
each fixed gate are computed separately, which yields a linear
scaling in total time. The largest improvement was obtained
by compressing qutrits into qubits – which resulted in a factor
of seven improvement in time, as shown for QFT-3.

5 CONCLUSION
Quantum optimal control is an effective strategy to optimize
the usage of quantum resources. Specifically for NISQ systems,
it is beneficial to control quantum computers at a continuous
pulse level, rather than imposing the constraint of a discrete
set of operators. Unfortunately, methods in quantum optimal
control scale exponentially with the quantum state-space size.
We have proposed a strategy to compress quantum data via
a classical autoencoder, effectively reducing the state-space,
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Figure 11: Improvement in pulse computation time for dif-
ferent circuits (up to seven times for QFT-3).
which allows for faster pulse generation in the encoded space.
The compression results in significant reduction in both the di-
mensionality of qudits and the number of qudits in a quantum
register. This work opens a pathway to bringing the benefits
of quantum optimal control techniques to real-time devices
as well as larger quantum systems.
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