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ABSTRACT

Due to globalized semiconductor supply chain, there is an increas-

ing risk of exposing System-on-Chip (SoC) designs to malicious

implants, popularly known as hardware Trojans. Unfortunately, tra-

ditional simulation-based validation using millions of test vectors is

unsuitable for detecting stealthy Trojans with extremely rare trigger

conditions due to exponential input space complexity of modern

SoCs. There is a critical need to develop efficient Trojan detection

techniques to ensure trustworthy SoCs. While there are promising

test generation approaches, they have serious limitations in terms of

scalability and detection accuracy. In this paper, we propose a novel

logic testing approach for Trojan detection using an effective combi-

nation of testability analysis and reinforcement learning. Specifically,

this paper makes three important contributions. 1) Unlike existing

approaches, we utilize both controllability and observability analysis

along with rareness of signals to significantly improve the trigger

coverage. 2) Utilization of reinforcement learning considerably re-

duces the test generation time without sacrificing the test quality. 3)

Experimental results demonstrate that our approach can drastically

improve both trigger coverage (14.5% on average) and test generation

time (6.5 times on average) compared to state-of-the-art techniques.
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1 INTRODUCTION

A vast majority of semiconductor companies rely on global supply

chain to reduce design cost and meet time-to-market deadlines. The

benefit of globalization comes with the cost of security concerns.

For example, a typical automotive System-on-Chip (SoC) consists of

about 100 Intellectual Property (IP) cores, some of these cores may

come from potentially untrusted third-party suppliers. An attacker

may be able to introduce malicious implants in one of these third-

party IPs. Hardware Trojan (HT) is a malicious modification of the

target integrated circuit (IC) with two critical parts, trigger and pay-

load. When the trigger is activated, the payload enables the malicious

activity. For example in Figure 1, when the output of the trigger logic

is true, the output of the payload XOR gate will invert the expected

output. The trigger is typically created using a combination of rare
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events (such as rare signals or rare transitions) to stay hidden dur-

ing normal execution. The payload represents the malicious impact

HT will inflict to the target design, commonly resulting in informa-

tion leakage or erroneous execution. Due to stealthy nature of these

Trojans, it is infeasible to detect them using traditional functional

validation methods. It is vital to detect HTs to enable trustworthy

computing using modern SoCs.

Figure 1: An example hardware Trojan constructed by a trig-

ger logic (purple gates). Once the trigger condition is satisfied,

the payload (yellowXORgate)will invert the expected output.

The gates of the original design are shown in green color.

There are many promising research efforts for Trojan detection.

These approaches can be broadly classified into two categories: side-

channel analysis and simulation-based validation (logic testing). Side-

channel analysis focuses on the difference in side-channel signatures

(such as power, path delay, etc.) between the expected (golden specifi-

cation) and actual (Trojan-inserted implementation) values [6, 10, 14].

A major drawback in side-channel analysis is that it is difficult to

detect the negligible side-channel difference caused by a tiny Trojan

(e.g., few gates in a multi-million gate design) since the difference

can easily hide in process variation and environmental noise. In

contrast, logic testing is robust against process variation and noise

margins [3]. However, it is a fundamental challenge to activate an

extremely rare trigger without trying all possible input sequences.

Due to exponential input space complexity, traditional logic testing

is not suitable for Trojan detection in large designs. Existing logic

testing based Trojan detection approaches have two fundamental

limitations: high computation complexity (long test generation time)

and low Trojan detection accuracy (low trigger coverage).

In this paper, we propose an efficient logic testing approach for HT

detection that addresses the above two challenges. (1) Existing logic

testing approaches suffer from high computation complexity due to

the fact that they require continuously flipping bits [5] of test vec-

tors in an ad-hoc manner to maximize the number of triggered rare

activities. In contrast, we utilize a stochastic reinforcement learning

framework to enable fast and automated generation of effective tests.

