
Received April 18, 2022, accepted April 28, 2022, date of publication May 9, 2022, date of current version May 12, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3173287

A Survey on Hardware Vulnerability Analysis
Using Machine Learning
ZHIXIN PAN , (Member, IEEE), AND PRABHAT MISHRA , (Fellow, IEEE)
Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA

Corresponding author: Zhixin Pan (panzhixin@ufl.edu)

This work was supported in part by the U.S. National Science Foundation (NSF) under Grant CCF-1908131 and Grant SaTC-1936040.

ABSTRACT Electronic systems rely on efficient hardware, popularly known as system-on-chip (SoC),
to support its core functionalities. A typical SoC consists of diverse components gathered from third-party
vendors to reduce SoC design cost and meet time-to-market constraints. Unfortunately, the participation of
third-party companies in global supply chain introduces potential security vulnerabilities. There is a critical
need to efficiently detect and mitigate hardware vulnerabilities. Machine learning has been successfully
used in hardware security verification as well as development of effective countermeasures. There are
recent surveys on hardware Trojan detection using machine learning. To the best of our knowledge, there
are no comprehensive surveys on utilization of machine learning techniques for detection and mitigation
of a wide variety of hardware vulnerabilities including malicious implants (e.g., hardware Trojans), side-
channel leakage, reverse engineering, and supply-chain vulnerabilities (e.g., counterfeiting, overbuilding
and recycling). In this paper, we provide a comprehensive survey of hardware vulnerability analysis using
machine learning techniques. Specifically, we discuss how existing approaches effectively utilize machine
learning algorithms for hardware security verification using simulation-based validation, formal verification
as well as side-channel analysis.

INDEX TERMS Hardware security, machine learning, embedded system, vulnerability analysis.

I. INTRODUCTION
System-on-Chip (SoC) is the brain behind a vast majority
of electronic devices today. Even resource constrained
Internet-of-Things (IoT) devices nowadays incorporate one
or more complex SoCs. SoC incorporates a wide variety of
components in a single integrated circuit (IC) A typical SoC
design consists of multiple Intellectual Property (IP) cores
including processor, memory, network-on-chip, controllers,
converters, input/output devices, etc.

Drastic increase in SoC complexity has led to significant
increase in SoC design and validation complexity. Semicon-
ductor companies utilize global supply chain during SoC
design and manufacturing to reduce cost and meet time-
to-market constraints. Figure 1 from [1] shows a typical
supply chain that involves multiple third-party companies.
Unfortunately, reliance on third-party IPs raises hardware
security concerns. For example, a hardware IP gathered from
a potentially untrusted vendor may come with malicious
implants (e.g., hardware Trojans), backdoor for information

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

leakage, or other integrity issues. Since application software
relies on the hardware root-of-trust for providing any security
guarantees, it is critical to ensure that the underlying
hardware does not have any security vulnerabilities. In other
words, hardware vulnerabilities affect the security and trust-
worthiness of SoC computing platforms. These vulnerabil-
ities should be fixed before deployment since it affects the
overall system security. Based on CVE-MITRE estimates,
we can improve the overall system security by 43% by
removing hardware-level security vulnerabilities [2].

While there are a wide variety of researches for hardware
security verification [3], [4], machine learning has emerged
as the feasible solution for efficient detection and mitigation
of hardware security vulnerabilities. Figure 2 shows the
increasing number of publications in applying machine
learning to solve hardware security challenges. This paper
provides a comprehensive survey of hardware vulnerability
analysis using machine learning. We outline potential secu-
rity threats and effective machine learning based solutions,
while existing surveys related to hardware vulnerability
analysis have focused on hardware Trojan detection [5].
Specifically, the topic of hardware Trojan detection, outlined

49508 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-9136-1730
https://orcid.org/0000-0003-3653-6221
https://orcid.org/0000-0002-0917-2277


Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

FIGURE 1. Hardware design flow and supply chain distribution. Image credit: [1].

FIGURE 2. Publication trends on ML techniques applied for SoC security
from IEEE, ACM, and Elsevier.

in Section III, is a small fraction of overall hardware security
landscape. To the best of our knowledge, there is no
comprehensive survey of hardware vulnerability analysis
using machine learning techniques.

This paper is organized as follows. Section II provides a
brief introduction to machine learning. Section III provides
an overview of a wide variety of SoC vulnerabilities.
Section IV introduces themethodology of this survey. Specif-
ically, it identifies four widely studied categories of SoC
vulnerability analysis using machine learning: i) simulation-
based validation, ii) formal verification, iii) static anal-
ysis of design features, and iv) side-channel analysis.
Sections V-VIII describe these four classes of vulnerability
analysis. Finally, Section X summarizes the survey and
outlines future research directions.

II. OVERVIEW OF MACHINE LEARNING MODELS
With the growing difficulty and resource constraints, recent
SoC security study turns to seek assistance from Machine
Learning (ML) techniques. ML is a class of algorithms
that primarily focuses on generating the ‘models’, namely,
learning algorithms, from a large amount of historical
‘training data’ and then utilizing these trained models for
prediction or classification. ML algorithms have enabled
promising performance with outstanding flexibility and
generalization across various application domains. A typical
workflow of ML applied for hardware vulnerability analysis

FIGURE 3. The general flow of ML techniques that consists of four major
steps: preprocessing, learning, evaluation, and analysis [5].

is depicted in Fig. 3 from [5] that consists of four major
steps. The first steps gathers dataset from known hardware
vulnerabilities.

This dataset is used to train the ML model in the
second step. The trained model is evaluated in the third
step. The validated model can be used to detect unknown
vulnerabilities in the final step. This section provides an
overview of various ML techniques. The subsequent sections
will use these ML models for analyzing hardware security
vulnerabilities.

A. SUPPORT VECTOR MACHINE (SVM)
Support Vector Machine (SVM) is a typical supervised
learning model. Intuitively, supervised learning represents a
learning process where a MLmodel is trained to satisfy given
training samples with determined labels in advance. After the
stage of training using the labeled set, the obtainedMLmodel
is expected to respond to new occurrences. For SVM, it is
trained to obtain a hyper-plane in data space to separate them
out with given labels, while trying to maximize the margin
distance between data points and the hyper-plane. A trivial
SVM example that achieves a bi-classification between red
and green circles is shown in Figure 4. The cyan block in
the picture represents the maximized margin for an optimal
classifier. Intuitively, the margin distance reflects how ‘far’
data points from two classes are from each other, and a large
margin distance indicates a better chance to correctly classify
new occurrences.

B. MULTI-LAYER PERCEPTRON
A commonly used Multilayer Perceptron (MLP) is a feed-
forward model. An MLP contains multiple layers of neurons

VOLUME 10, 2022 49509



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

FIGURE 4. Trivial example of SVM.

FIGURE 5. An example decision tree model.

with an activation function, each layer fully connects the next
layer with numerical values called weights. This activation
function maps weighted inputs to the output of the neuron.

The objective of the MLP is to learn these weights for
matching the inputs to the outputs as efficiently as possible.

C. DECISION TREE (DT)
Decision Tree (DT) is another commonly used supervised
learning algorithm for classification method. An example
decision tree is shown in Figure 5 to illustrate its functionality
and interpretability. The task is to decide the location for
exercise based on weather conditions. As we can see, DT is
a tree-structure model with nodes and edges. The basic
workflow of DT is to perform a top-down tree traversal from
the root. At each node, a specific attribute becomes the key
factor to determine the branch. This process continues until a
category label is reached at the leaf node, which becomes the
final decision. The construction of such a decision tree relies
on the selection of attributes for given task. In many real-
world applications, this challenge is addressed using a large
amount of historical data to automatically build the decision
tree. The construction of the tree is usually recursive and can
be performed automatically.

D. RANDOM FOREST (RF)
Random Forest (RF), as the name suggested, is an ensemble
of decision trees. Strictly speaking, RF is actually an
integrated algorithm. It first randomly selects different
features and training samples to generate a large number of
decision trees, where each decision tree is trained with a
subset of the training data. Then RF synthesizes the results
of these decision trees by voting or taking average in the
ensemble to present the final output. Random forest is widely
used in reality analysis. Compared with decision trees, it has

FIGURE 6. A typical DNN neuron. The activation layer is applied to induce
non-linearity.

a great improvement in accuracy and robustness at the same
time.

E. LINEAR REGRESSION (LR)
The motivation for Linear Regression (LR) comes from
statistics. Given data set, LR learns from this data set to
produce a linear model that reflects the relationship between
xi and yi as accurately as possible. Formally, the model can
be written as

f (x) =W>x+ b

where, x = x1, x2, . . . , b is the bias term, and W are weight
parameters indicating the weight of corresponding attributes.
The learning process of LR is an optimization problem to
obtain optimal weight parametersW. The trained model with
suitable weights is used to predict values for new inputs.

F. DEEP NEURAL NETWORK (DNN)
Deep Neural Network (DNN) is an artificial neural network
which can express or simulate a wide variety of intrinsic
functionalities in the fields of classification, regression,
re-construction, etc. Analogous to neurons in our nervous
system, the ‘neural network’ of artificial intelligence is a
system built from ‘neurons’ as shown in Figure 6.

The functionality of one single neuron is limited but DNN
makes use of multiple neurons and arrange them in layers.
Typically, DNN consists of an input layer, output layer and
arbitrary numbers of hidden layers in between for enabling
DNNs to approximate the complex mapping of given data’s
inputs and outputs. The training process of DNNs can be
summarized as follows

1) Determine the structure and initialize the weights.
2) Feed training samples to compute training loss.
3) Compute the gradient of loss, use backpropagation [6]

to update the weight coefficients, and repeat until
convergence.

The flexibility of DNNs also enables their different
variations to be successfully applied into various context.
In this section, we discuss three specific examples of such
variations.

1) CONVOLUTION NEURAL NETWORK (CNN)
CNN is a variant of DNN utilizing convolution layers. The
emergence of convolutional neural networks has surpassed
ordinary neural networks in the field of image processingwith

49510 VOLUME 10, 2022



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

FIGURE 7. Basic structure of RNN.

FIGURE 8. The basic framework of reinforcement learning.

the characteristics of fewer parameters, fast training, high
scores, and easy migration.

2) RECURRENT NEURAL NETWORK (RNN)
RNN is another variant of neural networks. The general
structure of RNN is shown in Figure 7. In the picture,
A represents the neural network architecture, where x0, x1,
x2, . . . , xt represents the time series inputs and his are the
outputs of hidden layers.

For each single input xi, RNN not only provides immediate
response hi, but also stores the information of the current
input by updating the architecture itself. Meanwhile, stored
information will also be fed into the architecture in the next
iteration to supply extra information. Therefore, it is widely
applied in security domain as it is efficient to capture temporal
dependencies of signals.

In practical works, a specific type of RNN model
called Long Short-term Memory (LSTM) is widely adopted.
It applies gate mechanism to solve vanishing gradient and
exploding gradient. Meanwhile, the gate mechanism provides
feature filtering, saving useful features and discarding
useless features, which greatly enriches the information
representation capacity of the model. LSTM is suitable for
explainable machine learning.

G. REINFORCEMENT LEARNING (RL)
Reinforcement learning (RL) is a branch of machine learning,
but unlike the commonly-known supervised learning, it is
closer to human learning. Its exploration process is actually a
process of gradually learning the rules of interaction through
trials and responding to feedback from the environment. The
RL model continuously communicates with the environment
to find an optimal strategy through a series of attempts,
and constantly adjusts its behavior based on the feedback.
Fig. 8 provides the basic framework of reinforcement
learning.

