
Automated Trigger Activation by Repeated Maximal Clique Sampling

Yangdi Lyu Prabhat Mishra

Department of Computer and Information Science and Engineering
University of Florida

Gainesville, FL 32611
e-mail: {lvyangdi, prabhat}@ufl.edu

Abstract— Hardware Trojans are serious threat to security
and reliability of computing systems. It is hard to detect
these malicious implants using traditional validation methods
since an adversary is likely to hide them under rare trigger
conditions. While existing statistical test generation methods
are promising for Trojan detection, they are not suitable for
activating extremely rare trigger conditions in stealthy Trojans.
To address the fundamental challenge of activating rare triggers,
we propose a new test generation paradigm by mapping trigger
activation problem to clique cover problem. The basic idea is to
utilize a satisfiability solver to construct a test corresponding
to each maximal clique. This paper makes two fundamental
contributions: 1) it proves that the trigger activation problem can
be mapped to clique cover problem, 2) it proposes an efficient test
generation algorithm to activate trigger conditions by repeated
maximal clique sampling. Experimental results demonstrate that
our approach is scalable and it outperforms state-of-the-art
approaches by several orders-of-magnitude in detecting stealthy
Trojans.

I. INTRODUCTION

Due to increasing System-on-Chip (SoC) complexity and
stringent time-to-market constraints, SoC supply chain in-
volves multiple third parties. A malicious third-party can insert
hardware Trojans [1], [2] during any stages in the develop-
ment cycle starting from design implementation to fabrication.
These malicious modifications may alter the original function-
ality or leak secret information. To remain covert under in-field
testing, a hardware Trojan is carefully designed to be triggered
by extremely rare circuit input events. An example hardware
Trojan is shown in Figure 1 with corresponding trigger and
payload. The trigger condition is usually constructed by a few
signals that can be activated under rare conditions. The figure
illustrates a beneficial way to assemble the rare signals (A,
B and C) to form a rare input event. If the selected signals
are independent, the probability of triggering this condition is
multiplication of all the probabilities of these signals. Due to
the stealthy nature of these Trojans, the trigger condition may
not be activated during traditional validation and regression
testing. Therefore, it is paramount to have efficient validation
approaches that can activate rare trigger conditions to enable
Trojan detection.

To detect hardware Trojans, various approaches have been
proposed including logic testing [3]–[7] and side-channel
analysis [8]–[15]. However, existing approaches are neither
effective nor scalable to large designs with extremely rare
trigger conditions. Logic testing requires test vectors to fully
activate trigger condition and also propagate the effects to

x1

x2

x3

x4
x5

C

D

B

A

trigger

payload

Fig. 1: An example hardware Trojan with a trigger condition
constructed by three rare signals (A,B,C).

observable outputs. In contrast to logic testing, side-channel
analysis detects hardware Trojans by observing the side effects
of inserted gates. Since the Trojans are very small (few gates
in a million-gate design), their side-channel footprint can
easily hide within process variation and environmental noise
margins. Although side-channel analysis does not require ac-
tivation of trigger conditions, the activation could significantly
improve side-channel sensitivity. Therefore, trigger activation
is a fundamental problem in both logic testing and side-
channel analysis based Trojan detection.

Trigger activation is a major challenge due to the ex-
ponentially large space that an adversary can exploit to
construct trigger conditions. Conventional validation ap-
proaches simulate the design using millions or billions of
random/constrained-random test vectors, and hope that one
of these tests will activate the trigger condition. MERO [3] is
one of the constrained-random test generation approaches that
is similar to N−detect stuck-at ATPG [16], [17]. However,
it is not effective in large designs with extremely rare trigger
conditions as demonstrated in Section III. Existing directed
test generation techniques are beneficial for known targets,
but not useful for unknown targets (trigger conditions) since
it leads to exponential complexity as discussed in Section II.

In this paper, we solve the trigger activation problem by
mapping it to the problem of covering maximal cliques in a
graph. Our goal is to activate extremely rare trigger conditions
that can be covert during traditional validation. The major
contributions of this paper are as follows:

1) To the best of our knowledge, our approach is the first
attempt to map trigger activation problem to maximal
clique cover problem.

2) We propose an efficient and scalable test generation
algorithm for Trigger Activation by Repeated MAximal
Clique sampling (TARMAC).

3) Experimental results demonstrate that TARMAC out-
performs the state-of-the-art test generation techniques
by several orders-of-magnitude for extremely rare-to-
activate trigger conditions in large designs.