(2) Existing approaches provide poor trigger coverage since they

only focus on rare signals. Our approach considers both rareness

and the testability of signals using a combination of Sandia Con-

trollability/Observability Analysis Program (SCOAP) measurement

and dynamic simulation. It is expected to significantly improve the

coverage of suspicious nodes with high stability. Specifically, this

paper makes the following major contributions:
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• Unlike previous works that focuses on rare signals, our ap-

proach also exploits the controllability and observability of

signals. As a result, the generated test patterns can maximize

the trigger coverage in suspicious regions.

• We utilize reinforcement learning to find the profitable test

patterns to drastically reduce the test generation complexity.

• Extensive evaluation shows significant improvement in both

trigger coverage (14.5% on average) and test generation time

(6.45x on average) compared to state-of-the-art approaches.

The paper is organized as follows. Section 2 surveys related efforts

in hardware Trojan detection and reinforcement learning. Section 3

describes our test generation framework. Section 4 presents experi-

mental results. Finally, Section 5 concludes the paper.

2 BACKGROUND AND RELATEDWORK

2.1 Logic Testing for Hardware Trojan Detection

The basic idea of logic testing for Trojan detection is to generate

test patterns that are likely to activate the trigger conditions. In

early days, random test generation was widely explored in industry

due to its simplicity. However, there is no guarantee for activating

stealthy Trojans using millions of random or constrained-random

tests. MERO [5] proposed a statistical test generation scheme, which

adopts the N -detect idea [15] to achieve better coverage. The heuris-

tic behind is that if all rare signals are activated for at least 𝑁 times, it
is likely to activate the rare trigger conditions when 𝑁 is sufficiently
large. The left side of Figure 2 shows an overview of MERO. It starts

with random test generation followed by a brute-force process of

flipping bits to increase the number of rare values being satisfied. It

provides promising result for small benchmarks, but it introduces

long execution time and scalability concerns, making it unsuitable

for large benchmarks [9].

To address these issues, Lyu et al. proposed TARMAC [9, 11] as

shown on the right side of Figure 2. Like MERO, TARMAC also starts

with random simulation to identify rare signals in the netlist. Next,

it maps the design to a satisfiability graph, and converts the problem

of satisfiability into a clique cover problem, where the authors use

an SMT solver [12] to generate test patterns for each maximal clique.

Although TARMAC performs significantly better than MERO in

evaluated benchmarks, its performance is very unstable. This is due

to the fact that TARMAC relies on random clique sampling, making

its performance dependent on the quality of sampled cliques. In

summary, the existing approaches have inherent limitations in terms

of Trojan detection accuracy as well as test generation complexity.

2.2 Reinforcement Learning

Reinforcement learning [16] has earned its reputation as an effi-

cient tool solving problems with large complex searching space. [8].

Unlike traditional supervised learning schemes, training process of

reinforcement learning is similar to the nature of human learning.

Basically, reinforcement learning works in an adaptive way as shown

in Figure 3. There are five core components in reinforcement learn-

ing: Agent, Action, Environment, State and Reward. Reinforcement

learning starts with the interaction between agent and environment.

At each step, agent utilizes its inner strategy to decide the action to

take, and the environment reacts to this action to update the current

state, which accordingly provides reward value as feedback. By giv-

ing positive reward for beneficial actions and penalty for inferior

choices, it allows the machine to distinguish the merits of certain ac-

tion. Moreover, the agent’s strategy gets updated after receiving the

Figure 2: Overview of state-of-the-art logic testing tech-

niques: MERO [5] and TARMAC [9].

feedback, and tries to maximize possible reward next time. Through

continuous trials and rewards, the system gradually adapts itself to

make the most beneficial decisions, which quickly leads to a desirable

solution.

Figure 3: Reinforcement learning consists of five important

components: agent, action, environment, state and reward.

There are two key obstacles in directly applying this naive frame-

work in test generation for Trojan detection.

(1) Reward Function: Explicitly setting up proper reward for ac-

tions in test generation is difficult. For example, just counting

the number of activated rare nodes is not a good metric to

assign reward because an attacker may take multiple dimen-

sions (such as rareness, controllability, observability, etc.) into

account while designing a trigger condition.

(2) Action Space: For a given 𝑛-bit test pattern, there are 2𝑛 −
1 possible ways to produce variations. It is impractical to

meet both time and space requirement for dealing with such

exponential action space.