H. BOOSTING
Boosting is a learning model where multiple weak learners
are combined to generate a strong classifier. Initially, a base

weak classifier learns the training data. Next, in each iteration
a weak learner is added to reduce the training error of
previously applied weak learners. Freund and Schapire [7]
proposed the first practical Boosting algorithm, AdaBoost.
Gradient boosting algorithm proposed by Friedman et al. [8]
is also widely applied for many optimization problems.
In each iteration of the gradient boosting algorithm, the
negative gradient of the current model on all samples is
calculated. Next, a new weak classifier is trained with this
value for adjusting the weight of the weak classifier. Finally,
the model gets updated accordingly.

I. NAIVE BAYES (BAYES)
Naive Bayes Classifier is one of the simple probabilistic
classifier based on Bayes theorem. This classifier has a
strong assumption that the features are independent among
themselves. From the training data, a likelihood probability
is calculated for each feature. For an unknown input data, the
posterior probability for each class is calculated using Bayes
theorem. The class having maximum posterior probability
value becomes the predicted level for the input data.

These ML techniques can be broadly divided into three
categories: Supervised Learning, Unsupervised Learning,
and Reinforcement Learning. TheML techniques that require
training labels are supervised learning. For example, support
vector machine has been adopted in [9], [10] for supervised
learning. While unsupervised learning does not use labels,
but focus on extracting hidden features from input samples
directly. The example for unsupervised learning is the
‘clustering’ algorithms [11], where definition of metric is
the key for classifying [12]. Finally, reinforcement learning
is a type of learning method that imitates human’s learning
process through continuous interaction and refinement. The
detailed pros and cons are depicted in Table 1.

III. THREAT MODEL: HARDWARE SECURITY
VULNERABILITIES
In this section, we first provide an overview of various SoC
vulnerabilities. Next, we highlight the challenges associated
analyzing SoC vulnerabilities.

A. OVERVIEW OF HARDWARE SECURITY
VULNERABILITIES
SoC vulnerabilities and associated security threats can be
broadly divided into the following categories.

1) MALICIOUS IMPLANTS (Hardware Trojans)
Hardware Trojan (HT) [13] is amalicious hardwaremodifica-
tion that can leak secret information, degrade the performance
of the system, or cause denial-of-service. It is a malicious
modification of the target integrated circuit (IC) with two
critical parts, trigger and payload. When the trigger is
activated, the payload enables the malicious activity [14].
For example in Figure 9, when the output of the trigger
logic is true, the output of the payload XOR gate will invert
the expected output. The trigger is typically created using

VOLUME 10, 2022 49511



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

TABLE 1. Advantages and disadvantages of various ML techniques for SoC security analysis.

FIGURE 9. An example hardware Trojan constructed by a trigger logic
(purple gates). Once the trigger condition is satisfied, the payload (yellow
XOR gate) will invert the expected output. The gates of the original design
are shown in green color.

a combination of rare events (such as rare signals or rare
transitions) to stay hidden during normal execution. The
payload represents the malicious impact HT will inflict to
the target design, commonly resulting in information leakage
or erroneous execution. HT can be applied in various levels
including IP-level and bus-level [15]–[20]. Amajor challenge
for Trojan identification is that Trojans are usually stealthy,
as they are designed in a way that they can be activated
under very rare conditions [21]. Due to this stealthy nature,
it is infeasible to detect them using traditional functional
validation methods. [22]

B. SUPPLY CHAIN VULNERABILITY (SCV)
Supply chain vulnerability can be broadly categorized into
three fundamental threats: counterfeiting, overbuilding and
recycling. IC counterfeiting is a serious problem that arises
from the global semiconductor supply chain [23]. Some
manufacturers use recycled ICs instead of genuine ones
for reasons like out of stock or lower price. Counterfeit
ICs with poor quality are usually overused, which degrade
the quality of the manufactured products and lead to early
product failures [24]. Counterfeiting of ICs has become a
major challenge due to the difficulty of detection, and the
lack of effective avoidance mechanisms [25]. Most of the
existing approaches require costly rework and wasting a large
amount of time. IC overbuilding is a bad situation where
the foundry manufactures more ICs than required by the IC

designer. Then during the flow of supply chain, an attacker
with access to extra ICs can steal and claim ownership of
the extra ICs and sell them illegally. More precisely, IC over-
building attacks are launched by illegally copying or stealing
authentic blueprints of SoC during the design, synthesis,
or production phases, and result in illegal sales in the market,
as demonstrated in [26].

C. REVERSE ENGINEERING (RE)
Reverse engineering of SoC [27], is an information invasion
technique achieved by exploiting the backdoors in an SoC,
either by faulty design or maliciously implantation [28].
A successful reverse engineering attack enables the adversary
to uncover the IC design, extract its gate-level netlist
to further infer its functionality [29]. This will lead to
the revealing of inner details about the design, where
the attacker can steal the intellectual property, or even
improve it on their own product to achieve illegal advantage.
The threat of reverse engineering is discussed in details
in [30].

D. SIDE-CHANNEL LEAKAGE (SCL)
Side channel vulnerabilities arise from the fact that electronic
devices inevitably produce physical emanation during exe-
cution, including but not limited to execution time, power
consumption, path delay and electromagnetic emanation.
These physical signatures can unintentionally reveal secret
information from the device. For example, timing-attack is
a typical approach to abuse the side-channel vulnerability,
since timing information can be exploited to reveal memory
information. Assuming that there is a private array in the
memory with one pre-recorded entry in the cache, while the
attacker wants to know the actual index of it. This can be
achieved by traversing the entire array andmeasure the access
time, the location with the shortest access time is the target
one due to the huge difference of access time between cache
and memory, as shown in Figure 10. This cache-based side-
channel attack is widely applied in the famous Spectre and
Meltdown attacks.

49512 VOLUME 10, 2022



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

FIGURE 10. An example cache-based side channel attack. By traversing
the entire array and recording the access time, the adversary can lock on
the data corresponding to the index with the shortest access time, since it
is most likely to be pre-stored in the cache.

E. CHALLENGES IN ANALYZING SOC VULNERABILITIES
While there are some successful attempts in protecting from
these threats, there are various challenges in analysis and
mitigation of SoC vulnerabilities. In this section, we briefly
describe three important challenges: diversity of attacks,
computation complexity, and real-time constraints.

1) DIVERSITY OF ATTACK SOURCES
The malicious parties trying to engage in IP security and
privacy violation can be introduced throughout the IC
design as well as the manufacturing process. For example,
we illustrate three scenarios where an attacker can introduce
vulnerabilities.
• Design Stage: Design of SoC starts with defining the
general behavior and requirements using high-level
languages. Attacks can occur through malicious modi-
fications (e.g., inserting hardware Trojans, backdoor or
leaky paths). Moreover, IP theft can also happen at the
design stage.

• Synthesis Stage: The design is supposed to be syn-
thesized to a gate-level netlist, where entities have
write access to the netlist. They can inject malicious
functionality in the design.

• Fabrication Stage: Due to the threat from untrusted
fabrication foundries, it can lead to IP piracy as well as
reverse engineering of the design to create counterfeit
IPs. It can also lead to insertion of malicious implants
(e.g., hardware Trojans).

Since sources of the vulnerability comes from various
entities across the design cycle, it significantly increases
the cost of designing comprehensive analysis and mitigation
techniques.

F. COMPUTATIONAL COMPLEXITY
Another major challenge is high computation complexity.
This comes in two different aspects. Most existing tasks
tend to require brute-force methods for searching solutions.
For example to generate test patterns for detecting hardware
Trojans (discussed in Sec III), there is no golden rule to create
efficient patterns. Therefore, many existing approaches gen-
erate new patterns by randomly flipping bits in a brute-force
manner [31]. As a result, these approaches introduce high
computation complexity and become impractical for large
designs. Moreover, many analysis techniques boil down
to SAT problems, which is NP-hard. Therefore, there is
inherently no efficient implementation for these algorithms

and researchers have to seek for approximation algorithms
with a price of sacrificing accuracy.

1) VIOLATION OF REAL-TIME CONSTRAINTS
SoCs are also widely used in real-time systems such as cars,
airplanes, and military and medical devices. The tasks in
these systems need to finish before their deadlines. While
minor violation in task deadlines may be tolerable in soft
real-time systems, any violation of task deadlines can lead
to catastrophic consequences in hard real-time systems. For
real-time tasks, timing constraints enforce that the analyzing
task should complete its execution before collected data
expires. Similarly for protection techniques, their detection
and recovering work should be completed before the end
of the execution of malicious code. For example, once a
ransomware attack has encrypted a lot of files already, it is
too late to detect the ransomware attack. Unfortunately,
existing approaches usually requires long run time and
introduces considerable hardware complexity. In other words,
these analysis and protection algorithms can be viewed
as additional tasks in real-time systems. The additional
computation and communication requirement can lead to
violation of the real time constraints.

IV. SURVEY METHODOLOGY
To analyze diverse SoC vulnerabilities, there are a wide
variety of machine learning (ML) based approaches. In this
survey, we focus on some of the most commonly applied
ML methods in the context of SoC security validation
and verification. While there are a wide spectrum of
hardware vulnerabilities, we have focused on hardware
vulnerabilities that have ML-based detection methods in the
literature. For example, destructive HT detection has been
well studied [32], but out of the scope of this survey due to
lack of ML-based detection approaches for destruction HT
detection. Specifically, we analyze the following five types
of techniques in the existing literature. The first two are
dynamic approaches that rely on execution trace analysis. The
last three are static approaches that rely on analysis of the
specification.
• Simulation-basedValidation (SV):Approaches aim on
generating tests to activate malicious modifications and
propagate the payload to observation points to check
with the expected results from the golden design, or just
to monitoring the packet diversity to detect abnormal
situations [33]. Simulation is scalable but cannot provide
any verification guarantees. The outcome depends on the
quality of input tests and faces input space complexity.

• Side-channel analysis (SCA): As discussed in
Section III, side-channel leakage can be abused by
adversaries to reveal hidden information in an SoC.
At the same time, side-channel signals can also be
utilized to validate the security of a given design
by physical signals like dynamic current [34]–[36],
thermal [37], [38], and path-delay [39]. For example,
designers can manually craft test vectors to trigger

VOLUME 10, 2022 49513



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

the side channel signature emanation, by which they
can evaluate the quality of SoC or detect potential
vulnerabilities [40]. SCA faces uncertainty due to side-
channel sensitivity associated with tiny Trojans.

• Formal Verification (FV): Formal verification is a
commonly applied method in SoC validation. It uses
formal mathematical methods to prove or disprove
whether the system meets a certain specification or
conforms to certain expected algorithm inferences.
Formal verification provides mathematical guarantees
about the trustworthiness of SoCs, but it can lead to state
space explosion for large designs.

• Printed Circuit Boards (PCB) Analysis: PCB analysis
is a specific method that inspects the components and
solder joints of printed circuit boards to figure out
damaged board components, staining corrosion, and
possible presence of malicious implants. Specifically,
PCB analysis includes measuring various plate thick-
ness, identifying foreign materials, discovering defected
parts, or creating the heatmap across the entire map.
PCB analysis is valuable for detecting IC counterfeiting
and hardware Trojans. PCB analysis has a natural
compatibility with machine learning techniques since
the commonly applied object detection techniques in
computer vision domain can also be applied for PCB
diagrams.

• Heuristic Analysis (HA): HA is a combinational
analysis approach which consists of two major steps:
feature selection and pattern recognition. Feature selec-
tion relies on extraction of specific features from the
gate-level netlist based on either expert knowledge
or heuristics. Pattern recognition analyzes various
information of the extracted features to achieve the
purpose of identification as well as classification of
specific characteristics. As we can see, HA has a natural
compatibility with machine learning approaches.