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE

The rest of this paper is organized as follows. Section II
surveys prior efforts in trigger activation. In Section III, we
motivate the need for this work by highlighting the drawbacks
of N−detect paradigm as well as the limitations of the state-
of-the-art test generation approaches. Section IV describes our
proposed test generation framework. Section V presents the
experimental results. Section VI concludes this paper.

II. RELATED WORK

Random and constrained-random tests are widely used in
traditional functional validation methodology. Unfortunately,
even billions or trillions of constrained-random tests cannot
cover many complex and corner-case scenarios in today’s
industrial designs. Directed tests are promising in such cases to
activate the specific targets that were not covered by random or
constrained-random tests. There are a wide variety of directed
test generation techniques [18]–[22] for functional validation.
Unfortunately, these techniques are not beneficial for unknown
Trojans with extremely rare trigger conditions since it leads
to exponential complexity.

Statistical test generation is a promising alternative to
directed tests. The basic idea is to activate the rare signals as
much as possible to increase the likelihood of activating the
actual (unknown) trigger consisting of rare signals. In [3], the
authors proposed a tool named MERO to generate N−detect
test for logic testing. MERO achieves N−detect criteria by
constrained random approach. It starts with a large number of
random test vectors, and flips each bit of random vectors to
increase N−detect criteria. MERO is shown to be effective
in small designs (e.g., ISCAS benchmarks [23], [24]) with
relatively easy-to-activate trigger conditions. However, MERO
is unsuitable for large designs (scalability problem) as well as
hard-to-detect triggers as demonstrated in Section III.

III. MOTIVATION

N−detect paradigm has been successful in both logic
testing [3], [17] and side-channel analysis [15]. N−detect
paradigm requires the test set to activate each rare signal
N times and is statistically effective for trigger activation
given “sufficiently” large N [3]. The probability of activating
trigger conditions will significantly decrease when the trigger
condition is composed of very rare signals. It is expected
that increasing N can increase the chances of hitting trigger
conditions. However, larger N will significantly deteriorate
the test generation performance and increase the required test
length. MERO incorporated N−detect [3] with deterministic
flipping method. There are two major problems that make it
ineffective for activating hard-to-detect trigger conditions in
large designs.

Scalability Problem: The test vectors generated by MERO
cannot guarantee that each rare signal is activated at least N
times. To ensure N−detect for all rare signals, the number
of initial random vectors should be extremely large even for
small benchmarks. For example, to achieve N = 1000 for
all rare signals, 200K initial random vectors are not enough
for small designs, as shown in Figure 2. We observed that
some extremely rare signals are almost never activated, while
easy-to-activate signals are activated more than N times. It
is expected that for large designs, billions of random vectors

0%

20%

40%

60%

80%

100%

2 4 6 8 10 12 14 16 18 20

Pe
rc

en
ta

ge
of

N
-d

et
ec

t

Number of initial random vectors (x 104)

c2670
c7552

s13207

Fig. 2: The percentage of rare signals that are activated at
least N times by MERO [3] with different number of random
vectors.

are required to satisfy N = 1000. Since MERO requires one
simulation per bit flipping, the total number of simulations
would be in the order of billions or trillions, which makes
this approach impractical for large designs.

Poor Trigger Coverage: MERO uses a vague notion of
N being “sufficiently” large to ensure high trigger coverage.
In fact, MERO simply selected N = 1000 in [3] for all
benchmarks. Despite the fact that all rare signals are activated
at least 1000 times in the small benchmark, such as c5315,
the trigger coverage is only 50.6% (see Section V-V-B). In
other words, N = 1000 is not “sufficiently” large for such a
small benchmark. For larger designs with more trigger points
and lower rareness threshold, larger N is required to reach a
reasonable coverage, which needs drastically larger number of
initial random vectors as discussed above, making scalability
issue even worse.

Given poor trigger coverage and scalability issue of MERO
and N−detect, new paradigms are need to solve trigger
activation problem. In this paper, we address the fundamental
challenge of trigger activation by mapping it to clique cover
problem and finding the test patterns to cover maximal cliques,
as outlined in the next section.