In our proposed approach, we address these challenges and provide

a fast and efficient learning algorithm, as discussed in Section 3.5.

3 TGRL: TEST GENERATION USING
REINFORCEMENT LEARNING

3.1 Motivation

In order to motivate the need for our proposed work on Test Gen-

eration using Reinforcement Learning (TGRL), let us take a closer
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look at prior works in logic testing based Trojan detection [5, 9, 13].

There are two major problems that affect the performance of existing

efforts: rareness heuristic and test generation complexity.

Weakness of Rareness Heuristic: Existing methods rely on

rareness heuristic for activating HT triggers. However, in [17], the

author rigorously discussed the inconsistency between rare nodes

and trigger nodes. According to their experimental evaluation, rare

nodes are not necessarily trigger nodes, and vice versa. Reliance

on rareness hurts the genuine nodes with rare attribute (e.g., low

switching activity). Moreover, a smart implementation of HT can ex-

ploit the mixture of both rare nodes and genuine (non-rare) nodes to

obfuscate Trojan detection. In our work, we utilize SCOAP testability

measurement to address this issue (Section 3.4).

Test Generation Complexity: Another major drawback of ex-

isting approaches is high computation complexity. Existing efforts

ignores the interaction between intermediate test vectors and circuit

that typically provides useful feedback. For example, if a newly gen-

erated test vector significantly decreases the number of triggered

rare nodes, then the current parameters of the test generation algo-

rithm needs to get adjusted to avoid wasted effort (time). While this

intuition is likely to help in guiding the test generation process, it is

ignored by both MERO and TARMAC. MERO generates new test pat-

terns by blindly flipping bits in a brute-force manner using random

strategy, and TARMAC performs random sampling of cliques with-

out taking the feedback into consideration. In [13], the authors also

observed this problem and proposed a genetic algorithm [4] based

approach. However, their evaluation shows that they require even

longer test generation time. This is due to the combined effects of

time-consuming training and slow convergence of genetic algorithm

in the later stages of evolution.

Based on the discussion above, we consider an ideal test generation

algorithm should satisfy these two crucial requirements to address

the presented challenges. Our proposed approach effectively fulfils

these requirements as outlined in the next section.

• Test Effectiveness: Exploiting not only the rareness, but also

the testability of signals to improve trigger coverage.

• Test Generation Efficiency: Efficiently making use of feed-

back in intermediate steps to save test generation time.

Figure 4: Overview of our proposed test generation frame-

work that consists of three major activities: identification of

rare nodes, testability analysis, and reinforcement learning.

3.2 TGRL Overview

Figure 4 shows an overview of our proposed test generation scheme

using reinforcement learning (TGRL) that satisfies the two require-

ments outlined in Section 3.1. For a given circuit design, we first apply

a combination of static testability analysis and dynamic simulation,

where the simulation provides us with information of rare nodes

(Section 3.3) and testability analysis computes SCOAP testability

parameters (Section 3.4) of each node in the circuit. Next, these inter-

mediate results are fed into the machine learning model as primary

inputs. We utilize reinforcement learning (RL) as the learning model

due to its outstanding potential in efficiently solving problems with

large and complex solution space [8]. The reinforcement learning

model is trained with a stochastic learning scheme (Section 3.5) to

generate test vectors, and it continuously improves itself to cover as

many suspicious nodes as possible. After sufficient iterations of train-

ing, the trained RL model is utilized for automatic test generation. It

starts with initial input patterns, and continuously generates a set of

test patterns until we get the required number of test patterns.

3.3 Identification of Rare Nodes

Like existing approaches, we utilize dynamic simulation of the bench-

mark to identify rare nodes. First, the design needs to be simulated

using reasonable number of random or constrained-random test

patterns. Next, the trace needs to be analyzed to determine how

many times each node (signal) is assigned a value ‘0’ or ‘1’ during

the simulation. Finally, we need to select the signals (with specific

values) as rare nodes that are below a specific threshold. For example,

if the output of the NOR gate in Figure 1 was ‘0’ 96% of the time (i.e.