Simulation-based validation and Side-Channel Analysis
are considered as Dynamic Analysis since they require
execution of the designs, while formal verification, PCB
analysis and heuristic analysis are classified as Static
Analysis. Figure 11 shows the five classes of SoC vulner-
ability analysis approaches we consider in this survey. The
subsequent sections discuss each class in detail. Each section
introduces the recent publications in utilizing ML techniques
for SoC vulnerability analysis. Related research efforts are
compared and contrasted in terms of pros and cons. This
survey mainly includes manuscripts published in the last
20 years.

V. SIMULATION-BASED VULNERABILITY ANALYSIS
USING MACHINE LEARNING
Simulation-based validation (SV) approaches focus on test
generation to activate hardware vulnerabilities. As shown in
Figure 12, the presence of a malicious implant (hardware
Trojan) can be detected if we can simulate with a suitable
test vector. If the test vector activates the trigger of

the Trojan, comparison of the simulation output with the
expected output will reveal the presence of a Trojan in
the implementation. Simulation-based vulnerability analysis
starts with producing test vectors, which will be fed into the
target design. By observing the outputs and comparing with
the golden design, it can reveal important clues for possible
vulnerabilities. Test generation is extremely important for
both functional and trust validation of integrated circuits. It is
a promising and general purpose approach, which possess
good robustness against environmental noise or process
variations. However, it may not be suitable for large-scale
designs due to input-space complexity as well as prohibitive
simulation cost.

In early days, random test generation was widely explored
for simulation-based approaches due to its simplicity.
However, there is no guarantee for activating stealthy
Trojans using millions of random or constrained-random
tests. MERO [31] proposed a statistical test generation
scheme, which adopts the N -detect idea [41] to achieve
better coverage. The heuristic behind is that if all rare
signals are activated for at least N times, it is likely to
activate the rare trigger conditions when N is sufficiently
large. The left side of Figure 13 shows an overview of
MERO. It starts with random test generation followed by a
brute-force process of flipping bits to increase the number
of rare values being satisfied. It provides promising result
for small benchmarks, but it introduces long execution time
and scalability concerns, making it unsuitable for large
benchmarks [42].

To address these issues, Lyu et al. proposed TARMAC [42]
as shown on the right side of Figure 13. Like MERO,
TAR-MAC also starts with random simulation to identify
rare signals in the netlist. Next, it maps the design to a
satisfiability graph, and converts the problem of satisfiability
into a clique cover problem, where the authors use an
SMT solver [43] to generate test patterns for each maximal
clique. Although TARMAC performs significantly better
thanMERO in evaluated benchmarks, its performance is very
unstable. This is due to the fact that TARMAC relies on
random clique sampling, making its performance dependent
on the quality of sampled cliques.

Let us take a closer look at these approaches. There are
two major problems that affect the performance of existing
efforts: rareness heuristic and test generation complexity.

A. WEAKNESS OF RARENESS HEURISTIC
Existing methods rely on rareness heuristic for activating HT
triggers. However, in [44], the author rigorously discussed
the inconsistency between rare nodes and trigger nodes.
According to their experimental evaluation, rare nodes are
not necessarily trigger nodes, and vice versa. Reliance on
rareness hurts the genuine nodes with rare attribute (e.g., low
switching activity). More-over, a smart implementation of
HT can exploit the mixture of both rare nodes and genuine
(non-rare) nodes to obfuscate Trojan detection.

49514 VOLUME 10, 2022



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

FIGURE 11. Four classes of ML-based hardware vulnerability analysis discussed in this survey.

FIGURE 12. An overview of simulation-based validation of security
vulnerabilities.

FIGURE 13. Overview of state-of-the-art logic testing techniques:
MERO [31] and TARMAC [42].

B. TEST GENERATION COMPLEXITY
Another major drawback of existing approaches is high
computation complexity. Existing efforts ignores the inter-
action between intermediate test vectors and circuit that
typically provides useful feed-back. For example, if a newly
generated test vector significantly decreases the number of
triggered rare nodes, then the current parameters of the

test generation algorithm needs to get adjusted to avoid
wasted effort (time). While this intuition is likely to help
in guiding the test generation process, it is ignored by both
MERO and TARMAC. MERO generates new test patterns by
blindly flipping bits in a brute-force manner using random
strategy, and TARMAC performs random sampling of cliques
without taking the feedback into consideration. In [45], the
authors also observed this problem and proposed a genetic
algorithm [46] based approach. However, their evaluation
shows that they require even longer test generation time. This
is due to the combined effects of time-consuming training and
slow convergence of genetic algorithm in the later stages of
evolution.

Actually, an ideal test generation algorithm should satisfy
these two crucial requirements to address the presented
challenges.
• Test Effectiveness: Exploiting not only the rareness,
but also the testability of signals to improve trigger
coverage.

• Test Generation Efficiency: Efficiently making use of
feedback in intermediate steps to save test generation
time.

These requirements motivate researchers to seek help
from machine learning. We discuss promising ML-based
approaches for hardware Trojan (HT) detection as well as
side-channel leakage (SCL) analysis.

1) ML-BASED DETECTION OF HARDWARE TROJANS USING
SIMULATION-BASED VALIDATION
Several approaches have been proposed to use machine
learning to detect hardware Trojans.Most of these approaches
work by applying different tests to maximize the probability
to activate Trojan’s trigger conditions to detect untrustworthy
behavior of the design. In these techniques, a machine is
modeled and trained to work as the generator for test vectors,
whose outputs are collected and compared to a trusted region
in a multidimensional space.

Hasegawa et al. [47] proposed a static Trojan detection
technique using SVM-based classification of gate-level
netlists. This method manually extracts several features for
any potentially suspicious candidate S in a gate-level netlist
to differentiate a Trojan-inserted netlist from a safe one. The
features are constructed based on the stealthy behavior of

VOLUME 10, 2022 49515



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

hardware Trojans. An SVM classifier is trained on these
features to detect unknown Trojans. A similar runtime
approach has been proposed for many-core platforms [48].
These approaches can achieve high accuracy (80%) in
detecting Trojans. However, they also have a high false
positive rate as they might mark many benign components
as suspicious. The accuracy of such approaches has been
improved by Pan et al. [49] utilizing improved feature
selection and use of reinforcement learning models to reduce
false positive rate.

2) ML-BASED SIDE-CHANNEL LEAKAGE ANALYSIS UTILIZING
SIMULATION-BASED VALIDATION
Due to the extraordinary potential in solving complex
searching and classification tasks, ML techniques have been
widely adopted for side-channel leakage (SCL) analysis.
Hospodar et al. [50] presented the first study on applying
ML in side-channel analysis. Afterwards, due to the variance
of different side channel signals and the difficulty of
protecting against environmental noise, some approaches
mainly target on specific benchmarks or limited type of
side channel attacks. For example, Alam et al. proposed a
ML-based safeguard against micro-architectural side-channel
attacks [51]. This paper emphasized the importance of using
time-series data for trainingMLmodels in security domain to
correlate the execution trace with the hidden information in
sequential data flow. In [52], a SVM-based detector targeting
cache-based side-channel attacks (SCA) was proposed and
achieve a 96.57% accuracy on average. These techniques
provide promising results, but they have usability restrictions.

In [53], the author systematically discussed various cases
of SCA detection at runtime using a wide variety of
ML models. They provide insights on various aspects of
performance for gate-level designs, while similar techniques
are necessary for other abstraction levels. To address
this limitation, Wang et al. proposed a multi-phase ML
framework for detection and identification of cache-based
side-channel attacks [54].

A electronic system-level approach was discussed in [55].
As shown in Figure 14, the framework utilizes two test
generation schemes: fixed by human expert knowledge and
random generation. Next, it selects side-channel leakage
window and applies a ML-based clustering algorithm to plot
the distribution of side-channel information. Finally, a metric
was induced to distinguish malicious design from golden
designs.

3) OVERHEAD AND EFFECTIVENESS OF SURVEYED
APPROACHES
Table 2 shows a summary of the papers we have surveyed
related to ML-based vulnerability analysis using simulation-
based validation.

We use two metrics (detection accuracy and hardware
overhead) to enable relative comparison between existing
methods. We use a three-step scale (low, average, high) to
indicate the vulnerability detection accuracy. Specifically,

we use ‘high’, ‘average’, and ‘low’ when the vulnerability
detection accuracy is >95%, 90% 95%, and <90%, respec-
tively. Similarly, we use a three-step scale (low, average,
high) to indicate the hardware overhead in terms of area
and power requirements compared to the original design
(without detection method). Note that some of the related
efforts provided only power overhead while others provided
power/energy values. We use ‘high’, ‘average’, and ‘low’
when the vulnerability detection accuracy is >10%, 5%
10%, and <5%, respectively. Ideally, a designer would like
to use a solution that has ‘high’ detection accuracy and
‘low’ hardware overhead. The second and third columns
outline the threat models and corresponding ML models,
respectively. The last two columns provide the overhead as
well as effectiveness, respectively.

VI. ML-BASED FORMAL VERIFICATION OF SECURITY
VULNERABILITIES
Formal verification (FV) is promising in hardware validation
as they evaluate the functionality and security of the
design using discrete mathematical models [56]. In general,
FV process is accomplished by first abstracting the system,
generating a discrete mathematical model, and then providing
formal proofs for certain requirements, as shown in Figure 15.

There are a variety of formal verification methods
including model (property) checking, satisfiability (SAT)
solving [57], equivalence checking, theorem proving, etc.
We consider the following three categories in this survey
due to the fact that existing ML-based approaches applied
one of these methods as assistance tool to either perform
strategy optimization or work as a key step during the formal
verification of hardware vulnerabilities.
• Satisfiability (SAT) Solving: The first step in Boolean
SAT is to convert the SoC design into a Boolean
proposition formula such as conjunctive normal form
(CNF). A SAT solver is applied to obtain the Boolean
assignments of input variables so that the value of
formula is true. When such an assignment exists, the
formula is considered to be satisfiable, and vice versa.
Many of the functional and security validation problems
in SoC domain can be mapped to SAT problems.

• Model Checking (MC): MC focuses on abstracting
SoC’s execution into a finite-state machine (FSM) and
the properties of interest are expressed in temporal
logic. MC then exhaustively explores the state space to
check if the implementation (FSM) satisfies the given
properties. In case a property is not satisfied (potential
vulnerability), MC generates a counterexample that can
be analyzed to fix the vulnerability.

• Equivalence Checking (EC): EC can be used to
formally prove that different representations of a design
display the same functionality — nothing more, nothing
less. Therefore, it has a natural fit to detect any vulnera-
bilities assuming that the golden model is available.

The remainder of this section describes how these formal
verification techniques are used by the existing ML-based

49516 VOLUME 10, 2022



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

TABLE 2. Threat model, defense, overhead and effectiveness of work in existing literature related to ML-based SV approaches. Threat model: Types of
threats in SoC to deal with, including Hardware trojan (HT) and Side-channel leakage (SCL). ML model: Machine learning models applied. Specifically,
we use ‘‘∗’’ to indicate multiple(>5) ML models applied. Hardware Overhead: We use a three-step scale (low, average, high) to indicate the overhead in
terms of area and power requirements. Detection Accuracy: We use a three-step scale (low, average, high) to indicate the vulnerability detection accuracy.

FIGURE 14. The basic steps for performing ML-based electronic system-Level SCA detection in [55].

FIGURE 15. An overview of formal verification of security vulnerabilities.

hardware vulnerability analysis. Notice content in this section
mainly discuss methods utilizing ML to assist formal
verification in general, which can be further extended to
tackle hardware security verification. which is a broad new
area remaining unexplored.