IV. TARMAC METHODOLOGY

In this section, we propose a new paradigm to solve trigger
activation problem by mapping it to maximal clique cover
problem, as shown in Figure 3. Our approach first constructs
a satisfiability graph based on the design (e.g., gate-level
netlist). Then, it finds maximal satisfiable cliques (MSCs)
in the satisfiability graph. Finally, it utilizes a satisfiability
modulo theories (SMT) solver to generate one test for each
maximal satisfiable clique.

A. Definition and Notations

Without loss of generality, we consider gate-level imple-
mentation of designs. We call the graph level representation of
the design a Design Graph (DG), where each vertex represents
a signal and each edge represents the connectivity (via a
gate). For each signal, we compute its logic expression (le)
from its corresponding logic cone. Assuming design-for-debug
architecture (e.g., scan chain), we allow all registers to be free
variables. For example, the logical expression of vertex A in
Figure 1 is A.le = x1 ∨ x4.

Design (netlist)

Satisfiability Graph (SG)

Maximal Satisfiable Cliques

MSC1 MSC2
. . . MSCm

Tests
t1 t2 . . . tm

Fig. 3: Overview of our proposed (TARMAC) paradigm.

For each design, trigger conditions can be constructed from
a subset of its signals and their corresponding rare value rv,
which we refer as potential trigger signals (PTS). PTS
could be any subset of whole signals. In [3], PTS is the set of
rare signals that are used to construct hard-to-activate trigger
condition. We call a trigger signal is activated if it satisfies its
rare value. We define satisfiability graph as follows.

Definition 1. A Satisfiability Graph (SG) consists of vertices
representing PTS and their satisfiability connections, SG =
{V, E} where V = PTS. If (u.le == u.rv)∧ (v.le == v.rv)
is satisfiable, then there exists an edge between u and v, i.e.,
u ∈ E(v) and v ∈ E(u).

Figure 4 shows the satisfiability graph for the example in
Figure 1 with four PTS (A, B, C, D) and their corresponding
rare values (0, 1, 1, 0). For example, the edge between A
and B exists since input pattern 01000 satisfies the condition
(A.le == 0)∧(B.le == 1). However, there is no input pattern
that satisfies (C.le == 1)∧(D.le == 0), i.e., there is no edge
between C and D.

B. Mapping Trigger Activation to Clique Cover Problem

A fundamental contribution of this paper is to show that
trigger activation problem can be mapped to clique cover
problem. First, we show that any valid trigger condition forms
a clique in satisfiability graph SG.

Lemma 1. For any valid trigger condition with k rare signals
{v1, v2, ..., vk}, the vertices {v1, v2, ..., vk} form a k−clique
in the satisfiability graph SG.

Lemma 1 holds since a valid trigger condition should
have at least one input pattern that activates all signals in
{v1, v2, ..., vk} simultaneously. Therefore, (vi.le == vi.rv)∧
(vj .le == vj .rv) is satisfiable for any i, j.

Note that it is possible to have a clique in the satisfiability
graph that does not represent a valid trigger condition. For
example, consider the clique ABD in Figure 4. There is no
input pattern that satisfies the condition (x1∨x4 == 0)∧(x2∧
¬x3 == 1) ∧ (¬(x3 ⊕ x4) ∨ x5 == 0), although there are
edges between any two of the three vertices. In other words,
ABD forms a clique in SG, but it does not represent a valid
trigger condition. Clearly, an adversary will not use it as a
Trojan trigger since it cannot be triggered. For the ease of
illustration, we define satisfiable clique in Definition 2.

A(x1 ∨ x4, 0)

B(x2 ∧ ¬x3, 1)

C(¬(x3 ∨ x4), 1)

D(¬(x3 ⊕ x4) ∨ x5, 0)

Fig. 4: Satisfiability graph with 4 PTS (A,B,C,D) from
Figure 1, with logic expressions and rare values in parentheses.

Definition 2. A satisfiable clique SC is a clique in a satisfia-
bility graph SG, where all the vertices of SC can be activated
by the same input vector.

It is clear to see that a satisfiable clique SC represents
a valid trigger condition since the vertices can be activated
by the same input. Similarly, any valid trigger condition can
represent a satisfiable clique, due to Lemma 1 and its validity.
Next, we explore the relationship between satisfiable cliques
and valid trigger conditions as shown in Theorem 1, which
points out a new way to solve trigger activation problem, i.e.,
finding test vectors to cover satisfiable cliques in a satisfiability
graph.

Theorem 1. The mapping between the set of valid trigger
conditions and the set of satisfiable cliques is a bijection.