‘1’ with 4% of the time) during simulation and threshold is 5%, the

output of the NOR gate with value ‘1’ will be marked as a rare node.

A threshold is considered reasonable if the trigger constructed by the

respective rare nodes cannot be covered by traditional simulation

based validation using millions of random tests. The above process

is described in Algorithm1.

Algorithm 1: Identification of Rare Nodes

Input :Design(𝐷), threshold 𝜌 , number of epochs 𝑘
Output :Rare nodes set 𝑅𝑁

1 repeat

2 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑖𝑚(𝐷)

3 for each 𝑠 ∈ 𝐷 do

4 if 𝑠 .𝑣𝑎𝑙 = 1 then 𝑠 .𝑐𝑛𝑡1 = 𝑠 .𝑐𝑛𝑡1 + 1

5 else 𝑠 .𝑐𝑛𝑡0 = 𝑠 .𝑐𝑛𝑡0 + 1

6 𝑖 = 𝑖 + 1

7 until 𝑖 < 𝑘 ;

8 for each 𝑠 ∈ 𝐷 do

9 if 𝑚𝑖𝑛 {𝑠 .𝑐𝑛𝑡1, 𝑠 .𝑐𝑛𝑡0} ≤ 𝜌𝑘 then
10 𝑅𝑁 = 𝑅𝑁 ∪ {𝑠}

3.4 Testability Analysis

According to Section 3.1, while majority of existing techniques

mainly consider rareness to evaluate suspicious signals, it remains

the responsibility of the defender to come up with a more com-

prehensive measurement. In our approach, we exploit Sandia Con-

trollability/Observability Analysis Program (SCOAP), which takes

both controllability and observability attributes of signals into con-

sideration. In essence, controllability indicates the amount of effort

required for setting a signal to a specific value, while observability

weighs up the difficulty of propagating the target signal towards

observation points.

The testability measurement naturally fits the demand of HT de-

tection from a security perspective. Clearly, signals with low control-

lability are more likely to be chosen as trigger signals. Because low

controllability guarantees the difficulty of switching these signals

with a limited number of test patterns. Similarly, targeting signals

with low observability as payload are favorable for attackers, since

it coincides with HT’s clandestine property, avoids them from fre-

quently generating observable impact on design outputs.

The SCOAP method quantifies the controllability and observabil-

ity of each signal in the circuit with three numerical values.
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• CC0: Combinational 0-controllability, the number of signals

must be manipulated to set ‘0’ value for target.

• CC1: Combinational 1-controllability, the number of signals

must be manipulated to set ‘1’ value for target

• CO: Combinational observability, the number of signals must

be manipulated to observe target value at primary outputs.

The SCOAP computation can be performed in a recursive manner.

First, the boundary conditions are the primary inputs (PI) and pri-

mary outputs (PO), where

𝐶𝐶0(𝑃𝐼 ) = 𝐶𝐶1(𝑃𝐼 ) = 1

𝐶𝑂 (𝑃𝑂) = 0

This is straightforward, since only one manipulation is required for

controlling primary input (itself), while no extra operation needed

for observing primary output. Next, the circuit is converted into a

directed acyclic graph (DAG) and further levelized by topological

sorting. For each gate, the output controllability is determined by

controllability of its inputs, while the input observability is deter-

mined by observability of output and all the other input signals.

Figure 5 shows the computation formula for three fundamental logic

gates. Consider the 𝐶𝐶1 measurement of AND gate as an example,
in order to control the output signal 𝑐 as ‘1’, both of its input signals
𝑎 and 𝑏 should be manipulated as ‘1’ at the same time. Therefore, we
have 𝐶𝐶1(𝑐) = 𝐶𝐶1(𝑎) +𝐶𝐶1(𝑏) + 1, where the ‘+1’ is for counting
the level depth. It is worth noting that since the controallability pa-

rameters of inputs are necessary for computing that of the output

signal, the SCOAP procedure starts from calculating controllability

values for all signals in a direction from PI toward PO. Afterwards,

signals’ observability are measured in the reverse direction, which is

described in Algorithm 2.