A. ML-BASED SATISFIABILITY SOLVING FOR
VULNERABILITY ANALYSIS
The difficulty of SAT problems comes from the fact that
it is hard to determine the environmental settings, timing
for various tasks, and the selection of branching variables.

Therefore, ML techniques are usually applied to develop
approximation algorithms, or work as an optimizer for tasks
such as dynamic determination of the most feasible solvers.
To predict the runtime of a SAT solver for better program
switching in case the current one takes too long, Horvitz et al.
proposed a Bayesian approach to tackle the computational
cost [58]. This inspires people to applyML in other scenarios.
For example, for solving as many instances as possible within
a given time budget, selecting the best restart strategy on
various design features represents a classification ML task.

Haim & Walsh [59] proposed a smart selection of the
restart strategy, where features are chosen based on portfolio-
based algorithm.

Selection of the branching variable is another major
concern. Choosing the most appropriate branching variable is
crucial for improving solvers’ runtime by minimizing back-
tracking. This makes it a perfect match for a reinforcement
learning problem. Imaging along a SAT solver’s working
process, it chooses the next variable to branch on, a reward
value can be attached to the variable choice as score,
so that it maximizes the progress for solving the instance.
Liang et al. [60], [61] explored two different reward

VOLUME 10, 2022 49517



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

computations based on different branching heuristics:
conflict-based heuristic for variable selection [60], and
learning rate branching [61]. Both heuristics rewarded
the generation of learned clauses locally to save time.
Fröhlich et al. [62] proposed another framework, where
they penalize the candidate variable choices to minimize the
number of unsatisfied clauses. Lagoudakis and Littman [63],
penalize branching rules instead to obtain a better strategy,
but its solving time is too long, which reduces its usability.

ML techniques can even be applied to determine the best
solving algorithm. It is a well-known fact that certain families
of instances can be better solved with specific algorithms.
This could be seen as a regression ML problem, when the
goal is to predict an algorithm’s continuous probability of
success. SATzilla [64] proposed one of the popular solvers,
which allows to switch to another algorithm when the current
one takes too long inducing low-efficiency. Similarly, Auto-
Folio [65] selects algorithms based on features similar to the
ones in SATzilla.

Several research efforts focus on applying ML to help
configuring SAT solvers’ parameters. Hutter, Hoos and
Leyton-Brown [66] defined SMAC (Sequential Model-based
Algorithm Configuration), a technique to generalize the clas-
sical optimization algorithm by using training, based mostly
on SATzilla’s features, resulting in a highly parametrized
framework.

Most ML techniques for SAT focus on some assistance
work, since tackling the whole SAT problem through ML is
difficult. In reality, it has shown some promising research
directions. For example, Wu et al.’s work predicts 3-CNF
instance satisfiability with seven features from given design,
where they reuse the partial prediction to determine which
value is preferable for a branching literal [67]. However,
this approach cannot be directly applied to other class of
instances since the number of clauses and variables is at equi-
librium particularly for 3-CNF instances, making instances
neither underconstrained nor overconstrained. Devlin and
O’Sullivan [68] as well as Xu et al. [69] studied several
classifiers for predicting the other types of instances, where
they tried to minimize the number of necessary features to
build simple and elegant classifiers, but the entire framework
is not tested through large-scale benchmarks.

B. ML-BASED MODEL CHECKING FOR VULNERABILITY
ANALYSIS
Model checking analysis utilizes a finite-statemachine (FSM)
based representation of the implementation to validate
properties of interest, or generate counterexamples triggering
vulnerabilities in the SoC design. These characteristics make
it unsuitable with machine learning methods, therefore,
there are no ML-related works for model checking. Instead,
many contributions focus on helping the speed of detecting
counterexamples, or reducing false positives during model
checking.

Araragi and Cho [70] targeted the production of coun-
terexamples using reinforcement learning. The authors

kept track of the premise occurrence at the state space
level, and rewarded explorations that stayed on paths with
possible contradiction that can generate counterexamples.
However, this method would lead to cyclic, or very long
paths of execution. Behjati et al. [71] follow a similar
approach, where they developed a reinforcement learning
framework. The agent in their algorithm is punished when
following non-accepting cycles, and rewarded when finding
unfair accepting cycles, which could possibly lead to the
property’s invalidation. Clarke et al. [72] implemented
an linear programming based FSM-refinement technique
for model-checking deployed on real hardware circuits.
They train a ML model to automatically extract spurious
counterexamples (false alarms).

Researchers are inspired to develop ML-based approaches
for extracting the most common counterexamples for a
given design (i.e., error patterns). This is closely related
to the ML task of extracting frequent items and pat-
tern recognition. In [74], Pira et al. characterized error
patterns as specific sequence of transitions in FSM, and
by applying a graph-based model with a variation of
the APriori algorithm. These patterns are discovered on
smaller systems with similar architectural design, therefore,
they can be used to guide model checking on larger
systems. In this way, the cost for MC is significantly
reduced.

C. ML-BASED EQUIVALENCE CHECKING FOR
VULNERABILITY ANALYSIS
Hu et al. proposed a equivalence checking method based on
ML [75]. The work aims at performing equivalence checking
between register-transfer level (RTL) design and system-
level description. They transform both type of designs into
finite state machines with datapath (FSMD) and compare
the path pairs to measure the equivalence. It recognizes
the corresponding path pairs of the model using a SVM
model, which avoids a blind path selection work in general
equivalence checking. Their method can dramatically reduce
the time complexity. Their subsequent work [76] checks
moreMLmodels to show trade-off between effectiveness and
efficiency. Also, in [77], the author proposed an alternative
ML-based equivalence checking, where they first convert
RTL design into dataflow graphs, then apply a graph-
to-sequence neural network model to achieve equivalence
checking. The proposed method achieves an accuracy of 96%
with promising time efficiency.

For some of surveyed works, the authors did not provide
any analysis about overhead. Entries presented in Table are
our best estimations based on ML models utilized in their
works.

D. OVERHEAD AND EFFECTIVENESS OF SURVEYED
APPROACHES
Table 3 shows a summary of the papers we have surveyed
related to ML-based vulnerability analysis using formal
verification.

49518 VOLUME 10, 2022



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

VII. ML-BASED HEURISTIC ANALYSIS FOR DETECTION
OF VULNERABILITIES
As discussed in Sec IV, Heuristic Analysis (HA) is a
combinational analysis approach by first performing feature
extraction followed by pattern recognition. There is a
natural compatibility of HA with a wide variety of machine
learning approaches. Most of the existing works are designed
for specific purposes, and rely on expert knowledge and
experience to select important features from the designs.
In other words, ML-based solutions discussed in this section
are utilized as a tool in the final step, classification, whereas
the crucial step (feature selection) is performed manually by
a designer with deep understanding of design features and its
security implications.

In [78], the authors target integrated circuit (IC) aging
analysis by proposing a two-stage method for detecting
recycled FPGAs. Both stages rely on machine learning via
support vector machines (SVM) for classification. In the first
stage, they compare the frequencies of ring oscillators (ROs)
distributed on the FPGAs against a golden model as the cru-
cial feature to distinguish recycled and fresh FPGA. This is
an initialization step, where they raise red flags for suspicious
components in the entire circuit. While in the second phase,
they performed a short aging step on the suspect FPGAs and
exploits the aging speed reduction (due to prior usage) to
confirm the cases marked by the first step. According to their
experimental evaluation, their approach can distinguish fresh
and recycled FPGAs with 100% accuracy for a variety of
benchmarks.

Huang et al. [79] presented an approach to detect
counterfeit ICs using SVM. Instead of ROs, they first observe
the distribution of process variation across devices. Next,
they build a simple parametric measurement to map this
circuit feature into a 2-D space. Finally, an SVM classifier
performs the job of counterfeit detection, which is shown in
Figure 17. However, these approaches work well when we
know the proper feature to be fed into theMLmodels. In other
words, promising solutions for a specific scenario (e.g.,
countermeasure against IC overfeiting) cannot be utilized for
other types of SoC vulnerabilities.

To apply HA for HT detection, Hasegawa in [80],
developed a Trojan-feature extraction algorithm at gate-level,
and utilize it to perform hardware-Trojan detection using
SVM classifier. This work was also extended to similar
framework with different ML models including random
forest (RF) [73] and neural networks [47]. In general, they
focus on hardware-Trojan detection using machine learning
in IC design step. They outlined 11 most effective features
that reflect Trojan’s impact on netlists, as shown in Figure 16.
By using RF as the classifier, they obtained 100% true
positive rate and 100% true negative rate in several Trust-
HUB benchmarks.

In [81], heuristic analysis is performed by signal corre-
lation. It estimates the statistical correlation between the
signals in a design, and explores how this estimation can
be used in a clustering algorithm to detect the Trojan logic.

Since it is based on heuristic of using statistical model to
estimate the signal correlations of gate-level netlist, it neither
need the circuit to be brought to the triggering state, nor
the effect of the Trojan payload to be propagated and
observed at the output. This idea was inherited in [82],
where the authors directly apply the transition probability
as the feature for analysis. To address the order sensitivity
problem, a stacked long short-term memory network is
designed to build a robust HT detection model. Following
this assumption, a more sophisticated work was proposed
in [83]. Lu et al. extracted information entropy instead of
signal correlation from circuits as critical features. This work
is built based on one assumption that to maintain stealthy
concealment, Trojans should be inserted in regions with low
controllability and observability, which will result in low
transition probability of Trojan logic.

Dong et al. [84] analyzed the existing Trojan-net features
from [80] to propose five new hardware-Trojan features.
To further develop time-efficient approaches, they utilized
the gradient boosting algorithm to train the ML model for
HT detection [84]. Their algorithm applied the scoring mech-
anism of the eXtreme Gradient Boosting (XGBoost) [85]
to set up a new feature set. Their experimental results
demonstrate that they are able to obtain an average F-score
of 87.75%. Similar ideas are also explored in [86] and [87],
where gradient boosting algorithm was applied on features
extracted from RTL level and gate-level, respectively.
In [88], the ML models’ performance is further enhanced by
hyperparameter tuning of RF model. In [89], HT detection
uses class weighted XGBoost, where higher weights are
assigned to minority Trojan-inserted class to remove the
need for oversampling, which improves the efficiency of
HT detection.

The above mentioned works focus on features that are
either static signal features [73], [78] or reaction features [79].

Zhou et al. [90] combined HA and ML techniques for
HT detection, where they analyzed the structural features
of IP cores and HT triggers in gate-level circuits. Their
method is specifically designed for detecting HTs triggered
by less toggled signals. They abstract the circuit into a
graph, and extract special structures that are commonly
adopted by HT implants. After obtaining the general pattern
of those suspicious structures, they apply ML model for
the classification work, and their experimental results yields
a 100% detection rate. However, these algorithms share
the same bottleneck as the above methods that require
golden reference model since ML models applied here
are all supervised learning. To address this limitation,
Xue et al. [11] proposed a hybrid clustering model to achieve
golden-Free HT detection. They achieve this by utilizing
two attack models to imitate untrustworthy parties. Then
through adversarial data generation, they produce the pool of
adversarial samples of possible HTs, from which features of
HTs were extracted. By utilizing hybrid clustering ensemble
method, they were able to classify if a given circuit contains
malicious implants.

VOLUME 10, 2022 49519



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

FIGURE 16. The 11 most effective HT features to help ML detection. [73].

TABLE 3. Threat model, defense, overhead and effectiveness of work in existing literature related to ML-based formal verification approaches. Threat
model: types of threats in SoC to deal with, including hardware Trojan (HT), supply-chain vulnerability (SCV) and reverse engineering (RE). ML model:
machine learning models applied. Hardware overhead: we use a three-step scale (low, average, and high) to indicate the overhead in terms of area and
power requirements. Detection accuracy: We use a three-step scale (low, average, and high) to indicate the vulnerability detection accuracy.