Proof. As different trigger conditions consist of at least one
different trigger signal, the corresponding satisfiable cliques
have at least one different vertex. Hence, no two valid trigger
conditions map to the same satisfiable clique, i.e., the mapping
from the set of valid trigger conditions to the set of satisfiable
cliques is an injection. Similarly, we can prove that the
mapping from the set of satisfiable cliques to the set of valid
trigger conditions is also an injection. Therefore, we have a
one-to-one mapping between these two sets.

C. Test Generation Algorithm

The rationale behind our test generation approach is that if
we are able to find a test vector that can satisfy a clique, it
is not necessary to generate any more test for all the trigger
conditions represented by its subgraphs. Therefore, the most
profitable test vector is the one that can satisfy the largest
clique. Similar to cliques in graph theory, we define a maximal
satisfiable clique.

Definition 3. A maximal satisfiable clique (MSC) is a satis-
fiable clique to which no more vertices can be added.

Let {MSC1,MSC2, . . . ,MSCm} represents the complete
set of maximal satisfiable cliques, where m is the total number
of maximal satisfiable cliques. For example, {MSC1 = ABC,
MSC2 = AD, MSC3 = BD} represents the complete set of
maximal satisfiable cliques in Figure 4. Our goal is to find
a test set that is able to activate all these maximal satisfiable
cliques. However, finding all maximal satisfiable cliques is
not scalable. The worst running time of finding all maximal
cliques is O(3n/3) [28], where n is the number of vertices. It
is expected that finding all maximal satisfiable cliques takes
longer than finding maximal cliques since it needs to check
sub-graphs when a clique is not satisfiable.

Algorithm 1 Test Generation using Random Sampling and
Lazy Construction (TARMAC)

1: procedure TestGeneration(circuit netlist CN, potential
trigger signals PTS, maxVectorNumber VN)

2: DG = ConstructDesignGraph (CN)
3: Compute logic expressions for PTS in DG
4: SG.V = PTS, SG.E(u) = SG.V \ {u}
5: for i = 1 to VN do
6: ti = CliqueSampling(SG)
7: end for
8: return Tests = {t1, t2, . . . , tV N}
9: end procedure

10: procedure CliqueSampling(SG)
11: constraints cns = true, P = SG.V
12: while P is not empty do
13: randomly pick and remove a vertex v from P
14: if satisfiabile(cns ∧ (v.le == v.rv)) then
15: cns = cns ∧ (v.le == v.rv)
16: P = P ∩ SG.E(v)
17: else if cns has only one constraint u.le == u.rv

then
18: SG.E(v) = SG.E(v)\{u}
19: SG.E(u) = SG.E(u)\{v}
20: end if
21: end while
22: Use SMT solver to solve cns and return the test
23: end procedure

We propose an on-the-fly technique (TARMAC) in Algo-
rithm 1 that utilizes lazy construction of the satisfiability graph
and random sampling of maximal satisfiable cliques. For each
sampled maximal satisfiable clique, TARMAC generates one
test vector for it. As shown in Algorithm 1, initially every
vertex is connected to all the other vertices in line 4. The
edge between two unsatisfiable vertices is removed in line
17-19, where cns contains only one constraint u.le == u.rv
and the new constraint v.le == v.rv cannot be satisfiable
together with cns. Lazy construction benefits large designs by
generating test vectors as soon as possible. Clique sampling
is done by maintaining two sets of variables: cns to keep
track of constraints that are satisfiable (represents vertices that
are already found in a satisfiable clique), and P to represent
candidate vertices that may potentially be added to the clique.
Initially, cns is true and P contains all the vertices. We first
randomly select and remove a vertex v from candidate set P .
If cns can be augmented by v.le == v.rv, we put it into
cns and remove all vertices in P that are not connected to v
(line 16). It is easy to verify that cns represents a maximal
satisfiable clique when P is empty. Parameter VN is used to
control how many times we should sample maximal satisfiable
cliques, i.e., the number of generated test vectors.

V. EXPERIMENTS

A. Experimental Setup

The framework TARMAC is implemented in C++ with
Z3 [27] as our SMT solver. We conducted a wide vari-
ety of experiments on a machine with Intel Xeon E5-2698

Design

Random simulation and profile

Rare signals

N-detect TARMAC ATPG

tests tests triggers

DUT

Fig. 5: Setup for evaluation of TARMAC compared to
N−detect (MERO). Triggers are randomly sampled and val-
idated by ATPG.