Figure 5: Formula of SCOAP testability measurement for

three fundamental logic gates.

Algorithm 2: Testability Analysis (getSCOAP)

Input :Design(𝐷)
Output :SCOAP Parameters of all nodes in 𝐷

1 Transfer design into 𝐷𝐴𝐺 : 𝐺 = 𝐷𝐴𝐺 (𝐷)

2 Topological Sort: 𝐺∗ = 𝑡𝑜𝑝𝑜 (𝐺, 𝑃𝐼 → 𝑃𝑂)

3 𝐶𝐶0(𝑃𝐼 ) = 𝐶𝐶1(𝑃𝐼 ) = 1,𝐶𝑂 (𝑃𝑂) = 0
4 for each gate 𝑔 ∈ 𝐺∗ do
5 𝑔.𝑜𝑢𝑡 .𝑆𝐶𝑂𝐴𝑃 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝐶 (𝑔.𝑖𝑛.𝑆𝐶𝑂𝐴𝑃, 𝑡𝑦𝑝𝑒 (𝑔))

6 𝐺∗ = 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (𝐺∗)

7 for each gate 𝑔 ∈ 𝐺∗ do
8 𝑔.𝑖𝑛.𝑆𝐶𝑂𝐴𝑃 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑂 (𝑔.𝑜𝑢𝑡 .𝑆𝐶𝑂𝐴𝑃, 𝑡𝑦𝑝𝑒 (𝑔))

The task of SCOAP testability analysis can be performed in par-

allel with identification of rare signals in the circuit. The computed

attributes (SCOAP parameters, and rare signal values) will be fed into

an reinforcement learning model to fulfill automatic test generation

as discussed in the next section.

3.5 Reinforcement Learning

Based on the workflow and challenges for reinforcement learning as

discussed in Section 2.2, we present our learning paradigm by listing

the mapping from objects in test generation task onto the five crucial

components of reinforcement learning.

Agent: Agent usually refers to the object interacting with the

environment. In our test generation problem, it is chosen as the

current test vector under processing and we denote it as 𝑡 .
Environment: Circuit design is mapped into environment, which

receives the input test vector to produce meaningful results. We

denote it as 𝐷 .
State: State refers to information presented by the environment

that can be perceived by the user, such as conditions and parameters.

We map the SCOAP parameters and rare signal values of the entire

circuit as state. They are encoded by two functions 𝑟𝑣 and 𝑠𝑐𝑜𝑎𝑝 ,
where 𝑟𝑣 returns the rare value for a specific signal, and 𝑠𝑐𝑜𝑎𝑝 is
defined as follows.

𝑠𝑐𝑜𝑎𝑝 (𝑠) = | < 𝐶𝑂 (𝑠),𝐶𝐶 (𝑟𝑣 (𝑠)) > |

For a given signal 𝑠 ,𝐶𝑂 (𝑠) is the combinational observability of s, and
𝐶𝐶 (𝑟𝑣 (𝑠)) is the combinational controlability corresponding to the
rare value of 𝑠 . We are utilizing the 𝐿− 1 norm of SCOAP parameters
to measure the synthesized testability of signal 𝑠 . The state records
the basic information of the interaction between current test vector

and circuit, which can be further utilized in reward computation.

Action: Action space consists of all possible operations that make

changes to the system. For test generation problem, a natural choice

is the total set of possible bit flipping operations. However, as men-

tioned in Section 2.2, in that case the action space (size) for a vector

o length 𝑛 is 2𝑛 − 1, which is impractical for encoding and manipu-
lation. We apply a stochastic approach to address this challenge as

described in Figure 6. In our approach, for each bit in the current test

vector, a probabilistic selection will determine whether to flip it or

not. In other words, the action is chosen randomly at each step. This

non-deterministic action is not completely arbitrary but determined

by the given probability distributions, which guarantees the coverage

of all possible flipping operations.