TABLE 4. Threat model, defense, overhead and effectiveness of work in existing literature related to ML-based heuristic analysis approaches. Threat
model: types of threats in SoC to deal with, including hardware Trojan (HT) and supply-chain vulnerability (SCV). ML model: machine learning models
applied. Hardware overhead: we use a three-step scale (low, average, and high) to indicate the overhead in terms of area and power requirements.
Detection accuracy: we use a three-step scale (low, average, and high) to indicate the vulnerability detection accuracy.

We summarize the overhead and effectiveness of surveyed
papers related to ML-based heuristic analysis in Table 4.

VIII. ML-BASED SIDE-CHANNEL ANALYSIS OF
HARDWARE VULNERABILITIES
The field of side-channel analysis (SCA) has gained signifi-
cant attention for hardware vulnerability analysis [91]. SCA
has now been practiced in design companies and test laborato-
ries, and the security of products against side-channel attacks
has been significantly improved over the years. However,
there are still many unresolved weaknesses remained making
SCA less effective. In general, SCA consists of two steps:

execution using suitable input (test) patterns and comparison
with the expected (golden) side-channel signatures.

Security experts create test vectors to trigger side-channel
signatures, which can evaluate the quality of the SoC or
detect potential vulnerabilities. Although both SCA and
simulation-based validation (SV) relies on test generation and
comparison with golden design, there are few fundamental
differences.

• Unlike SV which relies on functional values at output
ports, SCA relies on side-channel signatures such power
consumption/dissipation, path delay, electro-magnetic
emanation, etc.

49520 VOLUME 10, 2022



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

FIGURE 17. In [79], IC with different aging level are mapped in 2D space,
where the classification work is done by using SVM to distinguish data
points in 2D space.

• Detection of tiny Trojans is difficult using SCA, since
the side-channel footprint of the tiny Trojan can easily
hide in environmental noise or manufacturing process
margins. This is not a problem for SV-if the Trojan can
be activated, there will be mismatch in the expected
outputs (assuming the Trojan alters the functionality).

• It is hard to activate Trojan trigger during SV, since it
is infeasible to simulate all possible input (test) patterns
in a large design (exponential number of test vectors).
This is not a problem in SCA, since it does not require
activation of the Trojan trigger.

SCA is widely adopted in scenarios where the model
is poorly known, since the task can be approximated to a
profiling phase. SCA is typically used for hardware Trojan
detection in integrated circuits by analyzing various side-
channel signatures, such as timing, power and path delay.
An overview of side-channel attacks and countermeasures is
presented in Figure 18.

Hospodar et al. [92] proposed one of the early efforts
to deal with the application of ML techniques for SCA.
They used a variant of SVM called least square support
vector machine (LS-SVM) to distinguish power traces of an
unprotected software AES implementation regarding three
properties of the S-Box output to detect implanted HT. How-
ever, their selection of features are based on expertise, and
may not be applicable in other scenarios. The most relevant
features were discovered by a Sum Of Squared pairwise
T-differences (SOST) analysis in [93] using Pearson cor-
relation and Principal Component Analysis (PCA). They
observed that the choice of the LS-SVM parameters signif-
icantly affects the performance of the classification, whereas
the size of the training set is less important.

Heuser and Zohner used multi-class SVM classification
to make assumptions about the intermediate value byte
of an AES implementation running on an ATMega-256-1
microcontroller [94]. They show that their SVM model is
more stable since it relaxes the assumption that the data
underlie a multivariate Gaussian distribution. This provided
the basis for the work of Bartkewitz and Lemke-Rust [95],
who designed probabilistic multi-class SVMs the same way.
Next, they applied a technique called normal-based feature

selection. Here, the absolute values of the weight parameters
were carefully refined to determine if a corresponding feature
has significant influence on the classification performance.
Small weight values are therefore set to zero to disre-
gard unimportant features. This idea actually follows the
explainable machine learning approaches, where the model
provides an importance ranking of features to outline the
most crucial features of SoC design for distinguishing it
from golden designs. The efficiency of the approach was
measured through a wide variety of benchmarks. They
observed that SVM-based model is perfect if the security
problem can be directly transferred into a linear classification
problem, whereas the RBF kernel is appropriate for non-
linear problems if using kernel tricks as discussed in Sec II.

Banciu et al. investigated several ML-based classifiers
in the context of single trace attacks [96]. These type of
attacks assume an adversary which only has access to a single
attack trace. When targeting symmetric ciphers, the attacks
should be error tolerant in a sense that side-channel leakage
information for an intermediate value can be a set of possible
values. Examples from literature are discussed in [97], where
a set of assumptions are pre-defined to guarantee their
method’s correctness. In the study of [98], different ML
models are evaluated, where Bayesian, SVM, DNN, DT and
RF were trained to produce a ranked list of hardware features
with given power consumption traces obtained from an
AES implementation. In their experimental evaluation, only
Bayesian, RF and SVM performed well across the two data
sets and different numbers of traces/features used for training.

Picek et al. presented an approach called hierarchical
classification [99]. The idea is to explore the natural
clustering of the leakage in order to arrange the sensitive
variables in a tree structure. It starts by dividing all collected
traces in the corresponding platform by their sensitivity to
environmental noise, and then each subset is classified into
different sensitive variables. The main purpose of their work
is to give a rank of sensitive regions inside the circuit whose
signals are likely to emanate side-channel information about
the entire circuit. Naive Bayes, DT, RF and SVM were
considered as classification algorithms and evaluated along
with standard template attacks. In most cases, SVM model
performed the best. The authors also proposed to combine
the hierarchical approach with a standard DNN classifier to
increase the accuracy.

Picek et al. showed in an another study the importance
of proper parameter tuning when using ML techniques for
side-channel analysis [101]. From the set of examined super-
vised classifiers (SVM, RF and Adaboost), the best results
in terms of classification accuracy under cross-validation
through parameter tuning were obtained for SVM. However,
RF and Adaboost performed only slightly worse with their
optimal settings, but were far more robust to parameter
value changes. It is furthermore shown that a carefully tuned
algorithm is able to reach a relatively high accuracy (more
than 70% in the worst case) even if only a small number of
relevant features is used.

VOLUME 10, 2022 49521



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

FIGURE 18. A brief overview of commonly applied side channel attacks and defences.

Most research works in ML-based SCA focus on selection
of the features, and tuning of parameters. These two major
parts were usually done with the information gain method,
such as C4.5 [102] algorithm, which is applied to grow DT.
The authors also presented a novel side-channel metric called
data confusion factor that quantifies the difficulty of a given
ML problem regarding a certain data set.

There are recent research efforts that try to combine
the advantages of simulation-based validation with SCA.
The basic idea is to maximize side-channel sensitivity by
generating efficient test patterns that can maximize activity
in the suspicious regions while minimize activity in the rest
of the design. For example, in [38], the author propose an
efficient test generation technique to detect Trojans using
delay-based side channel analysis, which is an automated
test generation algorithm to produce test patterns that are
likely to activate trigger conditions, and change critical
paths. However, it is not effective due to two fundamental
limitations: (i) the difference in path delay between the golden
design and Trojan inserted design is negligible comparedwith
environmental noise and process variations and (ii) it relies on
manually crafted rules for test generation, and require a large
number of simulations, making it impractical for industrial
designs.

To address these challenges, Pan et al. [100] proposed
a test generation method using reinforcement learning for
delay-based Trojan detection. This approach utilizes critical
path analysis to generate test vectors that can maximize the
side-channel sensitivity. Experimental results demonstrate
that this method can significantly improve both side-channel
sensitivity (59% on average) and test generation time (17×
on average) compared to state-of-the-art test generation
techniques. The framework of this algorithm is depicted in
Figure 19. Another golden-free Trojan detection method was
proposed in [103] that utilizes Trojan Trigger’s EM side-
channel fingerprint. The method is based on the unsupervised
clustering analysis of golden RTL code instead of actual
fabricated chip. In other words, it eliminates the need for a
trusted golden fabricated chip as a reference. This method
achieves > 99% detection accuracy.

FIGURE 19. Illustration of the stochastic reinforcement learning method
in [100].

Table 5 summarizes the papers we have surveyed related to
ML-based vulnerability analysis using side-channel analysis.

IX. ML-BASED PCB ANALYSIS OF HARDWARE
VULNERABILITIES
A printed circuit board (PCB) contains conductive pathways
to connect different parts of the board, which is utilized
to mechanically support and electrically connect electronic
components. The pathways are inscribed onto the board
according to the architecture of the PCB design. By analyzing
the layout and connectivity from PCB, users are able to detect
potential security threats such as malicious implanting or
IC counterfeiting. However, PCBs are prone to a variety of
defects including, but not limited to, impropermanufacturing,
scratching, and destructive delayering during the analysis
procedure. These defects severely degrade the performance of
traditional PCB-level analysis. Several illustrative examples
of PCB from [104] are shown in Figure 20.

As we can see, PCB-level analysis has a natural com-
patibility with ML-based approaches. ML-based computer
vision tasks include image target classification and target

49522 VOLUME 10, 2022



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

TABLE 5. Threat model, defense, overhead and effectiveness of work in existing literature related to ML-based SCA approaches. Threat model: Types of
threats in SoC to deal with, including Hardware Trojan (HT) and Supply-chain vulnerability (SCV). ML model: Machine learning models applied. Specifically,
we use ‘‘∗’’ to indicate that it involves multiple ML models. Hardware overhead: We use a three-step scale (low, average, high) to indicate the overhead in
terms of area and power requirements. Detection accuracy: We use a three-step scale (low, average, high) to indicate the vulnerability detection accuracy.

TABLE 6. Threat model, defense, overhead and effectiveness of work in existing literature related to ML-based PCB analysis approaches. Threat model:
types of threats in SoC to deal with, including hardware Trojan (HT) and supply-chain vulnerability (SCV). ML model: machine learning models applied.
Specifically, we use ‘‘∗’’ to indicate that it involves multiple ML models. Hardware overhead: we use a three-step scale (low, average, and high) to indicate
the overhead in terms of area and power requirements. Detection Accuracy: We use a three-step scale (low, average, and high) to indicate the
vulnerability detection accuracy.

FIGURE 20. Illustrative examples of printed circuit boards (PCB)
from [104].

localization, which is particularly suitable for PCB structure
analysis and component recognition. As a result, researchers
start to seek nondestructiveML-basedmethods to assist PCB-
level analysis. In general, a deep neural network can be
trained for PCB component detection to identify malicious,
counterfeit, reused, or recycled components.

As a data-driven technique, ML requires huge amount of
samples to train the ML model. Gayathri et al. introduce
PCB-METAL [105], a printed circuit board (PCB) high
resolution image dataset, which can be utilized for computer
vision and ML-based component analysis. The dataset
consists of 984 high resolution images of 123 unique PCBs
with bounding box annotations for ICs, capacitors, resistors,
and inductors. The dataset is useful for image-based PCB
analysis such as component detection, PCB classification,
circuit design extraction, etc. A hardware Trojan detection

approach based on components recognition in PCB using
convolutional neural network (CNN) is proposed in [106].
It achieved 99% accuracy with the capability of recognizing
up to 25 different components in the board. Yuk et al.
proposed another feature-learning-based PCB inspection
method via speeded-up Random Forest in [104]. Similarly,
for defect detection, Zakaria et al. proposed an automated
detection of PCB defects by using machine learning in
electronic manufacturing [107]. Hu et al. proposed a surface
defect detectionmethod with faster CNN and feature pyramid
network [108].