CPU @2.20GHz to evaluate the performance of TARMAC
compared to random test vectors and N−detect approach
(MERO [3]). In this paper, we used the same benchmarks
(ISCAS-85 [23] and ISCAS-89 [24]) from [3] to enable a fair
comparison with MERO. We have also used two large designs
(memory controller (MEM) from TrustHub [26] and MIPS
processor from OpenCores [25]) to demonstrate the scalability
of our approach. The experimental setup is shown in Figure 5.
Similar to [3], we constructed valid trigger conditions from
rare signals. We first ran a number of random simulations
(100K for ISCAS and one million for MEM and MIPS)
on the design and computed the probability of each signal.
Rareness threshold is set to be 0.1 for ISCAS benchmarks
and 0.005 for the other designs. For each benchmark, 1000
trigger conditions were randomly sampled and validated using
ATPG. After sampling 1000 valid trigger conditions, each
of them was individually integrated into the original design
to construct a design under test (DUT). In other words,
there are 1000 DUTs from each benchmark with one trigger
condition for evaluation. We applied TARMAC (Algorithm 1)
to generate the test set with the rare signals as potential trigger
signals (PTS). Finally, we applied test sets to each DUT and
collected trigger condition coverage. For all experiments, we
fixed N = 1000 [3] for N−detect approaches.

B. Performance Evaluation

We compared the trigger coverage of TARMAC to random
approach and MERO, on a subset of ISCAS benchmarks
and two large benchmarks (MEM and MIPS). To get a fair
comparison of trigger coverage to MERO, we evaluated the
trigger coverage with the same number of test vectors. The
length of MERO test vectors cannot be controlled arbitrarily
since it depends on N−detect and the number of initial
random vectors R. Hence, we first ran MERO with 100K
random vectors for ISCAS benchmarks as suggested in [3] and
1 million random vectors for MEM and MIPS. After MERO
finished, we ran TARMAC to generate the same number of
test vectors as MERO for each benchmark.

The trigger coverage comparison of TARMAC with random
and MERO test vectors is shown in Table I. For ISCAS
benchmarks, we can see that TARMAC can achieve huge

TABLE I: Comparison of TARMAC with random simulation and MERO for trigger activation coverage over 1000 randomly
sampled 8-trigger conditions. The test length of TARMAC is the same as MERO.

Number Random MERO [3] TARMAC
Bench of rare Test Cov. Test Cov. Time Test Cov. Impro. / Impro. / Time

signals Length (%) Length (%) (s) Length (%) Random MERO (s)
c2670 43 100K 0.3 6820 38.2 1268 6820 100 333x 2.6x 257
c5315 164 100K 1.1 9232 50.6 4396 9232 98.8 89.8x 1.9x 682
c6288 169 100K 18.9 5044 76.6 596 5044 95.0 5.0x 1.2x 638
c7552 278 100K 0 14914 5.6 7871 14914 66.5 ∞ 11.9x 2185
s13207 604 100K 0 44534 1.9 15047 44534 94.4 ∞ 49.7x 5417
s15850 649 100K 0 39101 3 17000 39101 88.7 ∞ 29.6x 11337
s35932 1152 100K 100 4047 100 49616 4047 100 1x 1x 1947
MEM 1306 1M 0 28542 0 89747 28542 98.6 ∞ ∞ 15753
MIPS 906 1M 0 25042 0.2 273807 25042 95.6 ∞ 472x 19458
avg. 586 300K 13.4 19697 30.7 51039 19697 93.1 > 107x >71x 6408

trigger coverage improvement (up to 49 times) over MERO
with only around 1/4 of time to generate the same number of
test vectors. In large benchmarks such as c7552, s13207 and
s15850, the performance of MERO is very poor, with less
than 6% trigger coverage. TARMAC outperformed MERO in
all benchmarks with more than 90% trigger coverage for most
of them. With the same number of test vectors, TARMAC can
cover the extremely hard-to-activate trigger conditions that are
left after applying both random test vectors and MERO with
significantly less effort.