Figure 6: Overview of stochastic reinforcement learning
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This approach sheds light on drastically reducing the cost for

encoding actions. The probabilistic selection happened on each bit

is a binary selection, which can be encoded by one floating-point

number. Therefore, an 𝑛-bit test pattern requires a vector function
𝑃 (𝜃 ) = [𝜃1, 𝜃2, ..., 𝜃𝑛] to formulate the entire space of probability
selection.

Reward: In general, reward value is the most important feedback

information from the environment that describes the effect of the

latest action. For optimization problems, it often refers to the benefit

of performing the current operation. In our framework, we exploit a

composite reward evaluation scheme consisting of two components,

rare reward and testability reward.

Given current test vector 𝑡 and action space 𝑃 , we first denote
the newly generated test vector as 𝑡𝑝 = 𝑎𝑐𝑡 (𝑡, 𝑃), and 𝐷 (𝑠, 𝑡𝑝 ) as the
value of signal 𝑠 after applying 𝑡𝑝 for 𝐷 , by which we can further
define the reward value 𝑅 in test generation as follows:

𝑅𝑟 (𝑡𝑝 ) = 𝑠𝑖𝑧𝑒 (
{
𝑠 |𝐷 (𝑠, 𝑡𝑝 ) = 𝑟𝑣 (𝑠)

}
)

𝑅𝑡 (𝑡𝑝 ) =
∑

𝑠𝑐𝑜𝑎𝑝 (𝑠) 𝑤.𝑟 .𝑡 𝐷 (𝑠, 𝑡𝑝 ) = 𝑟𝑣 (𝑠)

𝑅(𝑡𝑝 ) = 𝑅𝑟 (𝑡𝑝 ) + 𝜆 · 𝑅𝑡 (𝑡𝑝 )

Here, 𝑅𝑟 (𝑡𝑝 ) is the rare reward, which is based on counting of the
number of triggered rare signals, and 𝑅𝑡 (𝑡𝑝 ) is the testability reward
defined as the summation of 𝑠𝑐𝑜𝑎𝑝 measurement of corresponding
signals. Finally, we put 𝜆 ∈ R+ as a regularization factor to balance
the weight of two components. This reward value is exploited in

reinforcement learning model to update hyperparameters at each

iteration representing interaction between ‘agent’ and ‘environment’.

Specifically, we apply propagation [7] with the computed reward

value to adjust those probability distributions, when positive reward

is obtained, the probability of the corresponding action is increased,

and vice versa. The entire procedure is presented in Algorithm 3.

Algorithm 3: Training of Reinforcement Learning Model

Input :Design(𝐷), Parameter (𝜃 ), learning rate (𝛼),
number of epochs (𝑘)

Output :Optimal Model Parameter 𝜃∗

1 Initialize Random test set 𝑇 = 𝑅𝑎𝑛𝑑𝑜𝑚𝑇𝑒𝑠𝑡 ()

2 Initialize probability distributions 𝑃 = 𝑃 (𝜃 )

3 Compute SCOAP parameters

(𝐶𝐶0,𝐶𝐶1,𝐶𝑂) = 𝑔𝑒𝑡𝑆𝐶𝑂𝐴𝑃 (𝐷)
4 𝑖 = 𝑗 = 0, 𝑛 = 𝑠𝑖𝑧𝑒 (𝑇 )

5 repeat

6 Initialize Reward: 𝑅 = 0
7 repeat

8 for each 𝑡 ∈ 𝑇 do

9 𝑡𝑝 = 𝑎𝑐𝑡 (𝑡 , 𝑃 )

10 𝑅𝑟 (𝑡𝑝 ) = 𝑠𝑖𝑧𝑒 (
{
𝑠 |𝐷 (𝑠, 𝑡𝑝 ) = 𝑟𝑣 (𝑠)

}
)

11 𝑅𝑡 (𝑡𝑝 ) =
∑
𝑠𝑐𝑜𝑎𝑝 (𝑠) 𝑤.𝑟 .𝑡 𝐷 (𝑠, 𝑡𝑝 ) = 𝑟𝑣 (𝑠)

12 𝑅(𝑡𝑝 ) = 𝑅𝑟 (𝑡𝑝 ) + 𝜆 · 𝑅𝑡 (𝑡𝑝 ) 𝑅 = 𝑅 + 𝑅(𝑡𝑝 )