For supply chain vulnerability, Stern et al. [109] utilize
the fingerprint information of microprocessors based on
electromagnetic emanation (EM) from three vendors. They
utilized both unsupervised (PCA) and supervised (LR)
learning on all ICs to successfully determine their vendors.
Statistical analysis and machine learning techniques are used
to achieve high classification accuracy. A novel authorization
methodology to prevent IC counterfeit through supply chain
is illustrated in [110]. In this work, a ring oscillator (RO)
array is inserted into the selected IC. The counterfeit
PCB/equipment can be detected by judging whether the
periods of ROs in the resonant and non-resonant state of
the PCB matches the database from the authentic ones. The
proposed authorization structure has been implemented on
some authentic and counterfeit FPGA development boards,
and more than 90% counterfeit PCBs can be identified by a
2-class SVM classifier.

ML-based PCB analysis approaches are also widely
applied to introduce supply chain vulnerabilities, especially
for reverse engineering. In [111], Navid et al. introduce a

VOLUME 10, 2022 49523



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

nondestructive approach for PCB reverse engineering based
on X-ray tomography, with low associated time and cost.
In [112], Erozan et al. presented a robust reverse engineering
methodology based on supervised machine learning, starting
from image acquisition all the way to netlist extraction.

The authors in [113] summarized the pros and cons of
utilizing ML-based approaches in PCB level. They examined
various ML methods applied in computer vision domain
on PCB analysis. They also summarized the challenges of
applying machine learning for PCB component recognition
and how to address it. Specifically, ML-based PCB analysis
suffers from variance, evolving scope, and the need for
dataset. In [113], the authors proposed a specialized network
called the electronic component localization and detection
network (ECLAD-Net) to address these challenges.

Table 6 summarizes the papers we have surveyed related to
ML-based vulnerability analysis using side-channel analysis.

X. CONCLUSION AND FUTURE DIRECTIONS
System security relies on the security of each of the
components including hardware, firmware and software.
Hardware security is critical since some of the software
security guarantees are based on the hardware-root-of-trust.
Machine learning is very promising in efficient detection
and mitigation of hardware vulnerabilities. In this survey,
we have provided a comprehensive review of hardware
vulnerability analysis using machine learning techniques.
We have discussed how existing approaches utilized machine
learning techniques for hardware security verification using
simulation-based validation, formal verification, heuristic
analysis as well as side-channel analysis.

While the existing approaches have shown promising
results, there aremany related problems that need to be solved
in order to design secure and trustworthy systems. In this
section, we outline few research directions that we believe
are interesting and open problems in the domain.

A. ADVERSARIAL MACHINE LEARNING
While machine learning has been widely used in defending
systems agains malicious attacks, machine learning models
also impose security risks. For example, machine learning
can also be used by adversaries to launch attacks. In most
of the reviewed papers, accuracy is less than 100%, which
means that there are still in correctly classified data points
in the test set. When machine learning is applied in realistic
scenarios, misclassification of a single attack is enough to
exploit the whole system. More-over, attackers can mislead
classification process by injecting attacks that are deliberately
classified as safe while they are in fact malicious. While
machine learning is a promising approach for hardware
security, if the detection accuracy and the true positive rate
are not 100%, the system is under severe security risk.
When machine learning models are deployed in security
related applications, only the detected attacks are taken into
consideration. However, instances that are marked as normal

should be treated as suspicious, i.e., these instances may be
misclassified as normal while they are in fact attacks.

B. SIDE-CHANNEL SENSITIVITY
Though machine learning has been widely adopted in SCA,
existing side-channel analysis techniques have two major
bottlenecks: (i) they are not suitable in detecting Trojans
in real-world applications since the difference between the
golden design and a Trojan inserted design is usually
negligible compared to environmental noise and process
variations, and (ii) they are not effective in creating robust
signatures due to their reliance on random and ATPG
based test patterns. Therefore, there is a lot of scope for
developing efficient test generation techniques for improving
side-channel sensitivity.

C. FORMAL VERIFICATION TECHNIQUES
In Section VI, we described machine learning techniques to
address formal verification in general. However, they are
not especially designed for hardware security verification.
This inherently brings two attractive research directions. First
is to directly apply these ML-assisted formal verification
techniques to tackle practical hardware security verification.
Second is to develop specific ML methods that especially
designed for verification. in future research works, which
remains an unexplored land in security domain.

D. EXPLAINABLE MACHINE LEARNING
Typically machine learning algorithms are utilized as a
tool in certain steps of HW security analysis instead of
the entire process. One of the major reasons that makes
pure ML-based verification hard is that the implicit models
(e.g. neural networks) are difficult to grasp and understand
for humans. They act like a black box to produce desired
outputs without explanation. The ML models are completely
nontransparent since there is no proper indication on what
kind of mechanism contributes to promising results. This
brings two challenges in applying ML in real applications.
(i) Specifying which models to deploy is difficult, since there
is no criteria, and human cannot explain why certain model
performs well for specific tasks. Most of the existing works
address this by exploring a wide spectrum of different models
to select a beneficial ML model. (ii) Limited information
for detection results. From a nontransparent ML model,
end-users merely obtain the final detection result without
interpretation. Therefore, they are unable to locate the threats
or perform scene clearing operations, and it is difficult for
them to take suitable precautions. There is a need for utilizing
explainable machine learning for hardware vulnerability
analysis.

The continuous emergence of new techniques and novel
methods can be exploited by an adversary to implement more
intelligent attacks. While effort should be devoted to solving
the remaining outstanding issues efficiently at low-cost [114],
emerging threats are also a major concern. For example, the
vulnerabilities discussed in this paper are related to integrated

49524 VOLUME 10, 2022



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

circuits designed using VLSI (CMOS) technology. The
security landscape may be drastically different if we consider
hardware designed using various emerging technologies.
Therefore, the security researchers will always have a lot of
items in their plate for understanding emerging vulnerabilities
and design efficient machine learning techniques to detect
and mitigate future vulnerabilities.

REFERENCES
[1] M. Rostami, F. Koushanfar, and R. Karri, ‘‘A primer on hardware

security: Models, methods, and metrics,’’ Proc. IEEE, vol. 102, no. 8,
pp. 1283–1295, Aug. 2014.

[2] (2021). Common Weakness Enumeration. [Online]. Available: https://
cwe.mitre.org/

[3] G. Sumathi, L. Srivani, D. T. Murthy, K. Madhusoodanan, and
S. A. V. S. Murty, ‘‘A review on HT attacks in PLD and ASIC designs
with potential defence solutions,’’ IETE Tech. Rev., vol. 35, no. 1,
pp. 64–77, 2018.

[4] J. Zhang and G. Qu, ‘‘Recent attacks and defenses on FPGA-based
systems,’’ ACM Trans. Reconfigurable Technol. Syst., vol. 12, no. 3,
pp. 1–24, 2019.

[5] Z. Huang, Q.Wang, Y. Chen, andX. Jiang, ‘‘A survey onmachine learning
against hardware trojan attacks: Recent advances and challenges,’’ IEEE
Access, vol. 8, pp. 10796–10826, 2020.

[6] S. Ruder, ‘‘An overview of gradient descent optimization algorithms,’’
2016, arXiv:1609.04747.

[7] Y. Freund and R. E. Schapire, ‘‘A decision-theoretic generalization of
on-line learning and an application to boosting,’’ J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, 1997.

[8] J. H. Friedman, ‘‘Greedy function approximation: A gradient boosting
machine,’’ Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 2001.

[9] P. Gaikwad, J. Cruz, P. Chakraborty, S. Bhunia, and T. Hoque, ‘‘Third-
party hardware IP assurance against trojans through supervised learning
and post-processing,’’ 2021, arXiv:2111.14956.

[10] S. Cadambi, I. Durdanovic, V. Jakkula, M. Sankaradass, E. Cosatto,
S. Chakradhar, and H. P. Graf, ‘‘A massively parallel FPGA-based
coprocessor for support vector machines,’’ in Proc. 17th IEEE Symp.
Field Program. Custom Comput. Mach., Apr. 2009, pp. 115–122.

[11] M. Xue, R. Bian, W. Liu, and J. Wang, ‘‘Defeating untrustworthy testing
parties: A novel hybrid clustering ensemble based golden models-free
hardware trojan detection method,’’ IEEE Access, vol. 7, pp. 5124–5140,
2019.

[12] Q. Cui, K. Sun, S.Wang, L. Zhang, and D. Li, ‘‘Hardware trojan detection
based on cluster analysis of Mahalanobis distance,’’ in Proc. 8th Int.
Conf. Intell. Hum.-Mach. Syst. Cybern. (IHMSC), vol. 1, Aug. 2016,
pp. 234–238.

[13] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
‘‘Hardware Trojans: Lessons learned after one decade of research,’’ ACM
Trans. Design Autom. Electron. Syst., vol. 22, no. 1, pp. 1–23, Dec. 2016.

[14] J. Francq and F. Frick, ‘‘Introduction to hardware Trojan detection
methods,’’ in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE),
Mar. 2015, pp. 770–775.

[15] X. Wang, Y. Zheng, A. Basak, and S. Bhunia, ‘‘IIPS: Infrastructure IP for
secure SoC design,’’ IEEE Trans. Comput., vol. 64, no. 8, pp. 2226–2238,
Aug. 2015.

[16] T. Boraten and A. Karanth Kodi, ‘‘Packet security with path sensitization
for NoCs,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2016,
pp. 1136–1139.

[17] N. Fern, I. San, C. K. Koc, and K.-T.-T. Cheng, ‘‘Hiding hardware trojan
communication channels in partially specified SoC bus functionality,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 9,
pp. 1435–1444, Sep. 2017.

[18] A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, and M. Tehranipoor,
‘‘AVFSM: A framework for identifying and mitigating vulnerabilities in
FSMs,’’ in Proc. 53rd ACM/EDAC/IEEE Design Automat. Conf. (DAC),
Jun. 2016, pp. 1–6.

[19] N. Fern, I. San, Ç. Kaya Koç, and K.-T. (Tim) Cheng, ‘‘Hardware trojans
in incompletely specified on-chip bus systems,’’ in Proc. Design, Autom.
Test Eur. Conf. Exhib. (DATE), 2016, pp. 527–530.

[20] S. K. Haider, C. Jin, M. Ahmad, D. Shila, O. Khan, and M. van Dijk,
‘‘Advancing the state-of-the-art in hardware trojans detection,’’ IEEE
Trans. Dependable Secure Comput., vol. 16, no. 1, pp. 18–32, Feb. 2019.

[21] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, ‘‘Hardware Trojan
attacks: Threat analysis and countermeasures,’’ Proc. IEEE, vol. 102,
no. 8, pp. 1229–1247, Aug. 2014.

[22] X. Wang, M. Tehranipoor, and J. Plusquellic, ‘‘Detecting malicious
inclusions in secure hardware: Challenges and solutions,’’ in Proc. IEEE
Int. Workshop Hardw.-Oriented Secur. Trust, Jun. 2008, pp. 15–19.

[23] Y. Jin, D. Maliuk, and Y. Makris, ‘‘A post-deployment IC trust evaluation
architecture,’’ in Proc. IEEE 19th Int. On-Line Test. Symp. (IOLTS),
Jul. 2013, pp. 224–225.

[24] T. Hoque, J. Cruz, P. Chakraborty, and S. Bhunia, ‘‘Hardware IP trust
validation: Learn (the Untrustworthy), and verify,’’ in Proc. IEEE Int. Test
Conf. (ITC), Oct. 2018, pp. 1–10.

[25] Y. Jin, D. Maliuk, and Y. Makris, ‘‘Post-deployment trust evaluation in
wireless cryptographic ICs,’’ in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2012, pp. 965–970.