For the two large benchmarks, since each trigger condition
contains 8 rare signals with rareness threshold as 0.005, the
probability of trigger conditions could be less than 10−18.
It is expected that 1 million random simulations could not
achieve good coverage. The test vectors generated by MERO
also achieved poor coverage, 0% in memory controller, and
0.2% in MIPS. On the other hand, TARMAC is able to cover
majority of the trigger conditions efficiently. For example,
TARMAC covered 95.6% of trigger conditions in MIPS using
the same amount of test vectors as MERO, and finished in 6
hours. Note that the average test generation of TARMAC for
one test vector is less than one second. This demonstrates that
TARMAC is scalable for large designs, while MERO is not
suitable.

One observation is that the quality of MERO is partially
dependent on the quality of random test vectors. For example,
with 18.9% and 100% trigger activation coverage from random
test vectors for c6288 and s35932, respectively, test vectors
from MERO can cover 76.6% and 100%. However, for bench-
marks such as c7552 and s31207, test vectors of MERO can
only achieve 5.6% and 1.9%, respectively, corresponds to low
coverage from random test vectors. The limited improvement
from random test vectors to MERO is due to the simple
flipping bits approach to search for good vectors in MERO.

C. Compactness and Efficiency

For better illustration of trigger coverage, we plotted the
trigger coverage with respect to the number of test vectors
for c7552 and MIPS in Figure 6. The x-axis represents the
number of tests applied to DUTs, and the y-axis represents
the percentage of activated trigger conditions. The efficiency
in trigger coverage is the gradient of trigger coverage curves.
TARMAC has much steeper slopes than MERO and the curves
of random approach are almost flat. The results demonstrated

0 2500 5000 7500 10000 12500 15000

Number of test vectors

0%

20%

40%

60%

Tr
ig

ge
r

co
ve

ra
ge

TARMAC MERO RANDOM

(a) c7552

0 500 1000 1500 2000

Number of test vectors

0%

20%

40%

60%

80%

Tr
ig

ge
r

co
ve

ra
ge

(b) MIPS

Fig. 6: TARMAC can achieve significantly higher coverage
using the same number of test vectors compared to random
and MERO.

that TARMAC can cover more trigger conditions faster (with
significantly less test vectors) than MERO and random ap-
proach.

The results suggest that each vector in TARMAC is able to
activate more potential trigger conditions than MERO. Since
each test vector can cover all the subgraphs of a satisfiable
clique, if one test vector can activate more rare signals, it
covers a larger clique and is likely to activate more potential
trigger conditions. The number of rare signals satisfying their
rare values (rare signal hits, for short) for each test vector
is shown in Figure 7. The results show that the numbers of
rare signal hits are significantly larger in TARMAC, which
is consistent with the slope of coverage in Figure 6. From
Algorithm 1, the number of rare signal hits is the same
as the size of each sampled maximal satisfiable clique in

c7552 MIPS
Benchmarks

0

100

200

300
N

um
be

r
of

ra
re

si
gn

al
hi

ts TARMAC

MERO

Fig. 7: The distribution of rare signal hits of each test vector
generated by MERO and TARMAC.

TARMAC. While in MERO, the number of rare signal hits is
the best number of hits after one round of bit flipping from a
random test vector. The rare signal hits from MERO should be
statistically lower than TARMAC. Moreover, the quality of test
vectors in MERO is not guaranteed, since it partially depends
on the initial random vectors. As a result, MERO has low
rare signal hits (normally less than 50), which is significantly
smaller than rare signal hits in TARMAC.

VI. CONCLUSION

Trigger activation is a fundamental challenge in detection
of hardware Trojans. While prior efforts using statistical
test generation are promising, they are neither scalable for
large designs nor suitable for activating extremely rare trigger
conditions in stealthy Trojans. In this paper, we introduced
a new paradigm to solve trigger activation problem. This
paper made the following important contributions. (1) Our
approach is the first attempt in mapping the problem of test
generation for trigger activation to the problem of covering
maximal satisfiability cliques. (2) We proved that valid trigger
conditions and satisfiability cliques are one-to-one mapping.
(3) We presented efficient test generation algorithms to re-
peatedly sample maximal satisfiability cliques and generate
a test vector for each of them. Our experimental results
demonstrated that our approach is both scalable and effective
in generating efficient test vectors for a wide variety of
trigger conditions. Our approach outperforms the state-of-
the-art techniques by several orders-of-magnitude in terms of
trigger coverage, test length as well as test generation time.
Our test generation algorithms can be utilized for activating
extremely rare trigger conditions to fulfill diverse requirements
such as improvement of functional (trigger) coverage as well
as side-channel sensitivity.