13 Update parameter : 𝜃 = 𝜃 + 𝛼∇𝜃 𝐽 (𝑅)

14 until 𝑗 ≥ 𝑛;

15 until 𝑖 ≥ 𝑘 ;

16 Return 𝜃

4 EXPERIMENTAL EVALUATION

4.1 Experimental Setup

To enable fair comparisonwith existing approaches, we deploy the ex-

periment on the same benchmarks as [5, 9] from ISCAS-85 and ISCAS-

89 [1]. Also, we preserve the parameter configuration applied in those

papers, where rareness threshold is set to 0.1, and total number of

sampled Trojans is 1000. The code for benchmark parsing and identifi-

cation of rare nodes is written in C++17. To perform SCOAP analyses,

we use open-source Testability Measurement Tool from [2]. The rein-

forcement learning model in our approach was conducted on a host

machine with Intel i7 3.70GHz CPU, 32 GB RAM and RTX 2080 256-

bit GPU. We choose Python (3.6.7) code using PyTorch (1.2.0) with-

https://www.overleaf.com/project/5f179de1547e3b0001d694d2 cud-

atoolkit (10.0) to implement the machine learning framework. The

training process consisted of 500 epochs, where we initialize the

learning rate 𝛼 as 0.02 at the beginning, and lower it down to 0.01 af-
ter 200 epochs.We compare performance in terms of trigger coverage

and test generation time between the following methods:

• MERO: Statistical test generation for Trojan detection utiliz-

ing multiple excitation of rare occurrences [5].

• TARMAC: State-of-the-art test generationmethod for Trojan

detection using clique cover [9].

• TGRL: Our proposed test generation technique for Trojan

Detection using reinforcement learning.

4.2 Results on Trigger Coverage

Table 1 demonstrates the effectiveness of our proposed methods

compared to the state-of-the-art methods. The first column lists the

benchmarks. The second column shows the number of signals in

those designs. The third, fifth and seventh columns provide the num-

ber of tests generated by MERO [5], TARMAC [9] and our approach,

respectively. The fourth, sixth and eighth columns show the trigger

coverage using the tests generated by MERO [5], TARMAC [9] and

our approach, respectively. The last two columns present the im-

provement in trigger coverage provided by our approach compared

to the state-of-the-art methods. Clearly, MERO provides decent trig-

ger coverage on tiny designs such as c6288, while its trigger coverage

drastically drops to less than 10% when applied to large designs like

s15850. TARMAC provides promising improvement compared with

MERO, but we can observe that it does not have a consistent outcome.

For example, in case of c6288 and c7552 with comparable size, the

trigger coverage drastically differs (86.1% versus 58.7%). Such huge

gap clearly indicates TARMAC’s instability with respect to various

benchmarks. In contrast, our approach achieves 100% trigger cover-

age for the first three benchmarks. When we consider large designs,

our approach still maintains a high trigger coverage. Overall, our

approach outperforms both MERO (up to 92.4%, 77.1% on average)

and TARMAC (up to 38.6%, 14.5% on average) in trigger coverage.

Table 1 also reveals the weakness of previous works in terms

of "stability" in trigger coverage. To confirm our observation, we

further evaluate the stability of all approaches. We choose c7552 and

s15850 as target benchmarks, where we repeat each approach for 20

trials and record the trigger coverage, in order to study the extent of

variations. The results are shown in Figure 7. As we can see from the

figure, our proposed method preserves stable performance across 20

trials. However, there are drastic variations in trigger coverage for the

other two approaches. Especially when applied to larger benchmark

like s15850, this phenomenon becomes more obvious. The standard

deviation of TARMAC is high (0.1876), while it is negligible for our
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Table 1: Comparison of trigger coverage with existing approaches

MERO [5] TARMAC [9] Proposed Approach (TGRL)