[26] A. Basak, S. Bhunia, T. Tkacik, and S. Ray, ‘‘Security assurance for
system-on-chip designs with untrusted IPs,’’ IEEE Trans. Inf. Forensics
Security, vol. 12, no. 7, pp. 1515–1528, Jul. 2017.

[27] M. Fyrbiak, S. Strauss, C. Kison, S. Wallat, M. Elson, N. Rummel, and
C. Paar, ‘‘Hardware reverse engineering: Overview and open challenges,’’
in Proc. IEEE 2nd Int. Verification Secur. Workshop (IVSW), Jul. 2017,
pp. 88–94.

[28] T.Meade, S. Zhang, andY. Jin, ‘‘Netlist reverse engineering for high-level
functionality reconstruction,’’ in Proc. 21st Asia South Pacific Design
Automat. Conf. (ASP-DAC), Jan. 2016, pp. 655–660.

[29] R. Torrance and D. James, ‘‘The state-of-the-art in semiconductor
reverse engineering,’’ in Proc. 48th Design Autom. Conf. (DAC), 2011,
pp. 333–338.

[30] A. Alaql, S. Chattopadhyay, P. Chakraborty, T. Hoque, and
S. Bhunia, ‘‘LeGO: A learning-guided obfuscation framework for
hardware IP protection,’’ IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 41, no. 4, pp. 854–867, Apr. 2022.

[31] R. Chakraborty, F. Wolff, and S. Paul, ‘‘MERO: A statistical approach for
hardware trojan detection,’’ in Proc. CHES, 2009, pp. 396–410.

[32] A. Saini, G. Kundra, and S. Kalra, ‘‘A survey on hardware trojan
detection: Alternatives to destructive reverse engineering,’’ in Proc. 2nd
Int. Conf. Comput., Commun., Cyber-Secur. Springer, 2021, pp. 885–897.

[33] C. Liu, P. Cronin, and C. Yang, ‘‘A mutual auditing framework to protect
IoT against hardware trojans,’’ in Proc. 21st Asia South Pacific Design
Autom. Conf. (ASP-DAC), Jan. 2016, pp. 69–74.

[34] J. Aarestad, D. Acharyya, R. Rad, and J. Plusquellic, ‘‘Detecting trojans
through leakage current analysis using multiple supply pad IDDQs,’’ IEEE
Trans. Inf. Forensics Security, vol. 5, no. 4, pp. 893–904, Dec. 2010.

[35] T. Wehbe, V. J. Mooney, A. Q. Javaid, and O. T. Inan, ‘‘A novel
physiological features-assisted architecture for rapidly distinguishing
health problems from hardware Trojan attacks and errors in medical
devices,’’ in Proc. IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST),
May 2017, pp. 106–109.

[36] B. Shanyour and S. Tragoudas, ‘‘Detection of low power trojans in
standard cell designs using built-in current sensors,’’ in Proc. IEEE Int.
Test Conf. (ITC), Oct. 2018, pp. 1–10.

[37] D. Forte, C. Bao, and A. Srivastava, ‘‘Temperature tracking: An
innovative run-time approach for hardware Trojan detection,’’ in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2013,
pp. 532–539.

[38] A. N. Nowroz, K. Hu, F. Koushanfar, and S. Reda, ‘‘Novel techniques
for high-sensitivity hardware trojan detection using thermal and power
maps,’’ IEEE Trans. Comput.-Aided Design Integr., vol. 33, no. 12,
pp. 1792–1805, Dec. 2014.

[39] F. N. Esirci and A. A. Bayrakci, ‘‘Hardware Trojan detection based on
correlated path delays in defiance of variations with spatial correlations,’’
in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2017,
pp. 163–168.

[40] F. Koushanfar and A. Mirhoseini, ‘‘A unified framework for multimodal
submodular integrated circuits Trojan detection,’’ IEEE Trans. Inf.
Forensics Security, vol. 6, no. 1, pp. 162–174, Mar. 2011.

[41] I. Pomeranz and S. M. Reddy, ‘‘A measure of quality for n-detection test
sets,’’ IEEE Trans. Comput., vol. 53, no. 11, pp. 1497–1503, Nov. 2004.

[42] Y. Lyu and P. Mishra, ‘‘Automated trigger activation by repeated maximal
clique sampling,’’ in Proc. 25th Asia South Pacific Design Autom. Conf.
(ASP-DAC), Jan. 2020, pp. 482–487.

VOLUME 10, 2022 49525



Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

[43] L.Moura andN. Bjørner, ‘‘Z3: An efficient SMT solver,’’ inProc. TACAS,
2008, pp. 337–340.

[44] H. Salmani, ‘‘COTD: Reference-free hardware trojan detection and
recovery based on controllability and observability in gate-level netlist,’’
IEEE Trans. Inf. Forensics Security, vol. 12, no. 2, pp. 338–350,
Feb. 2017.

[45] M. A. Nourian, M. Fazeli, and D. Hely, ‘‘Hardware trojan detection
using an advised genetic algorithm based logic testing,’’ J. Electron. Test.,
vol. 34, no. 4, pp. 461–470, Aug. 2018.

[46] T. Back, Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford,
U.K.: Oxford Univ. Press, 1996.

[47] K. Hasegawa, M. Yanagisawa, and N. Togawa, ‘‘Hardware Trojans
classification for gate-level netlists using multi-layer neural networks,’’ in
Proc. IEEE 23rd Int. Symp. On-Line Test. Robust Syst. Design (IOLTS),
Jul. 2017, pp. 227–232.

[48] A. Kulkarni, Y. Pino, and T. Mohsenin, ‘‘SVM-based real-time hardware
trojan detection for many-core platform,’’ in Proc. 17th Int. Symp. Quality
Electron. Design (ISQED), Mar. 2016, pp. 362–367.

[49] Z. Pan and P. Mishra, ‘‘Automated test generation for hardware trojan
detection using reinforcement learning,’’ in Proc. 26th Asia South Pacific
Design Autom. Conf., Jan. 2021, pp. 408–413.

[50] G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and
J. Vandewalle, ‘‘Machine learning in side-channel analysis: A first study,’’
J. Cryptograph. Eng., vol. 1, no. 4, p. 293, 2011.

[51] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhattacharya,
‘‘Performance counters to rescue: A machine learning based safeguard
against micro-architectural side-channel-attacks,’’ IACR Cryptol. ePrint
Arch., Tech. Rep. 2017/564, 2017, p. 564.

[52] Z. Tong, Z. Zhu, Z. Wang, L. Wang, Y. Zhang, and Y. Liu, ‘‘Cache side-
channel attacks detection based on machine learning,’’ in Proc. IEEE
19th Int. Conf. Trust, Secur. Privacy Comput. Commun. (TrustCom),
Dec./Jan. 2020, pp. 919–926.

[53] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, M. Yousaf,
U. Farooq, V. Lapotre, and G. Gogniat, ‘‘Machine learning for security:
The case of side-channel attack detection at run-time,’’ inProc. 25th IEEE
Int. Conf. Electron., Circuits Syst. (ICECS), Dec. 2018, pp. 485–488.

[54] H. Wang, H. Sayadi, G. Kolhe, A. Sasan, S. Rafatirad, and H. Homayoun,
‘‘Phased-guard: Multi-phase machine learning framework for detection
and identification of zero-day microarchitectural side-channel attacks,’’
in Proc. IEEE 38th Int. Conf. Comput. Design (ICCD), Oct. 2020,
pp. 648–655.

[55] L. Zhang, D. Mu, W. Hu, and Y. Tai, ‘‘Machine-learning-based side-
channel leakage detection in electronic system-level synthesis,’’ IEEE
Netw., vol. 34, no. 3, pp. 44–49, May/Jun. 2020.

[56] N. Fern and K.-T. Cheng, ‘‘Pre-silicon formal verification of JTAG
instruction opcodes for security,’’ in Proc. IEEE Int. Test Conf. (ITC),
Oct./Nov. 2018, pp. 1–9.

[57] W. Gong and X. Zhou, ‘‘A survey of SAT solver,’’ in Proc. AIP Conf.,
2017, vol. 1836, no. 1, Art. no. 020059.

[58] E. J. Horvitz, Y. Ruan, C. P. Gomes, H. Kautz, B. Selman, and D.Maxwell
Chickering, ‘‘A Bayesian approach to tackling hard computational
problems,’’ 2013, arXiv:1301.2279.

[59] S. Haim and T. Walsh, ‘‘Restart strategy selection using machine learning
techniques,’’ in Proc. Int. Conf. Theory Appl. Satisfiability Test. Springer,
2009, pp. 312–325.

[60] J. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, ‘‘Exponential recency
weighted average branching heuristic for SAT solvers,’’ in Proc. AAAI
Conf. Artif. Intell., 2016, vol. 30, no. 1, pp. 3434–3440.

[61] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, ‘‘Learning rate
based branching heuristic for SAT solvers,’’ in Proc. Int. Conf. Theory
Appl. Satisfiability Test. Springer, 2016, pp. 123–140.

[62] F. Fröhlich, P. Thomas, A. Kazeroonian, F. J. Theis, R. Grima, and
J. Hasenauer, ‘‘Inference for stochastic chemical kinetics using moment
equations and system size expansion,’’PLOSComput. Biol., vol. 12, no. 7,
Jul. 2016, Art. no. e1005030.

[63] M. G. Lagoudakis andM. L. Littman, ‘‘Learning to select branching rules
in the DPLL procedure for satisfiability,’’ Electron. Notes Discrete Math.,
vol. 9, pp. 344–359, Jun. 2001.

[64] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘‘SATzilla: Portfolio-
based algorithm selection for SAT,’’ J. Artif. Intell. Res., vol. 32,
pp. 565–606, Jul. 2008.

[65] M. Lindauer, H. H. Hoos, F. Hutter, and T. Schaub, ‘‘Autofolio: An
automatically configured algorithm selector,’’ J. Artif. Intell. Res., vol. 53,
pp. 745–778, Aug. 2015.

[66] F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown, ‘‘Performance
prediction and automated tuning of randomized and parametric algo-
rithms: An initial investigation,’’ in Proc. AAAI Workshop Learn. Search:
Schedule, 2006, pp. 1–7.

[67] H. Wu, ‘‘Improving SAT-solving with machine learning,’’ in Proc. ACM
SIGCSE Tech. Symp. Comput. Sci. Educ., Mar. 2017, pp. 787–788.

[68] D. Devlin and B. O’Sullivan, ‘‘Satisfiability as a classification problem,’’
in Proc. 19th Irish Conf. Artif. Intell. Cogn. Sci., 2008.

[69] L. Xu, H. Hoos, and K. Leyton-Brown, ‘‘Predicting satisfiability at the
phase transition,’’ in Proc. AAAI Conf. Artif. Intell., 2012, vol. 26, no. 1,
pp. 1–7.

[70] T. Araragi and S. M. Cho, ‘‘Checking liveness properties of concurrent
systems by reinforcement learning,’’ in Proc. Int. Workshop Model
Checking Artif. Intell. Springer, 2006, pp. 84–94.

[71] R. Behjati, M. Sirjani, and M. N. Ahmadabadi, ‘‘Bounded rational search
for on-the-fly model checking of LTL properties,’’ in Proc. Int. Conf.
Fundam. Softw. Eng. Springer, 2009, pp. 292–307.

[72] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of
Model Checking, vol. 10. Springer, 2018.

[73] K. Hasegawa,M. Yanagisawa, andN. Togawa, ‘‘Trojan-feature extraction
at gate-level netlists and its application to hardware-trojan detection using
random forest classifier,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2017, pp. 1–4.