ACKNOWLEDGMENTS

This work was partially supported by grants from NSF
(CCF-1908131) and SRC (2020-CT-2934).

REFERENCES

[1] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxon-
omy and detection,” IEEE Design & Test, 2010.

[2] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy
hardware: identifying and classifying hardware Trojans,” Computer, 2010.

[3] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia,
“MERO: A statistical approach for hardware Trojan detection,” in Cryp-
tographic Hardware and Embedded Systems (CHES), 2009.

[4] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identification
of stealthy malicious logic using boolean functional analysis,” in ACM
Conference on Computer and Communications Security (CCS), 2013.

[5] A. Bazzazi, M. T. M. Shalmani, and A. M. A. Hemmatyar, “Hardware
trojan detection based on logical testing,” Journal of Electronic Testing,
2017.

[6] M. A. Nourian, M. Fazeli, and D. Hely, “Hardware Trojan detection using
an advised genetic algorithm based logic testing,” Journal of Electronic
Testing, 2018.

[7] F. Farahmandi and P. Mishra, “Automated Test Generation for Debugging
Multiple Bugs in Arithmetic Circuits,” IEEE Transactions on Computers
(TC), 2019.

[8] Y. Lyu and P. Mishra, “A Survey of Side-Channel Attacks on Caches and
Countermeasures”, Journal of Hardware and Systems Security, 2018.

[9] Y. Lyu and P. Mishra, “Efficient Test Generation for Trojan Detection
using Side Channel Analysis”, in Design Automation and Test in Europe
(DATE), 2019.

[10] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, “Tro-
jan detection using IC fingerprinting,” in IEEE Symposium on Security
and Privacy (SP), 2007.

[11] Y. Jin and Y. Makris, “Hardware Trojan detection using path delay
fingerprint,” in IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2008.

[12] J. Aarestad, D. Acharyya, R. Rad, and J. Plusquellic, “Detecting trojans
through leakage current analysis using multiple supply padIddqs,” IEEE
Transactions on Information Forensics & Security (TIFS), 2010.

[13] G. Zarrinchian and M. S. Zamani, “Latch-based structure: A high
resolution and self-reference technique for Trojan detection,” IEEE Trans-
actions on Computers (TC), 2017.

[14] S. Wei and M. Potkonjak, “Scalable hardware Trojan diagnosis,” in IEEE
Transactions on VLSI, 2012.

[15] Y. Huang, S. Bhunia, and P. Mishra, “Scalable Test Generation for
Trojan Detection using Side Channel Analysis,” IEEE Transactions on
Information Forensics & Security (TIFS), 2018.

[16] I. Pomeranz and S. M. Reddy, “A measure of quality for n-detection
test sets,” IEEE Transactions on Computers (TC), 2004.

[17] M. E. Amyeen, S. Venkataraman, A. Ojha, and S. Lee, “Evaluation
of the quality of n-detect scan ATPG patterns on a processor,” in
International Conference on Test (ITC), 2004.

[18] Y. Lyu, A. Ahmed, and P. Mishra, “Automated Activation of Multiple
Targets in RTL Models using Concolic Testing”, in Design Automation
and Test in Europe (DATE), 2019.

[19] Y. Lyu, X. Qin, M. Chen, and P. Mishra, “Directed Test Generation
for Validation of Cache Coherence Protocols”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2018.

[20] D. A. Mathaikutty, S. Ahuja, A. Dingankar, and S. Shukla, “Model-
driven test generation for system level validation,” in IEEE International
High Level Design Validation and Test Workshop, 2007.

[21] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty, “Towards
Trojan-free trusted ICs: Problem analysis and detection scheme,” in
Design Automation and Test in Europe (DATE), 2008.

[22] H. D. Foster, “Trends in functional verification: A 2014 industry study,”
in Design Automation Conference (DAC), 2015.

[23] ISCAS85 combinational benchmark circuits,
https://filebox.ece.vt.edu/˜mhsiao/iscas85.html.

[24] ISCAS89 sequential benchmark circuits,
https://filebox.ece.vt.edu/˜mhsiao/iscas89.html.

[25] Opencores, https://www.opencores.org/.
[26] Trusthub, https://www.trust-hub.org/.
[27] Moura & Bjørner, “Z3: An efficient smt solver,” TACAS, 2008.
[28] E. Tomita et al., “The worst-case time complexity for generating all

maximal cliques and computational experiments,” Theor. Comput. Sci.,
2006.