Benchmarks # Signals # Tests Trigger-Cov(%) # Tests Trigger-Cov(%) # Tests Trigger-Cov(%) improv./ MERO(%) improv./ TARMAC(%)

c2670 2747 6820 33.1 6820 100 6820 100 66.9 0

c5315 5350 9232 54.3 9232 84.6 9232 100 45.7 15.4

c6288 7744 5044 68.9 5044 86.1 5044 100 31.1 13.9

c7552 7580 14914 4.9 14914 58.7 14914 97.3 92.4 38.6

s13207 8772 44534 2.6 44534 84.2 44534 93.4 90.8 9.2

s15850 10470 39101 2.2 39101 66.3 39101 88.5 86.3 22.2

s35932 12204 34041 8.6 34041 91.5 34041 93.7 85.1 2.2

Average 7838 21955 24.99 21955 81.62 21955 96.12 77.13 14.5

proposedmethod (0.0237). In reality, a stable performance is desirable,

otherwise a user needs to try numerous times to obtain an acceptable

result, which can be infeasible for Trojan detection in large designs.

Figure 7: The variation of trigger coverage in 20 trials. TAR-

MAC and MERO demonstrate unstable performance, while

our approach provides consistently high trigger coverage.

4.3 Results on Test Generation Time

Table 2 compares the test generation time for the three methods.

The first columns lists the benchmarks. The next three columns pro-

vide the test generation time for MERO [5], TARMAC [9] and our

approach, respectively. The last two columns show the time improve-

ment provided by our approach compared to the other methods.

Table 2: Comparison of Test Generation Time (in seconds).

Design MERO TARMAC TGRL MERO/TGRL TARMAC/TGRL

c2670 1149 301 74 15.52x 4.06x

c5315 3791 643 126 30.08x 5.11x

c6288 826 666 108 7.64x 6.16x

c7552 7423 2809 169 43.92s 16.62x

s13207 16508 6022 1328 12.4x 4.53x

s15850 16429 12580 1204 13.64x 10.44x

s35932 53171 23446 4092 12.99x 5.72x

Average 14185 6638 1014 14.1x 6.54x

Clearly, our approach provides the best results across benchmarks,

while MERO is the worst. Not surprisingly, MERO lags far behind the

other two in time efficiency due to its brute-force bit-flipping method.

While TARMAC provides better test generation time than MERO,

our approach is significantly (6.54x on average) faster than TARMAC.

There are three major bottlenecks that slow down TARMAC. First,

TARMAC requires extra transformation to map the circuit design

into a satisfiability graph. Next, the clique sampling in TARMAC

is compute-intensive, it repeatedly removes nodes from circuit and

re-computes logic expression for each potential trigger signal. Fi-

nally, TARMAC exploits an SMT solver to generate each candidate

test vector, which determines the upper-bound of its time efficiency.

In contrast, our proposed approach does not use any satisfiability

solver. Only overhead in our approach is the training time - the

model training is composed of 500 iterations where each iteration is

basically a one-step test mutation and evaluation. When the model is

well-trained, it can automatically generate all the remaining test vec-

tors without extra efforts. Note that our reported test generation time

includes the model training time. Overall, our proposed approach dras-

tically (up to 16.6x, 6.54x on average) improves the test generation

time compared to state-of-the-art methods.

5 CONCLUSION

Detection of hardware Trojans is an emerging and urgent need to

address semiconductor supply chain vulnerabilities. While there

are promising test generation techniques, they are not useful in

practice due to their inherent fundamental limitations. Specifically,

they cannot provide reasonable trigger coverage. Most importantly,

they require long test generation time and still provides unstable

performance. To address these serious challenges, we proposed an

automated test generation scheme using reinforcement learning for

effective hardware Trojan detection. The proposed method made

several important contributions. It explored an efficient combination

of rareness of signals and testability attributes to provide a fresh

perspective on improving the coverage of suspicious signals. We

also developed an automated test generation scheme utilizing rein-

forcement learning model trained with stochastic methods which

is able to drastically reduce the test generation time. Experimental

results demonstrated that our approach can drastically reduce the

test generation time (6.54x on average) while it is able to detect a

vast majority of the Trojans in all benchmarks (96% on average),

which is a significant improvement (14.5% on average) compared to

state-of-the-art methods.
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