[74] E. Pira, V. Rafe, and A. Nikanjam, ‘‘EMCDM: Efficient model checking
by data mining for verification of complex software systems specified
through architectural styles,’’Appl. Soft Comput., vol. 49, pp. 1185–1201,
Dec. 2016.

[75] J. Hu, T. Li, and S. Li, ‘‘Equivalence checking between SLM and RTL
using machine learning techniques,’’ in Proc. 17th Int. Symp. Quality
Electron. Design (ISQED), Mar. 2016, pp. 129–134.

[76] J. Hu, Y. Hu, Q. Lv, W. Wang, G. Wang, G. Chen, K. Wang, Y. Kang, and
H. Yang, ‘‘A path-based equivalence checking method between system
level and RTL descriptions using machine learning,’’ J. Circuits, Syst.
Comput., vol. 30, no. 4, Mar. 2021, Art. no. 2150074.

[77] S. Kommrusch, T. Barollet, and L.-N. Pouchet, ‘‘Equivalence of dataflow
graphs via rewrite rules using a Graph-to-Sequence neural model,’’ 2020,
arXiv:2002.06799.

[78] H. Dogan, D. Forte, andM.M. Tehranipoor, ‘‘Aging analysis for recycled
FPGA detection,’’ in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI
Nanotechnol. Syst. (DFT), Oct. 2014, pp. 171–176.

[79] K. Huang, J. M. Carulli, and Y. Makris, ‘‘Parametric counterfeit IC
detection via support vector machines,’’ in Proc. IEEE Int. Symp. Defect
Fault Tolerance VLSI Nanotechnol. Syst. (DFT), Oct. 2012, pp. 7–12.

[80] K. Hasegawa, M. Oya, M. Yanagisawa, and N. Togawa, ‘‘Hardware
trojans classification for gate-level netlists based onmachine learning,’’ in
Proc. IEEE 22nd Int. Symp. On-Line Test. Robust Syst. Design (IOLTS),
Jul. 2016, pp. 203–206.

[81] B. Çakir and S. Malik, ‘‘Hardware trojan detection for gate-level ICs
using signal correlation based clustering,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), 2015, pp. 471–476.

[82] R. Lu, H. Shen, Z. Feng, H. Li, W. Zhao, and X. Li, ‘‘HTDet: A clustering
method using information entropy for hardware Trojan detection,’’
Tsinghua Sci. Technol., vol. 26, no. 1, pp. 48–61, 2021.

[83] R. Lu, H. Shen, Y. Su, H. Li, and X. Li, ‘‘GramsDet: Hardware trojan
detection based on recurrent neural network,’’ in Proc. IEEE 28th Asian
Test Symp. (ATS), Dec. 2019, pp. 111–1115.

[84] C. Dong, J. Chen, W. Guo, and J. Zou, ‘‘A machine-learning-
based hardware-Trojan detection approach for chips in the Internet
of Things,’’ Int. J. Distrib. Sensor Netw., vol. 15, no. 12, 2019,
Art. no. 1550147719888098.

[85] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting
system,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, New York, NY, USA, Aug. 2016, pp. 785–794, doi:
10.1145/2939672.2939785.

[86] T. Han, Y. Wang, and P. Liu, ‘‘Hardware trojans detection at register
transfer level based on machine learning,’’ in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2019, pp. 1–5.

[87] K. G. Liakos, G. K. Georgakilas, and F. C. Plessas, ‘‘Hardware Trojan
classification at gate-level netlists based on area and power machine
learning analysis,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI
(ISVLSI), Jul. 2021, pp. 412–417.

49526 VOLUME 10, 2022

http://dx.doi.org/10.1145/2939672.2939785


Z. Pan, P. Mishra: Survey on Hardware Vulnerability Analysis Using Machine Learning

[88] M. N. Reddy, M. Latchmana Kumar, P. B. S. Kumar, S. Thirumalai, and
M.Nirmala Devi, ‘‘Performance enhancement by tuning hyperparameters
of random forest classifier for hardware Trojan detection,’’ in Proc. Int.
Conf. Data Sci. Appl. vol. 2022. Springer, 2022, pp. 177–191.

[89] R. Sharma, N. K. Valivati, G. K. Sharma, and M. Pattanaik, ‘‘A new
hardware trojan detection technique using class weighted XGBoost
classifier,’’ in Proc. 24th Int. Symp. VLSI Design Test (VDAT), Jul. 2020,
pp. 1–6.

[90] E.-R. Zhou, S.-Q. Li, J.-H. Chen, L. Ni, Z.-X. Zhao, and J. Li, ‘‘A novel
detection method for hardware trojan in third party IP cores,’’ in Proc. Int.
Conf. Inf. Syst. Artif. Intell. (ISAI), Jun. 2016, pp. 528–532.

[91] Y. Liu, K. Huang, and Y. Makris, ‘‘Hardware trojan detection through
golden chip-free statistical side-channel fingerprinting,’’ in Proc. 51st
ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2014, pp. 1–6.

[92] G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and J.
Vandewalle, ‘‘Machine learning in side-channel analysis: A first study,’’
J. Cryptograph. Eng., vol. 1, no. 4, p. 293, 2011.

[93] S.Mangard and F.-X. Standaert,Cryptographic Hardware and Embedded
Systems: CHES 2010. Springer, 2010.

[94] E. Prouff, Constructive Side-Channel Analysis and Secure Design.
Springer, 2014.

[95] T. Bartkewitz and K. Lemke-Rust, ‘‘Efficient template attacks based on
probabilistic multi-class support vector machines,’’ in Proc. Int. Conf.
Smart Card Res. Adv. Appl. Springer, 2012, pp. 263–276.

[96] V. Banciu, E. Oswald, and C. Whitnall, ‘‘Reliable information extraction
for single trace attacks,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), 2015, pp. 133–138.

[97] R. Spreitzer, G. Palfinger, and S. Mangard, ‘‘SCAnDroid: Automated
side-channel analysis of Android APIs,’’ in Proc. 11th ACM Conf. Secur.
Privacy Wireless Mobile Netw., 2018, pp. 224–235.

[98] M. Renauld and F.-X. Standaert, ‘‘Algebraic side-channel attacks,’’ in
Proc. Int. Conf. Inf. Secur. Cryptol. Springer, 2009, pp. 393–410.

[99] S. Picek, A. Heuser, A. Jovic, and A. Legay, ‘‘Climbing down the
hierarchy: Hierarchical classification for machine learning side-channel
attacks,’’ in Proc. Int. Conf. Cryptol. Afr. Springer, 2017, pp. 61–78.

[100] Z. Pan, J. Sheldon, and P. Mishra, ‘‘Test generation using reinforcement
learning for delay-based side-channel analysis,’’ in Proc. ICCAD,
Nov. 2020, pp. 1–7.

[101] S. Picek, A. Heuser, A. Jovic, S. A. Ludwig, S. Guilley, D. Jakobovic, and
N. Mentens, ‘‘Side-channel analysis and machine learning: A practical
perspective,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017,
pp. 4095–4102.

[102] A. A. Aldino and H. Sulistiani, ‘‘Decision TREE C4. 5 algorithm
for tuition aid grant program classification (case study: Department of
information system, Universitas Teknokrat Indonesia),’’ Jurnal Ilmiah
Edutic: Pendidikan dan Informatika, vol. 7, no. 1, pp. 40–50, 2020.

[103] J. He, H. Ma, Y. Liu, and Y. Zhao, ‘‘Golden chip-free trojan detection
leveraging Trojan trigger’s side-channel fingerprinting,’’ ACM Trans.
Embedded Comput. Syst., vol. 20, no. 1, pp. 1–18, 2020.

[104] E. H. Yuk, S. H. Park, C.-S. Park, and J.-G. Baek, ‘‘Feature-learning-
based printed circuit board inspection via speeded-up robust features and
random forest,’’ Appl. Sci., vol. 8, no. 6, p. 932, 2018.

[105] G. Mahalingam, K. M. Gay, and K. Ricanek, ‘‘PCB-METAL: A PCB
image dataset for advanced computer vision machine learning component
analysis,’’ in Proc. 16th Int. Conf. Mach. Vis. Appl. (MVA), May 2019,
pp. 1–5.

[106] L. K. Cheong, S. A. Suandi, and S. Rahman, ‘‘Defects and components
recognition in printed circuit boards using convolutional neural network,’’
inProc. 10th Int. Conf. Robot., Vis., Signal Process. Power Appl. Springer,
2019, pp. 75–81.

[107] S. Zakaria, A. Amir, N. Yaakob, and S. Nazemi, ‘‘Automated detection
of printed circuit boards (PCB) defects by using machine learning in
electronic manufacturing: Current approaches,’’ in Proc. IOP Conf.,
Mater. Sci. Eng., 2020, vol. 767, no. 1, Art. no. 012064.

[108] B. Hu and J. Wang, ‘‘Detection of PCB surface defects with improved
faster-RCNN and feature pyramid network,’’ IEEE Access, vol. 8,
pp. 108335–108345, 2020.

[109] A. Stern, U. Botero, F. Rahman, D. Forte, and M. Tehranipoor,
‘‘EMFORCED: EM-based fingerprinting framework for remarked and
cloned counterfeit IC detection using machine learning classification,’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 2,
pp. 363–375, Feb. 2020.

[110] D. Zhang, Y. Han, and Q. Ren, ‘‘A novel authorization methodology
to prevent counterfeit PCB/Equipment through supply chain,’’ in Proc.
IEEE 4th Int. Conf. Integr. Circuits Microsyst. (ICICM), Oct. 2019,
pp. 128–132.

[111] N.Asadizanjani,M. Tehranipoor, andD. Forte, ‘‘PCB reverse engineering
using nondestructive X-ray tomography and advanced image process-
ing,’’ IEEE Trans. Compon., Packag., Manuf. Technol., vol. 7, no. 2,
pp. 292–299, Feb. 2017.

[112] A. T. Erozan, M. Hefenbrock, M. Beigl, J. Aghassi-Hagmann, and
M. B. Tahoori, ‘‘Reverse engineering of printed electronics circuits:
From imaging to netlist extraction,’’ IEEE Trans. Inf. Forensics Security,
vol. 15, pp. 475–486, 2019.

[113] M. A. Mallaiyan Sathiaseelan, O. P. Paradis, S. Taheri, and
N. Asadizanjani, ‘‘Why is deep learning challenging for printed
circuit board (PCB) component recognition and how can we address it?’’
Cryptography, vol. 5, no. 1, p. 9, Mar. 2021.

[114] A. Sengupta, S. Bhadauria, and S. P. Mohanty, ‘‘TL-HLS: Methodology
for low cost hardware trojan security aware scheduling with optimal loop
unrolling factor during high level synthesis,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 36, no. 4, pp. 655–668, Apr. 2017.

ZHIXIN PAN (Member, IEEE) received the
B.E. degree from the Department of Software
Engineering, Huazhong University of Science
and Technology, Wuhan, China, in 2015. He is
currently pursuing the Ph.D. degree with the
Department of Computer and Information Sci-
ence and Engineering, University of Florida. His
research interests include hardware security and
trust, malware detection, post-silicon debug, data
mining, and machine learning.

PRABHAT MISHRA (Fellow, IEEE) received
the Ph.D. degree in computer science from the
University of California at Irvine, in 2004. He is
a Professor with the Department of Computer
and Information Science and Engineering and
a UF Research Foundation Professor with the
University of Florida. His research interests
include embedded and cyber-physical systems,
hardware security and trust, energy-aware comput-
ing, systems-on-chip validation, machine learning,

and quantum computing. He is a Distinguished Scientist of ACM.
He currently serves as an Associate Editor for IEEE TRANSACTIONS ON

VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS and ACM Transactions on
Embedded Computing Systems.

VOLUME 10, 2022 49527


